// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <functional> #include <numeric> #include <vector> #include "base/basictypes.h" #include "base/files/file_path.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/time/time.h" #include "skia/ext/convolver.h" #include "skia/ext/recursive_gaussian_convolution.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkPoint.h" #include "third_party/skia/include/core/SkRect.h" namespace { int ComputeRowStride(int width, int channel_count, int stride_slack) { return width * channel_count + stride_slack; } SkIPoint MakeImpulseImage(std::vector<unsigned char>* image, int width, int height, int channel_index, int channel_count, int stride_slack) { const int src_row_stride = ComputeRowStride( width, channel_count, stride_slack); const int src_byte_count = src_row_stride * height; const int signal_x = width / 2; const int signal_y = height / 2; image->resize(src_byte_count, 0); const int non_zero_pixel_index = signal_y * src_row_stride + signal_x * channel_count + channel_index; (*image)[non_zero_pixel_index] = 255; return SkIPoint::Make(signal_x, signal_y); } SkIRect MakeBoxImage(std::vector<unsigned char>* image, int width, int height, int channel_index, int channel_count, int stride_slack, int box_width, int box_height, unsigned char value) { const int src_row_stride = ComputeRowStride( width, channel_count, stride_slack); const int src_byte_count = src_row_stride * height; const SkIRect box = SkIRect::MakeXYWH((width - box_width) / 2, (height - box_height) / 2, box_width, box_height); image->resize(src_byte_count, 0); for (int y = box.top(); y < box.bottom(); ++y) { for (int x = box.left(); x < box.right(); ++x) (*image)[y * src_row_stride + x * channel_count + channel_index] = value; } return box; } int ComputeBoxSum(const std::vector<unsigned char>& image, const SkIRect& box, int image_width) { // Compute the sum of all pixels in the box. Assume byte stride 1 and row // stride same as image_width. int sum = 0; for (int y = box.top(); y < box.bottom(); ++y) { for (int x = box.left(); x < box.right(); ++x) sum += image[y * image_width + x]; } return sum; } } // namespace namespace skia { TEST(RecursiveGaussian, SmoothingMethodComparison) { static const int kImgWidth = 512; static const int kImgHeight = 220; static const int kChannelIndex = 3; static const int kChannelCount = 3; static const int kStrideSlack = 22; std::vector<unsigned char> input; SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); MakeImpulseImage( &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, kStrideSlack); // Destination will be a single channel image with stide matching width. const int dest_row_stride = kImgWidth; const int dest_byte_count = dest_row_stride * kImgHeight; std::vector<unsigned char> intermediate(dest_byte_count); std::vector<unsigned char> intermediate2(dest_byte_count); std::vector<unsigned char> control(dest_byte_count); std::vector<unsigned char> output(dest_byte_count); const int src_row_stride = ComputeRowStride( kImgWidth, kChannelCount, kStrideSlack); const float kernel_sigma = 2.5f; ConvolutionFilter1D filter; SetUpGaussianConvolutionKernel(&filter, kernel_sigma, false); // Process the control image. SingleChannelConvolveX1D(&input[0], src_row_stride, kChannelIndex, kChannelCount, filter, image_size, &intermediate[0], dest_row_stride, 0, 1, false); SingleChannelConvolveY1D(&intermediate[0], dest_row_stride, 0, 1, filter, image_size, &control[0], dest_row_stride, 0, 1, false); // Now try the same using the other method. RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &intermediate2[0], dest_row_stride, 0, 1, false); SingleChannelRecursiveGaussianX(&intermediate2[0], dest_row_stride, 0, 1, recursive_filter, image_size, &output[0], dest_row_stride, 0, 1, false); // We cannot expect the results to be really the same. In particular, // the standard implementation is computed in completely fixed-point, while // recursive is done in floating point and squeezed back into char*. On top // of that, its characteristics are a bit different (consult the paper). EXPECT_NEAR(std::accumulate(intermediate.begin(), intermediate.end(), 0), std::accumulate(intermediate2.begin(), intermediate2.end(), 0), 50); int