// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/encryptor.h" #include <string> #include "base/memory/scoped_ptr.h" #include "base/strings/string_number_conversions.h" #include "crypto/symmetric_key.h" #include "testing/gtest/include/gtest/gtest.h" TEST(EncryptorTest, EncryptDecrypt) { scoped_ptr<crypto::SymmetricKey> key( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); EXPECT_TRUE(key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long as the cipher block size. std::string iv("the iv: 16 bytes"); EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); std::string plaintext("this is the plaintext"); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_LT(0U, ciphertext.size()); std::string decrypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } TEST(EncryptorTest, DecryptWrongKey) { scoped_ptr<crypto::SymmetricKey> key( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256)); EXPECT_TRUE(key.get()); // A wrong key that can be detected by implementations that validate every // byte in the padding. scoped_ptr<crypto::SymmetricKey> wrong_key( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256)); EXPECT_TRUE(wrong_key.get()); // A wrong key that can't be detected by any implementation. The password // "wrongword;" would also work. scoped_ptr<crypto::SymmetricKey> wrong_key2( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256)); EXPECT_TRUE(wrong_key2.get()); // A wrong key that can be detected by all implementations. scoped_ptr<crypto::SymmetricKey> wrong_key3( crypto::SymmetricKey::DeriveKeyFromPassword( crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256)); EXPECT_TRUE(wrong_key3.get()); crypto::Encryptor encryptor; // The IV must be exactly as long as the cipher block size. std::string iv("the iv: 16 bytes"); EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv)); std::string plaintext("this is the plaintext"); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); static const unsigned char expected_ciphertext[] = { 0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27, 0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0, 0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8, 0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C }; ASSERT_EQ(arraysize(expected_ciphertext), ciphertext.size()); for (size_t i = 0; i < ciphertext.size(); ++i) { ASSERT_EQ(expected_ciphertext[i], static_cast<unsigned char>(ciphertext[i])); } std::string decrypted; // This wrong key causes the last padding byte to be 5, which is a valid // padding length, and the second to last padding byte to be 137, which is // invalid. If an implementation simply uses the last padding byte to // determine the padding length without checking every padding byte, // Encryptor::Decrypt() will still return true. This is the case for NSS // (crbug.com/124434). #if !defined(USE_NSS) && !defined(OS_WIN) && !defined(OS_MACOSX) crypto::Encryptor decryptor; EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv)); EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decrypted)); #endif // This demonstrates that not all wrong keys can be detected by padding // error. This wrong key causes the last padding byte to be 1, which is // a valid padding block of length 1. crypto::Encryptor decryptor2; EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv)); EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decrypted)); // This wrong key causes the last padding byte to be 253, which should be // rejected by all implementations. crypto::Encryptor decryptor3; EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv)); EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decrypted)); } namespace { // From NIST SP 800-38a test cast: // - F.5.1 CTR-AES128.Encrypt // - F.5.6 CTR-AES256.Encrypt // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf const unsigned char kAES128CTRKey[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c }; const unsigned char kAES256CTRKey[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }; const unsigned char kAESCTRInitCounter[] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff }; const unsigned char kAESCTRPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 }; const unsigned char kAES128CTRCiphertext[] = { // Block #1 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce, // Block #2 0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff, // Block #3 0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab, // Block #4 0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee }; const unsigned char kAES256CTRCiphertext[] = { // Block #1 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28, // Block #2 0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5, // Block #3 0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d, // Block #4 