# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import asn1 import hashlib import os # This file implements very minimal certificate and OCSP generation. It's # designed to test revocation checking. def RandomNumber(length_in_bytes): '''RandomNumber returns a random number of length 8*|length_in_bytes| bits''' rand = os.urandom(length_in_bytes) n = 0 for x in rand: n <<= 8 n |= ord(x) return n def ModExp(n, e, p): '''ModExp returns n^e mod p''' r = 1 while e != 0: if e & 1: r = (r*n) % p e >>= 1 n = (n*n) % p return r # PKCS1v15_SHA256_PREFIX is the ASN.1 prefix for a SHA256 signature. PKCS1v15_SHA256_PREFIX = '3031300d060960864801650304020105000420'.decode('hex') class RSA(object): def __init__(self, modulus, e, d): self.m = modulus self.e = e self.d = d self.modlen = 0 m = modulus while m != 0: self.modlen += 1 m >>= 8 def Sign(self, message): digest = hashlib.sha256(message).digest() prefix = PKCS1v15_SHA256_PREFIX em = ['\xff'] * (self.modlen - 1 - len(prefix) - len(digest)) em[0] = '\x00' em[1] = '\x01' em += "\x00" + prefix + digest n = 0 for x in em: n <<= 8 n |= ord(x) s = ModExp(n, self.d, self.m) out = [] while s != 0: out.append(s & 0xff) s >>= 8 out.reverse() return '\x00' * (self.modlen - len(out)) + asn1.ToBytes(out) def ToDER(self): return asn1.ToDER(asn1.SEQUENCE([self.m, self.e])) def Name(cn = None, c = None, o = None): names = asn1.SEQUENCE([]) if cn is not None: names.children.append( asn1.SET([ asn1.SEQUENCE([ COMMON_NAME, cn, ]) ]) ) if c is not None: names.children.append( asn1.SET([ asn1.SEQUENCE([ COUNTRY, c, ]) ]) ) if o is not None: names.children.append( asn1.SET([ asn1.SEQUENCE([ ORGANIZATION, o, ]) ]) ) return names # The private key and root certificate name are hard coded here: # This is the private key KEY = RSA(0x00a71998f2930bfe73d031a87f133d2f378eeeeed52a77e44d0fc9ff6f07ff32cbf3da999de4ed65832afcb0807f98787506539d258a0ce3c2c77967653099a9034a9b115a876c39a8c4e4ed4acd0c64095946fb39eeeb47a0704dbb018acf48c3a1c4b895fc409fb4a340a986b1afc45519ab9eca47c30185c771c64aa5ecf07d, 3, 0x6f6665f70cb2a9a28acbc5aa0cd374cfb49f49e371a542de0a86aa4a0554cc87f7e71113edf399021ca875aaffbafaf8aee268c3b15ded2c84fb9a4375bbc6011d841e57833bc6f998d25daf6fa7f166b233e3e54a4bae7a5aaaba21431324967d5ff3e1d4f413827994262115ca54396e7068d0afa7af787a5782bc7040e6d3) # And the same thing in PEM format KEY_PEM = '''-----BEGIN RSA PRIVATE KEY----- MIICXAIBAAKBgQCnGZjykwv+c9AxqH8TPS83ju7u1Sp35E0Pyf9vB/8yy/PamZ3k 7WWDKvywgH+YeHUGU50ligzjwsd5Z2UwmakDSpsRWodsOajE5O1KzQxkCVlG+znu 60egcE27AYrPSMOhxLiV/ECftKNAqYaxr8RVGaueykfDAYXHccZKpezwfQIBAwKB gG9mZfcMsqmiisvFqgzTdM+0n0njcaVC3gqGqkoFVMyH9+cRE+3zmQIcqHWq/7r6 +K7iaMOxXe0shPuaQ3W7xgEdhB5XgzvG+ZjSXa9vp/FmsjPj5UpLrnpaqrohQxMk ln1f8+HU9BOCeZQmIRXKVDlucGjQr6eveHpXgrxwQObTAkEA2wBAfuduw5G0/VfN Wx66D5fbPccfYFqLM5LuTimLmNqzK2gIKXckB2sm44gJZ6wVlumaB1CSNug2LNYx 3cAjUwJBAMNUo1hbI8ugqqwI9kpxv9+2Heea4BlnXbS6tYF8pvkHMoliuxNbXmmB u4zNB5iZ6V0ZZ4nvtUNo2cGr/h/Lcu8CQQCSACr/RPSCYSNTj948vya1D+d+hL+V kbIiYfQ0G7Jl5yIc8AVw+hgE8hntBVuacrkPRmaviwwkms7IjsvpKsI3AkEAgjhs 