difference_count = 0; std::vector<unsigned char>::const_iterator i1, i2; for (i1 = control.begin(), i2 = output.begin(); i1 != control.end(); ++i1, ++i2) { if ((*i1 != 0) != (*i2 != 0)) difference_count++; } EXPECT_LE(difference_count, 44); // 44 is 2 * PI * r (r == 7, spot size). } TEST(RecursiveGaussian, SmoothingImpulse) { static const int kImgWidth = 200; static const int kImgHeight = 300; static const int kChannelIndex = 3; static const int kChannelCount = 3; static const int kStrideSlack = 22; std::vector<unsigned char> input; SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); const SkIPoint centre_point = MakeImpulseImage( &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, kStrideSlack); // Destination will be a single channel image with stide matching width. const int dest_row_stride = kImgWidth; const int dest_byte_count = dest_row_stride * kImgHeight; std::vector<unsigned char> intermediate(dest_byte_count); std::vector<unsigned char> output(dest_byte_count); const int src_row_stride = ComputeRowStride( kImgWidth, kChannelCount, kStrideSlack); const float kernel_sigma = 5.0f; RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FUNCTION); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &intermediate[0], dest_row_stride, 0, 1, false); SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1, recursive_filter, image_size, &output[0], dest_row_stride, 0, 1, false); // Check we got the expected impulse response. const int cx = centre_point.x(); const int cy = centre_point.y(); unsigned char value_x = output[dest_row_stride * cy + cx]; unsigned char value_y = value_x; EXPECT_GT(value_x, 0); for (int offset = 0; offset < std::min(kImgWidth, kImgHeight) && (value_y > 0 || value_x > 0); ++offset) { // Symmetricity and monotonicity along X. EXPECT_EQ(output[dest_row_stride * cy + cx - offset], output[dest_row_stride * cy + cx + offset]); EXPECT_LE(output[dest_row_stride * cy + cx - offset], value_x); value_x = output[dest_row_stride * cy + cx - offset]; // Symmetricity and monotonicity along Y. EXPECT_EQ(output[dest_row_stride * (cy - offset) + cx], output[dest_row_stride * (cy + offset) + cx]); EXPECT_LE(output[dest_row_stride * (cy - offset) + cx], value_y); value_y = output[dest_row_stride * (cy - offset) + cx]; // Symmetricity along X/Y (not really assured, but should be close). EXPECT_NEAR(value_x, value_y, 1); } // Smooth the inverse now. std::vector<unsigned char> output2(dest_byte_count); std::transform(input.begin(), input.end(), input.begin(), std::bind1st(std::minus<unsigned char>(), 255U)); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &intermediate[0], dest_row_stride, 0, 1, false); SingleChannelRecursiveGaussianX(&intermediate[0], dest_row_stride, 0, 1, recursive_filter, image_size, &output2[0], dest_row_stride, 0, 1, false); // The image should be the reverse of output, but permitting for rounding // we will only claim that wherever output is 0, output2 should be 255. // There still can be differences at the edges of the object. std::vector<unsigned char>::const_iterator i1, i2; int difference_count = 0; for (i1 = output.begin(), i2 = output2.begin(); i1 != output.end(); ++i1, ++i2) { // The line below checks (*i1 == 0 <==> *i2 == 255). if ((*i1 != 0 && *i2 == 255) && ! (*i1 == 0 && *i2 != 255)) ++difference_count; } EXPECT_LE(difference_count, 8); } TEST(RecursiveGaussian, FirstDerivative) { static const int kImgWidth = 512; static const int kImgHeight = 1024; static const int kChannelIndex = 2; static const int kChannelCount = 4; static const int kStrideSlack = 22; static const int kBoxSize = 400; std::vector<unsigned char> input; const SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); const SkIRect box = MakeBoxImage( &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, kStrideSlack, kBoxSize, kBoxSize, 200); // Destination will be a single channel image with stide matching width. const int dest_row_stride = kImgWidth; const int dest_byte_count = dest_row_stride * kImgHeight; std::vector<unsigned char> output_x(dest_byte_count); std::vector<unsigned char> output_y(dest_byte_count); std::vector<unsigned char> output(dest_byte_count); const int src_row_stride = ComputeRowStride( kImgWidth, kChannelCount, kStrideSlack); const