// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "content/child/webcrypto/test/test_helpers.h" #include <algorithm> #include "base/files/file_util.h" #include "base/json/json_reader.h" #include "base/json/json_writer.h" #include "base/logging.h" #include "base/path_service.h" #include "base/stl_util.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_util.h" #include "base/values.h" #include "content/child/webcrypto/algorithm_dispatch.h" #include "content/child/webcrypto/crypto_data.h" #include "content/child/webcrypto/jwk.h" #include "content/child/webcrypto/status.h" #include "content/child/webcrypto/webcrypto_util.h" #include "content/public/common/content_paths.h" #include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h" #include "third_party/WebKit/public/platform/WebCryptoKeyAlgorithm.h" #include "third_party/re2/re2/re2.h" #if !defined(USE_OPENSSL) #include <nss.h> #include <pk11pub.h> #include "crypto/nss_util.h" #include "crypto/scoped_nss_types.h" #endif namespace content { namespace webcrypto { void PrintTo(const Status& status, ::std::ostream* os) { if (status.IsSuccess()) *os << "Success"; else *os << "Error type: " << status.error_type() << " Error details: " << status.error_details(); } bool operator==(const Status& a, const Status& b) { if (a.IsSuccess() != b.IsSuccess()) return false; if (a.IsSuccess()) return true; return a.error_type() == b.error_type() && a.error_details() == b.error_details(); } bool operator!=(const Status& a, const Status& b) { return !(a == b); } void PrintTo(const CryptoData& data, ::std::ostream* os) { *os << "[" << base::HexEncode(data.bytes(), data.byte_length()) << "]"; } bool operator==(const CryptoData& a, const CryptoData& b) { return a.byte_length() == b.byte_length() && memcmp(a.bytes(), b.bytes(), a.byte_length()) == 0; } bool operator!=(const CryptoData& a, const CryptoData& b) { return !(a == b); } bool SupportsAesGcm() { std::vector<uint8_t> key_raw(16, 0); blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); Status status = ImportKey(blink::WebCryptoKeyFormatRaw, CryptoData(key_raw), CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm), true, blink::WebCryptoKeyUsageEncrypt, &key); if (status.IsError()) EXPECT_EQ(blink::WebCryptoErrorTypeNotSupported, status.error_type()); return status.IsSuccess(); } bool SupportsRsaOaep() { #if defined(USE_OPENSSL) return true; #else crypto::EnsureNSSInit(); // TODO(eroman): Exclude version test for OS_CHROMEOS #if defined(USE_NSS) if (!NSS_VersionCheck("3.16.2")) return false; #endif crypto::ScopedPK11Slot slot(PK11_GetInternalKeySlot()); return !!PK11_DoesMechanism(slot.get(), CKM_RSA_PKCS_OAEP); #endif } bool SupportsRsaPrivateKeyImport() { // TODO(eroman): Exclude version test for OS_CHROMEOS #if defined(USE_NSS) crypto::EnsureNSSInit(); if (!NSS_VersionCheck("3.16.2")) { LOG(WARNING) << "RSA key import is not supported by this version of NSS. " "Skipping some tests"; return false; } #endif return true; } blink::WebCryptoAlgorithm CreateRsaHashedKeyGenAlgorithm( blink::WebCryptoAlgorithmId algorithm_id, const blink::WebCryptoAlgorithmId hash_id, unsigned int modulus_length, const std::vector<uint8_t>& public_exponent) { DCHECK(algorithm_id == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 || algorithm_id == blink::WebCryptoAlgorithmIdRsaOaep); DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id)); return blink::WebCryptoAlgorithm::adoptParamsAndCreate( algorithm_id, new blink::WebCryptoRsaHashedKeyGenParams( CreateAlgorithm(hash_id), modulus_length, vector_as_array(&public_exponent), public_exponent.size())); } std::vector<uint8_t> Corrupted(const std::vector<uint8_t>& input) { std::vector<uint8_t> corrupted_data(input); if (corrupted_data.empty()) corrupted_data.push_back(0); corrupted_data[corrupted_data.size() / 