0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 }; void TestAESCTREncrypt( const unsigned char* key, size_t key_size, const unsigned char* init_counter, size_t init_counter_size, const unsigned char* plaintext, size_t plaintext_size, const unsigned char* ciphertext, size_t ciphertext_size) { std::string key_str(reinterpret_cast<const char*>(key), key_size); scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key_str)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); base::StringPiece init_counter_str( reinterpret_cast<const char*>(init_counter), init_counter_size); base::StringPiece plaintext_str( reinterpret_cast<const char*>(plaintext), plaintext_size); EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); std::string encrypted; EXPECT_TRUE(encryptor.Encrypt(plaintext_str, &encrypted)); EXPECT_EQ(ciphertext_size, encrypted.size()); EXPECT_EQ(0, memcmp(encrypted.data(), ciphertext, encrypted.size())); std::string decrypted; EXPECT_TRUE(encryptor.SetCounter(init_counter_str)); EXPECT_TRUE(encryptor.Decrypt(encrypted, &decrypted)); EXPECT_EQ(plaintext_str, decrypted); } void TestAESCTRMultipleDecrypt( const unsigned char* key, size_t key_size, const unsigned char* init_counter, size_t init_counter_size, const unsigned char* plaintext, size_t plaintext_size, const unsigned char* ciphertext, size_t ciphertext_size) { std::string key_str(reinterpret_cast<const char*>(key), key_size); scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key_str)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, "")); // Counter is set only once. EXPECT_TRUE(encryptor.SetCounter(base::StringPiece( reinterpret_cast<const char*>(init_counter), init_counter_size))); std::string ciphertext_str(reinterpret_cast<const char*>(ciphertext), ciphertext_size); int kTestDecryptSizes[] = { 32, 16, 8 }; int offset = 0; for (size_t i = 0; i < arraysize(kTestDecryptSizes); ++i) { std::string decrypted; size_t len = kTestDecryptSizes[i]; EXPECT_TRUE( encryptor.Decrypt(ciphertext_str.substr(offset, len), &decrypted)); EXPECT_EQ(len, decrypted.size()); EXPECT_EQ(0, memcmp(decrypted.data(), plaintext + offset, len)); offset += len; } } } // namespace TEST(EncryptorTest, EncryptAES128CTR) { TestAESCTREncrypt( kAES128CTRKey, arraysize(kAES128CTRKey), kAESCTRInitCounter, arraysize(kAESCTRInitCounter), kAESCTRPlaintext, arraysize(kAESCTRPlaintext), kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); } TEST(EncryptorTest, EncryptAES256CTR) { TestAESCTREncrypt( kAES256CTRKey, arraysize(kAES256CTRKey), kAESCTRInitCounter, arraysize(kAESCTRInitCounter), kAESCTRPlaintext, arraysize(kAESCTRPlaintext), kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); } TEST(EncryptorTest, EncryptAES128CTR_MultipleDecrypt) { TestAESCTRMultipleDecrypt( kAES128CTRKey, arraysize(kAES128CTRKey), kAESCTRInitCounter, arraysize(kAESCTRInitCounter), kAESCTRPlaintext, arraysize(kAESCTRPlaintext), kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext)); } TEST(EncryptorTest, EncryptAES256CTR_MultipleDecrypt) { TestAESCTRMultipleDecrypt( kAES256CTRKey, arraysize(kAES256CTRKey), kAESCTRInitCounter, arraysize(kAESCTRInitCounter), kAESCTRPlaintext, arraysize(kAESCTRPlaintext), kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext)); } TEST(EncryptorTest, EncryptDecryptCTR) { scoped_ptr<crypto::SymmetricKey> key( crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 128)); EXPECT_TRUE(key.get()); const std::string kInitialCounter = "0000000000000000"; crypto::Encryptor encryptor; EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, "")); EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); std::string plaintext("normal plaintext of random length"); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_LT(0U, ciphertext.size()); std::string decrypted; EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); plaintext = "0123456789012345"; EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_LT(0U, ciphertext.size()); EXPECT_TRUE(encryptor.SetCounter(kInitialCounter)); EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } TEST(EncryptorTest, CTRCounter) { const int kCounterSize = 16; const unsigned char kTest1[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned char buf[16]; // Increment 10 times. crypto::Encryptor::Counter counter1( std::string(reinterpret_cast<const char*>(kTest1), kCounterSize)); for (int i = 0; i < 10; ++i) counter1.Increment(); counter1.Write(buf); EXPECT_EQ(0, memcmp(buf, kTest1, 15)); EXPECT_TRUE(buf[15] == 10); // Check corner cases. const unsigned char kTest2[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; const unsigned char kExpect2[] = {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}; crypto::Encryptor::Counter counter2( std::string(reinterpret_cast<const