5ZIX3RXHHVtO3EvVP86+mmdAEO+TzdHOVlMZ+1ohsOx8t5I+8QEnszNaZbvw6Lua W/UjgkXmgR1UFTJMnwJBAKErmAw21/g3SST0a4wlyaGT/MbXL8Ouwnb5IOKQVe55 CZdeVeSh6cJ4hAcQKfr2s1JaZTJFIBPGKAif5HqpydA= -----END RSA PRIVATE KEY----- ''' # Root certificate CN ISSUER_CN = "Testing CA" # All certificates are issued under this policy OID, in the Google arc: CERT_POLICY_OID = asn1.OID([1, 3, 6, 1, 4, 1, 11129, 2, 4, 1]) # These result in the following root certificate: # -----BEGIN CERTIFICATE----- # MIIB0TCCATqgAwIBAgIBATANBgkqhkiG9w0BAQUFADAVMRMwEQYDVQQDEwpUZXN0aW5nIENBMB4X # DTEwMDEwMTA2MDAwMFoXDTMyMTIwMTA2MDAwMFowFTETMBEGA1UEAxMKVGVzdGluZyBDQTCBnTAN # BgkqhkiG9w0BAQEFAAOBiwAwgYcCgYEApxmY8pML/nPQMah/Ez0vN47u7tUqd+RND8n/bwf/Msvz # 2pmd5O1lgyr8sIB/mHh1BlOdJYoM48LHeWdlMJmpA0qbEVqHbDmoxOTtSs0MZAlZRvs57utHoHBN # uwGKz0jDocS4lfxAn7SjQKmGsa/EVRmrnspHwwGFx3HGSqXs8H0CAQOjMzAxMBIGA1UdEwEB/wQI # MAYBAf8CAQAwGwYDVR0gAQEABBEwDzANBgsrBgEEAdZ5AgHODzANBgkqhkiG9w0BAQUFAAOBgQA/ # STb40A6D+93jMfLGQzXc997IsaJZdoPt7tYa8PqGJBL62EiTj+erd/H5pDZx/2/bcpOG4m9J56yg # wOohbllw2TM+oeEd8syzV6X+1SIPnGI56JRrm3UXcHYx1Rq5loM9WKAiz/WmIWmskljsEQ7+542p # q0pkHjs8nuXovSkUYA== # -----END CERTIFICATE----- # If you update any of the above, you can generate a new root with the # following line: # print DERToPEM(MakeCertificate(ISSUER_CN, ISSUER_CN, 1, KEY, KEY, None)) # Various OIDs AIA_OCSP = asn1.OID([1, 3, 6, 1, 5, 5, 7, 48, 1]) AUTHORITY_INFORMATION_ACCESS = asn1.OID([1, 3, 6, 1, 5, 5, 7, 1, 1]) BASIC_CONSTRAINTS = asn1.OID([2, 5, 29, 19]) CERT_POLICIES = asn1.OID([2, 5, 29, 32]) COMMON_NAME = asn1.OID([2, 5, 4, 3]) COUNTRY = asn1.OID([2, 5, 4, 6]) HASH_SHA1 = asn1.OID([1, 3, 14, 3, 2, 26]) OCSP_TYPE_BASIC = asn1.OID([1, 3, 6, 1, 5, 5, 7, 48, 1, 1]) ORGANIZATION = asn1.OID([2, 5, 4, 10]) PUBLIC_KEY_RSA = asn1.OID([1, 2, 840, 113549, 1, 1, 1]) SHA256_WITH_RSA_ENCRYPTION = asn1.OID([1, 2, 840, 113549, 1, 1, 11]) def MakeCertificate( issuer_cn, subject_cn, serial, pubkey, privkey, ocsp_url = None): '''MakeCertificate returns a DER encoded certificate, signed by privkey.''' extensions = asn1.SEQUENCE([]) # Default subject name fields c = "XX" o = "Testing Org" if issuer_cn == subject_cn: # Root certificate. c = None o = None extensions.children.append( asn1.SEQUENCE([ basic_constraints, True, asn1.OCTETSTRING(asn1.ToDER(asn1.SEQUENCE([ True, # IsCA 0, # Path len ]))), ])) if ocsp_url is not None: extensions.children.append( asn1.SEQUENCE([ AUTHORITY_INFORMATION_ACCESS, False, asn1.OCTETSTRING(asn1.ToDER(asn1.SEQUENCE([ asn1.SEQUENCE([ AIA_OCSP, asn1.Raw(asn1.TagAndLength(0x86, len(ocsp_url)) + ocsp_url), ]), ]))), ])) extensions.children.append( asn1.SEQUENCE([ CERT_POLICIES, False, asn1.OCTETSTRING(asn1.ToDER(asn1.SEQUENCE([ asn1.SEQUENCE([ # PolicyInformation CERT_POLICY_OID, ]), ]))), ]) ) tbsCert = asn1.ToDER(asn1.SEQUENCE([ asn1.Explicit(0, 2), # Version serial, asn1.SEQUENCE([SHA256_WITH_RSA_ENCRYPTION, None]), # SignatureAlgorithm Name(cn = issuer_cn), # Issuer asn1.SEQUENCE([ # Validity asn1.UTCTime("100101060000Z"), # NotBefore asn1.UTCTime("321201060000Z"), # NotAfter ]), Name(cn = subject_cn, c = c, o = o), # Subject asn1.SEQUENCE([ # SubjectPublicKeyInfo asn1.SEQUENCE([ # Algorithm PUBLIC_KEY_RSA, None, ]), asn1.BitString(asn1.ToDER(pubkey)), ]), asn1.Explicit(3, extensions), ])) return asn1.ToDER(asn1.SEQUENCE([ asn1.Raw(tbsCert), asn1.SEQUENCE([ SHA256_WITH_RSA_ENCRYPTION, None, ]), asn1.BitString(privkey.Sign(tbsCert)), ])) def MakeOCSPResponse(issuer_cn, issuer_key, serial, ocsp_state): # https://tools.ietf.org/html/rfc2560 issuer_name_hash = asn1.OCTETSTRING( hashlib.sha1(asn1.ToDER(Name(cn = issuer_cn))).digest()) issuer_key_hash = asn1.OCTETSTRING( hashlib.sha1(asn1.ToDER(issuer_key)).digest()) cert_status = None if ocsp_state == OCSP_STATE_REVOKED: cert_status = asn1.Explicit(1, asn1.GeneralizedTime("20100101060000Z")) elif ocsp_state == OCSP_STATE_UNKNOWN: cert_status = asn1.Raw(asn1.TagAndLength(0x80 | 2, 0)) elif ocsp_state == OCSP_STATE_GOOD: cert_status = asn1.Raw(asn1.TagAndLength(0x80 | 0, 0)) else: raise ValueError('Bad OCSP state: ' + str(ocsp_state)) basic_resp_data_der = asn1.ToDER(asn1.SEQUENCE([ asn1.Explicit(2, issuer_key_hash), asn1.GeneralizedTime("20100101060000Z"), # producedAt asn1.SEQUENCE([ asn1.SEQUENCE([ # SingleResponse asn1.SEQUENCE([ # CertID asn1.SEQUENCE([ # hashAlgorithm HASH_SHA1, None, ]), issuer_name_hash, issuer_key_hash, serial, ]), cert_status, asn1.GeneralizedTime("20100101060000Z"), # thisUpdate asn1.Explicit(0, asn1.GeneralizedTime("20300101060000Z")), # nextUpdate ]), ]), ])) basic_resp = asn1.SEQUENCE([ asn1.Raw(basic_resp_data_der), asn1.SEQUENCE([ SHA256_WITH_RSA_ENCRYPTION, None, ]), asn1.BitString(issuer_key.Sign(basic_resp_data_der)), ]) resp = asn1.SEQUENCE([ asn1.ENUMERATED(0), asn1.Explicit(0, asn1.SEQUENCE([ OCSP_TYPE_BASIC, asn1.OCTETSTRING(asn1.ToDER(basic_resp)), ])) ]) return asn1.ToDER(resp) def DERToPEM(der): pem = '-----BEGIN CERTIFICATE-----\n' pem += der.encode('base64') pem += '-----END CERTIFICATE-----\n' return pem OCSP_STATE_GOOD = 1 OCSP_STATE_REVOKED = 2 OCSP_STATE_INVALID = 3 OCSP_STATE_UNAUTHORIZED = 4 OCSP_STATE_UNKNOWN = 5 # unauthorizedDER is an OCSPResponse with a status of 6: # SEQUENCE { ENUM(6) } unauthorizedDER = '30030a0106'.decode('hex') def GenerateCertKeyAndOCSP(subject = "127.0.0.1", ocsp_url = "http://127.0.0.1", ocsp_state = OCSP_STATE_GOOD, serial = 0): '''GenerateCertKeyAndOCSP returns a (cert_and_key_pem, ocsp_der) where: * cert_and_key_pem contains a certificate and private key in PEM format with the given subject common name and OCSP URL. * ocsp_der contains a DER encoded OCSP response or None if ocsp_url is None''' if serial == 0: serial = RandomNumber(16) cert_der = MakeCertificate(ISSUER_CN, bytes(subject), serial, KEY, KEY, bytes(ocsp_url)) cert_pem = DERToPEM(cert_der) ocsp_der = None if ocsp_url is not None: if ocsp_state == OCSP_STATE_UNAUTHORIZED: ocsp_der = unauthorizedDER elif ocsp_state == OCSP_STATE_INVALID: ocsp_der = '3' else: ocsp_der = MakeOCSPResponse(ISSUER_CN, KEY, serial, ocsp_state) return (cert_pem + KEY_PEM, ocsp_der)