2] ^= 0x01; return corrupted_data; } std::vector<uint8_t> HexStringToBytes(const std::string& hex) { std::vector<uint8_t> bytes; base::HexStringToBytes(hex, &bytes); return bytes; } std::vector<uint8_t> MakeJsonVector(const std::string& json_string) { return std::vector<uint8_t>(json_string.begin(), json_string.end()); } std::vector<uint8_t> MakeJsonVector(const base::DictionaryValue& dict) { std::string json; base::JSONWriter::Write(&dict, &json); return MakeJsonVector(json); } ::testing::AssertionResult ReadJsonTestFile(const char* test_file_name, scoped_ptr<base::Value>* value) { base::FilePath test_data_dir; if (!PathService::Get(DIR_TEST_DATA, &test_data_dir)) return ::testing::AssertionFailure() << "Couldn't retrieve test dir"; base::FilePath file_path = test_data_dir.AppendASCII("webcrypto").AppendASCII(test_file_name); std::string file_contents; if (!base::ReadFileToString(file_path, &file_contents)) { return ::testing::AssertionFailure() << "Couldn't read test file: " << file_path.value(); } // Strip C++ style comments out of the "json" file, otherwise it cannot be // parsed. re2::RE2::GlobalReplace(&file_contents, re2::RE2("\\s*//.*"), ""); // Parse the JSON to a dictionary. value->reset(base::JSONReader::Read(file_contents)); if (!value->get()) { return ::testing::AssertionFailure() << "Couldn't parse test file JSON: " << file_path.value(); } return ::testing::AssertionSuccess(); } ::testing::AssertionResult ReadJsonTestFileToList( const char* test_file_name, scoped_ptr<base::ListValue>* list) { // Read the JSON. scoped_ptr<base::Value> json; ::testing::AssertionResult result = ReadJsonTestFile(test_file_name, &json); if (!result) return result; // Cast to an ListValue. base::ListValue* list_value = NULL; if (!json->GetAsList(&list_value) || !list_value) return ::testing::AssertionFailure() << "The JSON was not a list"; list->reset(list_value); ignore_result(json.release()); return ::testing::AssertionSuccess(); } std::vector<uint8_t> GetBytesFromHexString(base::DictionaryValue* dict, const char* property_name) { std::string hex_string; if (!dict->GetString(property_name, &hex_string)) { EXPECT_TRUE(false) << "Couldn't get string property: " << property_name; return std::vector<uint8_t>(); } return HexStringToBytes(hex_string); } blink::WebCryptoAlgorithm GetDigestAlgorithm(base::DictionaryValue* dict, const char* property_name) { std::string algorithm_name; if (!dict->GetString(property_name, &algorithm_name)) { EXPECT_TRUE(false) << "Couldn't get string property: " << property_name; return blink::WebCryptoAlgorithm::createNull(); } struct { const char* name; blink::WebCryptoAlgorithmId id; } kDigestNameToId[] = { {"sha-1", blink::WebCryptoAlgorithmIdSha1}, {"sha-256", blink::WebCryptoAlgorithmIdSha256}, {"sha-384", blink::WebCryptoAlgorithmIdSha384}, {"sha-512", blink::WebCryptoAlgorithmIdSha512}, }; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kDigestNameToId); ++i) { if (kDigestNameToId[i].name == algorithm_name) return CreateAlgorithm(kDigestNameToId[i].id); } return blink::WebCryptoAlgorithm::createNull(); } // Creates a comparator for |bufs| which operates on indices rather than values. class CompareUsingIndex { public: explicit CompareUsingIndex(const std::vector<std::vector<uint8_t> >* bufs) : bufs_(bufs) {} bool operator()(size_t i1, size_t i2) { return (*bufs_)[i1] < (*bufs_)[i2]; } private: const std::vector<std::vector<uint8_t> >* bufs_; }; bool CopiesExist(const std::vector<std::vector<uint8_t> >& bufs) { // Sort the indices of |bufs| into a separate vector. This reduces the amount // of data copied versus sorting |bufs| directly. std::vector<size_t> sorted_indices(bufs.size()); for (size_t i = 0; i < sorted_indices.size(); ++i) sorted_indices[i] = i; std::sort( sorted_indices.begin(), sorted_indices.end(), CompareUsingIndex(&bufs)); // Scan for adjacent duplicates. for (size_t i = 1; i < sorted_indices.size(); ++i) { if (bufs[sorted_indices[i]] == bufs[sorted_indices[i - 1]]) return true; } return false; } blink::WebCryptoAlgorithm CreateAesKeyGenAlgorithm( blink::WebCryptoAlgorithmId aes_alg_id, unsigned short length) { return blink::WebCryptoAlgorithm::adoptParamsAndCreate( aes_alg_id, new blink::WebCryptoAesKeyGenParams(length)); } // The following key pair is comprised of the SPKI (public key) and PKCS#8 // (private key) representations of the key pair provided in Example 1 of the // NIST test vectors at // ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15sign-vectors.txt const unsigned int kModulusLengthBits = 1024; const char* const kPublicKeySpkiDerHex = "30819f300d06092a864886f70d010101050003818d0030818902818100a5" "6e4a0e701017589a5187dc7ea841d156f2ec0e36ad52a44dfeb1e61f7ad9" "91d8c51056ffedb162b4c0f283a12a88a394dff526ab7291cbb307ceabfc" "e0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921cb23c270a70e2598e" "6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef22e1e1f20d0ce8cf" "fb2249bd9a21370203010001"; const char* const kPrivateKeyPkcs8DerHex = "30820275020100300d06092a864886f70d01010105000482025f3082025b" "02010002818100a56e4a0e701017589a5187dc7ea841d156f2ec0e36ad52" "a44dfeb1e61f7ad991d8c51056ffedb162b4c0f283a12a88a394dff526ab" "7291cbb307ceabfce0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921c" "b23c270a70e2598e6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef" "22e1e1f20d0ce8cffb2249bd9a2137020301000102818033a5042a90b27d" "4f5451ca9bbbd0b44771a101af884340aef9885f2a4bbe92e894a724ac3c" "568c8f97853ad07c0266c8c6a3ca0929f1e8f11231884429fc4d9ae55fee" "896a10ce707c3ed7e734e44727a39574501a532683109c2abacaba283c31" "b4bd2f53c3ee37e352cee34f9e503bd80c0622ad79c6dcee883547c6a3b3" "25024100e7e8942720a877517273a356053ea2a1bc0c94aa72d55c6e8629" "6b2dfc967948c0a72cbccca7eacb35706e09a1df55a1535bd9b3cc34160b" "3b6dcd3eda8e6443024100b69dca1cf7d4d7ec81e75b90fcca874abcde12" "3fd2700180aa90479b6e48de8d67ed24f9f19d85ba275874f542cd20dc72" "3e6963364a1f9425452b269a6799fd024028fa13938655be1f8a159cbaca" "5a72ea190c30089e19cd274a556f36c4f6e19f554b34c077790427bbdd8d" "d3ede2448328f385d81b30e8e43b2fffa02786197902401a8b38f398fa71" "2049898d7fb79ee0a77668791299cdfa09efc0e507acb21ed74301ef5bfd" "48be455eaeb6e1678255827580a8e4e8e14151d1510a82a3f2e729024027" "156aba4126d24a81f3a528cbfb27f56886f840a9f6e86e17a44b94fe9319" "584b8e22fdde1e5a2e3bd8aa5ba8d8584194eb2190acf832b847f13a3d24" "a79f4d"; // The modulus and exponent (in hex) of kPublicKeySpkiDerHex const char* const kPublicKeyModulusHex = "A56E4A0E701017589A5187DC7EA841D156F2EC0E36AD52A44DFEB1E61F7AD991D8C51056" "FFEDB162B4C0F283A12A88A394DFF526AB7291CBB307CEABFCE0B1DFD5CD9508096D5B2B" "8B6DF5D671EF6377C0921CB23C270A70E2598E6FF89D19F105ACC2D3F0CB35F29280E138" "6B6F64C4EF22E1E1F20D0CE8CFFB2249BD9A2137"; const char* const kPublicKeyExponentHex = "010001"; blink::WebCryptoKey ImportSecretKeyFromRaw( const std::vector<uint8_t>& key_raw, const blink::WebCryptoAlgorithm& algorithm, blink::WebCryptoKeyUsageMask usage) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = true; EXPECT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatRaw, CryptoData(key_raw), algorithm, extractable, usage, &key)); EXPECT_FALSE(key.isNull()); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(algorithm.id(), key.algorithm().id()); EXPECT_EQ(extractable, key.extractable()); EXPECT_EQ(usage, key.usages()); return key; } void ImportRsaKeyPair(const std::vector<uint8_t>& spki_der, const std::vector<uint8_t>& pkcs8_der, const blink::WebCryptoAlgorithm& algorithm, bool