char*>(kTest2), kCounterSize)); counter2.Increment(); counter2.Write(buf); EXPECT_EQ(0, memcmp(buf, kExpect2, kCounterSize)); const unsigned char kTest3[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; const unsigned char kExpect3[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; crypto::Encryptor::Counter counter3( std::string(reinterpret_cast<const char*>(kTest3), kCounterSize)); counter3.Increment(); counter3.Write(buf); EXPECT_EQ(0, memcmp(buf, kExpect3, kCounterSize)); } // TODO(wtc): add more known-answer tests. Test vectors are available from // http://www.ietf.org/rfc/rfc3602 // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf // http://gladman.plushost.co.uk/oldsite/AES/index.php // http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip // NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt. TEST(EncryptorTest, EncryptAES256CBC) { // From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt. static const unsigned char kRawKey[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81, 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 }; static const unsigned char kRawIv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; static const unsigned char kRawPlaintext[] = { // Block #1 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a, // Block #2 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51, // Block #3 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef, // Block #4 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10, }; static const unsigned char kRawCiphertext[] = { // Block #1 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6, // Block #2 0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d, // Block #3 0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61, // Block #4 0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b, // PKCS #5 padding, encrypted. 0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2, 0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44 }; std::string key(reinterpret_cast<const char*>(kRawKey), sizeof(kRawKey)); scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. std::string iv(reinterpret_cast<const char*>(kRawIv), sizeof(kRawIv)); EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string plaintext(reinterpret_cast<const char*>(kRawPlaintext), sizeof(kRawPlaintext)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(sizeof(kRawCiphertext), ciphertext.size()); EXPECT_EQ(0, memcmp(ciphertext.data(), kRawCiphertext, ciphertext.size())); std::string decrypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } // Expected output derived from the NSS implementation. TEST(EncryptorTest, EncryptAES128CBCRegression) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236"; std::string expected_ciphertext_hex = "D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A" "C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); std::string decrypted; EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted)); EXPECT_EQ(plaintext, decrypted); } // Symmetric keys with an unsupported size should be rejected. Whether they are // rejected by SymmetricKey::Import or Encryptor::Init depends on the platform. TEST(EncryptorTest, UnsupportedKeySize) { std::string key = "7 = bad"; std::string iv = "Sweet Sixteen IV"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); if (!sym_key.get()) return; crypto::Encryptor encryptor; // The IV must be exactly as long as the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); } TEST(EncryptorTest, UnsupportedIV) { std::string key = "128=SixteenBytes"; std::string iv = "OnlyForteen :("; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); } TEST(EncryptorTest, EmptyEncrypt) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; std::string plaintext; std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); std::string ciphertext; EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext)); EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(), ciphertext.size())); } TEST(EncryptorTest, CipherTextNotMultipleOfBlockSize) { std::string key = "128=SixteenBytes"; std::string iv = "Sweet Sixteen IV"; scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import( crypto::SymmetricKey::AES, key)); ASSERT_TRUE(sym_key.get()); crypto::Encryptor encryptor; // The IV must be exactly as long a the cipher block size. EXPECT_EQ(16U, iv.size()); EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv)); // Use a separately allocated array to improve the odds of the memory tools // catching invalid accesses. // // Otherwise when using std::string as the other tests do, accesses several // bytes off the end of the buffer may fall inside the reservation of // the string and not be detected. scoped_ptr<char[]> ciphertext(new char[1]); std::string plaintext; EXPECT_FALSE( encryptor.Decrypt(base::StringPiece(ciphertext.get(), 1), &plaintext)); }