float kernel_sigma = 3.0f; const int spread = 4 * kernel_sigma; RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::FIRST_DERIVATIVE); SingleChannelRecursiveGaussianX(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_x[0], dest_row_stride, 0, 1, true); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_y[0], dest_row_stride, 0, 1, true); // In test code we can assume adding the two up should do fine. std::vector<unsigned char>::const_iterator ix, iy; std::vector<unsigned char>::iterator target; for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin(); target < output.end(); ++target, ++ix, ++iy) { *target = *ix + *iy; } SkIRect inflated_rect(box); inflated_rect.outset(spread, spread); SkIRect deflated_rect(box); deflated_rect.inset(spread, spread); int image_total = ComputeBoxSum(output, SkIRect::MakeWH(kImgWidth, kImgHeight), kImgWidth); int box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth); int box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth); EXPECT_EQ(box_deflated, 0); EXPECT_EQ(image_total, box_inflated); // Try inverted image. Behaviour should be very similar (modulo rounding). std::transform(input.begin(), input.end(), input.begin(), std::bind1st(std::minus<unsigned char>(), 255U)); SingleChannelRecursiveGaussianX(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_x[0], dest_row_stride, 0, 1, true); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_y[0], dest_row_stride, 0, 1, true); for (target = output.begin(), ix = output_x.begin(), iy = output_y.begin(); target < output.end(); ++target, ++ix, ++iy) { *target = *ix + *iy; } image_total = ComputeBoxSum(output, SkIRect::MakeWH(kImgWidth, kImgHeight), kImgWidth); box_inflated = ComputeBoxSum(output, inflated_rect, kImgWidth); box_deflated = ComputeBoxSum(output, deflated_rect, kImgWidth); EXPECT_EQ(box_deflated, 0); EXPECT_EQ(image_total, box_inflated); } TEST(RecursiveGaussian, SecondDerivative) { static const int kImgWidth = 700; static const int kImgHeight = 500; static const int kChannelIndex = 0; static const int kChannelCount = 2; static const int kStrideSlack = 42; static const int kBoxSize = 200; std::vector<unsigned char> input; SkISize image_size = SkISize::Make(kImgWidth, kImgHeight); const SkIRect box = MakeBoxImage( &input, kImgWidth, kImgHeight, kChannelIndex, kChannelCount, kStrideSlack, kBoxSize, kBoxSize, 200); // Destination will be a single channel image with stide matching width. const int dest_row_stride = kImgWidth; const int dest_byte_count = dest_row_stride * kImgHeight; std::vector<unsigned char> output_x(dest_byte_count); std::vector<unsigned char> output_y(dest_byte_count); std::vector<unsigned char> output(dest_byte_count); const int src_row_stride = ComputeRowStride( kImgWidth, kChannelCount, kStrideSlack); const float kernel_sigma = 5.0f; const int spread = 8 * kernel_sigma; RecursiveFilter recursive_filter(kernel_sigma, RecursiveFilter::SECOND_DERIVATIVE); SingleChannelRecursiveGaussianX(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_x[0], dest_row_stride, 0, 1, true); SingleChannelRecursiveGaussianY(&input[0], src_row_stride, kChannelIndex, kChannelCount, recursive_filter, image_size, &output_y[0], dest_row_stride, 0, 1, true); // In test code we can assume adding the two up should do fine. std::vector<unsigned char>::const_iterator ix, iy; std::vector<unsigned char>::iterator target; for (target = output.begin(),ix = output_x.begin(), iy = output_y.begin(); target < output.end(); ++target, ++ix, ++iy) { *target = *ix + *iy; } int image_total = ComputeBoxSum(output, SkIRect::MakeWH(kImgWidth, kImgHeight), kImgWidth); int box_inflated = ComputeBoxSum(output, SkIRect::MakeLTRB(box.left() - spread, box.top() - spread, box.right() + spread, box.bottom() + spread), kImgWidth); int box_deflated = ComputeBoxSum(output, SkIRect::MakeLTRB(box.left() + spread, box.top() + spread, box.right() - spread, box.bottom() - spread), kImgWidth); // Since second derivative is not really used and implemented mostly // for the sake of completeness, we do not verify the detail (that dip // in the middle). But it is there. EXPECT_EQ(box_deflated, 0); EXPECT_EQ(image_total, box_inflated); } } // namespace skia