extractable, blink::WebCryptoKeyUsageMask public_key_usage_mask, blink::WebCryptoKeyUsageMask private_key_usage_mask, blink::WebCryptoKey* public_key, blink::WebCryptoKey* private_key) { ASSERT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatSpki, CryptoData(spki_der), algorithm, true, public_key_usage_mask, public_key)); EXPECT_FALSE(public_key->isNull()); EXPECT_TRUE(public_key->handle()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key->type()); EXPECT_EQ(algorithm.id(), public_key->algorithm().id()); EXPECT_TRUE(public_key->extractable()); EXPECT_EQ(public_key_usage_mask, public_key->usages()); ASSERT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatPkcs8, CryptoData(pkcs8_der), algorithm, extractable, private_key_usage_mask, private_key)); EXPECT_FALSE(private_key->isNull()); EXPECT_TRUE(private_key->handle()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key->type()); EXPECT_EQ(algorithm.id(), private_key->algorithm().id()); EXPECT_EQ(extractable, private_key->extractable()); EXPECT_EQ(private_key_usage_mask, private_key->usages()); } Status ImportKeyJwkFromDict(const base::DictionaryValue& dict, const blink::WebCryptoAlgorithm& algorithm, bool extractable, blink::WebCryptoKeyUsageMask usage_mask, blink::WebCryptoKey* key) { return ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(MakeJsonVector(dict)), algorithm, extractable, usage_mask, key); } scoped_ptr<base::DictionaryValue> GetJwkDictionary( const std::vector<uint8_t>& json) { base::StringPiece json_string( reinterpret_cast<const char*>(vector_as_array(&json)), json.size()); base::Value* value = base::JSONReader::Read(json_string); EXPECT_TRUE(value); base::DictionaryValue* dict_value = NULL; value->GetAsDictionary(&dict_value); return scoped_ptr<base::DictionaryValue>(dict_value); } // Verifies the input dictionary contains the expected values. Exact matches are // required on the fields examined. ::testing::AssertionResult VerifyJwk( const scoped_ptr<base::DictionaryValue>& dict, const std::string& kty_expected, const std::string& alg_expected, blink::WebCryptoKeyUsageMask use_mask_expected) { // ---- kty std::string value_string; if (!dict->GetString("kty", &value_string)) return ::testing::AssertionFailure() << "Missing 'kty'"; if (value_string != kty_expected) return ::testing::AssertionFailure() << "Expected 'kty' to be " << kty_expected << "but found " << value_string; // ---- alg if (!dict->GetString("alg", &value_string)) return ::testing::AssertionFailure() << "Missing 'alg'"; if (value_string != alg_expected) return ::testing::AssertionFailure() << "Expected 'alg' to be " << alg_expected << " but found " << value_string; // ---- ext // always expect ext == true in this case bool ext_value; if (!dict->GetBoolean("ext", &ext_value)) return ::testing::AssertionFailure() << "Missing 'ext'"; if (!ext_value) return ::testing::AssertionFailure() << "Expected 'ext' to be true but found false"; // ---- key_ops base::ListValue* key_ops; if (!dict->GetList("key_ops", &key_ops)) return ::testing::AssertionFailure() << "Missing 'key_ops'"; blink::WebCryptoKeyUsageMask key_ops_mask = 0; Status status = GetWebCryptoUsagesFromJwkKeyOps(key_ops, &key_ops_mask); if (status.IsError()) return ::testing::AssertionFailure() << "Failure extracting 'key_ops'"; if (key_ops_mask != use_mask_expected) return ::testing::AssertionFailure() << "Expected 'key_ops' mask to be " << use_mask_expected << " but found " << key_ops_mask << " (" << value_string << ")"; return ::testing::AssertionSuccess(); } ::testing::AssertionResult VerifySecretJwk( const std::vector<uint8_t>& json, const std::string& alg_expected, const std::string& k_expected_hex, blink::WebCryptoKeyUsageMask use_mask_expected) { scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json); if (!dict.get() || dict->empty()) return ::testing::AssertionFailure() << "JSON parsing failed"; // ---- k std::string value_string; if (!dict->GetString("k", &value_string)) return ::testing::AssertionFailure() << "Missing 'k'"; std::string k_value; if (!Base64DecodeUrlSafe(value_string, &k_value)) return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(k) failed"; if (!LowerCaseEqualsASCII(base::HexEncode(k_value.data(), k_value.size()), k_expected_hex.c_str())) { return ::testing::AssertionFailure() << "Expected 'k' to be " << k_expected_hex << " but found something different"; } return VerifyJwk(dict, "oct", alg_expected, use_mask_expected); } ::testing::AssertionResult VerifyPublicJwk( const std::vector<uint8_t>& json, const std::string& alg_expected, const std::string& n_expected_hex, const std::string& e_expected_hex, blink::WebCryptoKeyUsageMask use_mask_expected) { scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json); if (!dict.get() || dict->empty()) return ::testing::AssertionFailure() << "JSON parsing failed"; // ---- n std::string value_string; if (!dict->GetString("n", &value_string)) return ::testing::AssertionFailure() << "Missing 'n'"; std::string n_value; if (!Base64DecodeUrlSafe(value_string, &n_value)) return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(n) failed"; if (base::HexEncode(n_value.data(), n_value.size()) != n_expected_hex) { return ::testing::AssertionFailure() << "'n' does not match the expected " "value"; } // TODO(padolph): LowerCaseEqualsASCII() does not work for above! // ---- e if (!dict->GetString("e", &value_string)) return ::testing::AssertionFailure() << "Missing 'e'"; std::string e_value; if (!Base64DecodeUrlSafe(value_string, &e_value)) return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(e) failed"; if (!LowerCaseEqualsASCII(base::HexEncode(e_value.data(), e_value.size()), e_expected_hex.c_str())) { return ::testing::AssertionFailure() << "Expected 'e' to be " << e_expected_hex << " but found something different"; } return VerifyJwk(dict, "RSA", alg_expected, use_mask_expected); } void ImportExportJwkSymmetricKey( int key_len_bits, const blink::WebCryptoAlgorithm& import_algorithm, blink::WebCryptoKeyUsageMask usages, const std::string& jwk_alg) { std::vector<uint8_t> json; std::string key_hex; // Hardcoded pseudo-random bytes to use for keys of different lengths. switch (key_len_bits) { case 128: key_hex = "3f1e7cd4f6f8543f6b1e16002e688623"; break; case 256: key_hex = "bd08286b81a74783fd1ccf46b7e05af84ee25ae021210074159e0c4d9d907692"; break; case 384: key_hex = "a22c5441c8b185602283d64c7221de1d0951e706bfc09539435ec0e0ed614e1d40" "6623f2b31d31819fec30993380dd82"; break; case 512: key_hex = "5834f639000d4cf82de124fbfd26fb88d463e99f839a76ba41ac88967c80a3f61e" "1239a452e573dba0750e988152988576efd75b8d0229b7aca2ada2afd392ee"; break; default: FAIL() << "Unexpected key_len_bits" << key_len_bits; } // Import a raw key. blink::WebCryptoKey key = ImportSecretKeyFromRaw( HexStringToBytes(key_hex), import_algorithm, usages); // Export the key in JWK format and validate. ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatJwk, key, &json)); EXPECT_TRUE(VerifySecretJwk(json, jwk_alg, key_hex, usages)); // Import the JWK-formatted key. ASSERT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json), import_algorithm, true, usages, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(import_algorithm.id(), key.algorithm().id()); EXPECT_EQ(true, key.extractable()); EXPECT_EQ(usages, key.usages()); // Export the key in raw format and compare to the original. std::vector<uint8_t> key_raw_out; ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out)); EXPECT_BYTES_EQ_HEX(key_hex, key_raw_out); } } // namespace webcrypto } // namesapce content