// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/logging.h" #include "base/stl_util.h" #include "content/child/webcrypto/algorithm_dispatch.h" #include "content/child/webcrypto/crypto_data.h" #include "content/child/webcrypto/status.h" #include "content/child/webcrypto/test/test_helpers.h" #include "content/child/webcrypto/webcrypto_util.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h" #include "third_party/WebKit/public/platform/WebCryptoKeyAlgorithm.h" namespace content { namespace webcrypto { namespace { // Creates an HMAC algorithm whose parameters struct is compatible with key // generation. It is an error to call this with a hash_id that is not a SHA*. // The key_length_bits parameter is optional, with zero meaning unspecified. blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm( blink::WebCryptoAlgorithmId hash_id, unsigned int key_length_bits) { DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id)); // key_length_bytes == 0 means unspecified return blink::WebCryptoAlgorithm::adoptParamsAndCreate( blink::WebCryptoAlgorithmIdHmac, new blink::WebCryptoHmacKeyGenParams( CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits)); } TEST(WebCryptoHmacTest, HMACSampleSets) { scoped_ptr<base::ListValue> tests; ASSERT_TRUE(ReadJsonTestFileToList("hmac.json", &tests)); for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) { SCOPED_TRACE(test_index); base::DictionaryValue* test; ASSERT_TRUE(tests->GetDictionary(test_index, &test)); blink::WebCryptoAlgorithm test_hash = GetDigestAlgorithm(test, "hash"); const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key"); const std::vector<uint8_t> test_message = GetBytesFromHexString(test, "message"); const std::vector<uint8_t> test_mac = GetBytesFromHexString(test, "mac"); blink::WebCryptoAlgorithm algorithm = CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac); blink::WebCryptoAlgorithm import_algorithm = CreateHmacImportAlgorithm(test_hash.id()); blink::WebCryptoKey key = ImportSecretKeyFromRaw( test_key, import_algorithm, blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify); EXPECT_EQ(test_hash.id(), key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(test_key.size() * 8, key.algorithm().hmacParams()->lengthBits()); // Verify exported raw key is identical to the imported data std::vector<uint8_t> raw_key; EXPECT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key)); EXPECT_BYTES_EQ(test_key, raw_key); std::vector<uint8_t> output; ASSERT_EQ(Status::Success(), Sign(algorithm, key, CryptoData(test_message), &output)); EXPECT_BYTES_EQ(test_mac, output); bool signature_match = false; EXPECT_EQ(Status::Success(), Verify(algorithm, key, CryptoData(output), CryptoData(test_message), &signature_match)); EXPECT_TRUE(signature_match); // Ensure truncated signature does not verify by passing one less byte. EXPECT_EQ(Status::Success(), Verify(algorithm, key, CryptoData(vector_as_array(&output), output.size() - 1), CryptoData(test_message), &signature_match)); EXPECT_FALSE(signature_match); // Ensure truncated signature does not verify by passing no bytes. EXPECT_EQ(Status::Success(), Verify(algorithm, key, CryptoData(), CryptoData(test_message), &signature_match)); EXPECT_FALSE(signature_match); // Ensure extra long signature does not cause issues and fails. const unsigned char kLongSignature[1024] = {0}; EXPECT_EQ(Status::Success(), Verify(algorithm, key, CryptoData(kLongSignature, sizeof(kLongSignature)), CryptoData(test_message), &signature_match)); EXPECT_FALSE(signature_match); } } TEST(WebCryptoHmacTest, GenerateKeyIsRandom) { // Generate a small sample of HMAC keys. std::vector<std::vector<uint8_t> > keys; for (int i = 0; i < 16; ++i) { std::vector<uint8_t> key_bytes; blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 512); ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key)); EXPECT_FALSE(key.isNull()); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id()); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1, key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits()); std::vector<uint8_t> raw_key; ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key)); EXPECT_EQ(64U, raw_key.size()); keys.push_back(raw_key); } // Ensure all entries in the key sample set are unique. This is a simplistic // estimate of whether the generated keys appear random. EXPECT_FALSE(CopiesExist(keys)); } // If the key length is not provided, then the block size is used. TEST(WebCryptoHmacTest, GenerateKeyNoLengthSha1) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 0); ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id()); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1, key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits()); std::vector<uint8_t> raw_key; ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key)); EXPECT_EQ(64U, raw_key.size()); } // If the key length is not provided, then the block size is used. TEST(WebCryptoHmacTest, GenerateKeyNoLengthSha512) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha512, 0); ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key)); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id()); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha512, key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(1024u, key.algorithm().hmacParams()->lengthBits()); std::vector<uint8_t> raw_key; ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key)); EXPECT_EQ(128U, raw_key.size()); } TEST(WebCryptoHmacTest, ImportKeyJwkKeyOpsSignVerify) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg=="); base::ListValue* key_ops = new base::ListValue; dict.Set("key_ops", key_ops); // Takes ownership. key_ops->AppendString("sign"); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict( dict, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256), false, blink::WebCryptoKeyUsageSign, &key)); EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages()); key_ops->AppendString("verify"); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict( dict, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256), false, blink::WebCryptoKeyUsageVerify, &key)); EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages()); } // Test 'use' inconsistent with 'key_ops'. TEST(WebCryptoHmacTest, ImportKeyJwkUseInconsisteWithKeyOps) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg=="); base::ListValue* key_ops = new base::ListValue; dict.Set("key_ops", key_ops); // Takes ownership. dict.SetString("alg", "HS256"); dict.SetString("use", "sig"); key_ops->AppendString("sign"); key_ops->AppendString("verify"); key_ops->AppendString("encrypt"); EXPECT_EQ(Status::ErrorJwkUseAndKeyopsInconsistent(), ImportKeyJwkFromDict( dict, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256), false, blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, &key)); } // Test JWK composite 'sig' use TEST(WebCryptoHmacTest, ImportKeyJwkUseSig) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg=="); dict.SetString("use", "sig"); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict( dict, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256), false, blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, &key)); EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, key.usages()); } TEST(WebCryptoHmacTest, ImportJwkInputConsistency) { // The Web Crypto spec says that if a JWK value is present, but is // inconsistent with the input value, the operation must fail. // Consistency rules when JWK value is not present: Inputs should be used. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = false; blink::WebCryptoAlgorithm algorithm = CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify; base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); std::vector<uint8_t> json_vec = MakeJsonVector(dict); EXPECT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, extractable, usage_mask, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(extractable, key.extractable()); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id()); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256, key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(320u, key.algorithm().hmacParams()->lengthBits()); EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages()); key = blink::WebCryptoKey::createNull(); // Consistency rules when JWK value exists: Fail if inconsistency is found. // Pass: All input values are consistent with the JWK values. dict.Clear(); dict.SetString("kty", "oct"); dict.SetString("alg", "HS256"); dict.SetString("use", "sig"); dict.SetBoolean("ext", false); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); json_vec = MakeJsonVector(dict); EXPECT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, extractable, usage_mask, &key)); // Extractable cases: // 1. input=T, JWK=F ==> fail (inconsistent) // 4. input=F, JWK=F ==> pass, result extractable is F // 2. input=T, JWK=T ==> pass, result extractable is T // 3. input=F, JWK=T ==> pass, result extractable is F EXPECT_EQ(Status::ErrorJwkExtInconsistent(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, true, usage_mask, &key)); EXPECT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, false, usage_mask, &key)); EXPECT_FALSE(key.extractable()); dict.SetBoolean("ext", true); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict(dict, algorithm, true, usage_mask, &key)); EXPECT_TRUE(key.extractable()); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key)); EXPECT_FALSE(key.extractable()); dict.SetBoolean("ext", true); // restore previous value // Fail: Input algorithm (AES-CBC) is inconsistent with JWK value // (HMAC SHA256). dict.Clear(); dict.SetString("kty", "oct"); dict.SetString("alg", "HS256"); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); EXPECT_EQ( Status::ErrorJwkAlgorithmInconsistent(), ImportKeyJwkFromDict(dict, CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), extractable, blink::WebCryptoKeyUsageEncrypt, &key)); // Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig). EXPECT_EQ(Status::ErrorJwkUseInconsistent(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), extractable, blink::WebCryptoKeyUsageEncrypt, &key)); // Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value // (HMAC SHA256). EXPECT_EQ( Status::ErrorJwkAlgorithmInconsistent(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1), extractable, usage_mask, &key)); // Pass: JWK alg missing but input algorithm specified: use input value dict.Remove("alg", NULL); EXPECT_EQ(Status::Success(), ImportKeyJwkFromDict( dict, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256), extractable, usage_mask, &key)); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id()); dict.SetString("alg", "HS256"); // Fail: Input usage_mask (encrypt) is not a subset of the JWK value // (sign|verify). Moreover "encrypt" is not a valid usage for HMAC. EXPECT_EQ(Status::ErrorCreateKeyBadUsages(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, extractable, blink::WebCryptoKeyUsageEncrypt, &key)); // Fail: Input usage_mask (encrypt|sign|verify) is not a subset of the JWK // value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC. usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify; EXPECT_EQ(Status::ErrorCreateKeyBadUsages(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json_vec), algorithm, extractable, usage_mask, &key)); // TODO(padolph): kty vs alg consistency tests: Depending on the kty value, // only certain alg values are permitted. For example, when kty = "RSA" alg // must be of the RSA family, or when kty = "oct" alg must be symmetric // algorithm. // TODO(padolph): key_ops consistency tests } TEST(WebCryptoHmacTest, ImportJwkHappy) { // This test verifies the happy path of JWK import, including the application // of the imported key material. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = false; blink::WebCryptoAlgorithm algorithm = CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageSign; // Import a symmetric key JWK and HMAC-SHA256 sign() // Uses the first SHA256 test vector from the HMAC sample set above. base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("alg", "HS256"); dict.SetString("use", "sig"); dict.SetBoolean("ext", false); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); ASSERT_EQ( Status::Success(), ImportKeyJwkFromDict(dict, algorithm, extractable, usage_mask, &key)); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256, key.algorithm().hmacParams()->hash().id()); const std::vector<uint8_t> message_raw = HexStringToBytes( "b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a" "92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92" "d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f" "22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e"); std::vector<uint8_t> output; ASSERT_EQ(Status::Success(), Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac), key, CryptoData(message_raw), &output)); const std::string mac_raw = "769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b"; EXPECT_BYTES_EQ_HEX(mac_raw, output); // TODO(padolph): Import an RSA public key JWK and use it } TEST(WebCryptoHmacTest, ImportExportJwk) { // HMAC SHA-1 ImportExportJwkSymmetricKey( 256, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1), blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, "HS1"); // HMAC SHA-384 ImportExportJwkSymmetricKey( 384, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha384), blink::WebCryptoKeyUsageSign, "HS384"); // HMAC SHA-512 ImportExportJwkSymmetricKey( 512, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512), blink::WebCryptoKeyUsageVerify, "HS512"); // Zero usage value ImportExportJwkSymmetricKey( 512, CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512), 0, "HS512"); } TEST(WebCryptoHmacTest, ExportJwkEmptyKey) { const blink::WebCryptoAlgorithm import_algorithm = CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1); blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageSign; blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); // Import a zero-byte HMAC key. const char key_data_hex[] = ""; key = ImportSecretKeyFromRaw( HexStringToBytes(key_data_hex), import_algorithm, usages); EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits()); // Export the key in JWK format and validate. std::vector<uint8_t> json; ASSERT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatJwk, key, &json)); EXPECT_TRUE(VerifySecretJwk(json, "HS1", key_data_hex, usages)); // Now try re-importing the JWK key. key = blink::WebCryptoKey::createNull(); EXPECT_EQ(Status::Success(), ImportKey(blink::WebCryptoKeyFormatJwk, CryptoData(json), import_algorithm, true, usages, &key)); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits()); std::vector<uint8_t> exported_key_data; EXPECT_EQ(Status::Success(), ExportKey(blink::WebCryptoKeyFormatRaw, key, &exported_key_data)); EXPECT_EQ(0u, exported_key_data.size()); } // Import a huge hmac key (UINT_MAX bytes). This will fail before actually // reading the bytes, as the key is too large. TEST(WebCryptoHmacTest, ImportRawKeyTooLarge) { CryptoData big_data(NULL, UINT_MAX); // Invalid data of big length. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); EXPECT_EQ( Status::ErrorDataTooLarge(), ImportKey(blink::WebCryptoKeyFormatRaw, CryptoData(big_data), CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1), true, blink::WebCryptoKeyUsageSign, &key)); } } // namespace } // namespace webcrypto } // namespace content