// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cc/quads/draw_polygon.h" #include <vector> #include "cc/output/bsp_compare_result.h" #include "cc/quads/draw_quad.h" namespace { // This allows for some imperfection in the normal comparison when checking if // two pieces of geometry are coplanar. static const float coplanar_dot_epsilon = 0.01f; // This threshold controls how "thick" a plane is. If a point's distance is // <= |compare_threshold|, then it is considered on the plane. Only when this // boundary is crossed do we consider doing splitting. static const float compare_threshold = 1.0f; // |split_threshold| is lower in this case because we want the points created // during splitting to be well within the range of |compare_threshold| for // comparison purposes. The splitting operation will produce intersection points // that fit within a tighter distance to the splitting plane as a result of this // value. By using a value >= |compare_threshold| we run the risk of creating // points that SHOULD be intersecting the "thick plane", but actually fail to // test positively for it because |split_threshold| allowed them to be outside // this range. static const float split_threshold = 0.5f; } // namespace namespace cc { gfx::Vector3dF DrawPolygon::default_normal = gfx::Vector3dF(0.0f, 0.0f, -1.0f); DrawPolygon::DrawPolygon() { } DrawPolygon::DrawPolygon(DrawQuad* original, const std::vector<gfx::Point3F>& in_points, const gfx::Vector3dF& normal, int draw_order_index) : order_index_(draw_order_index), original_ref_(original) { for (size_t i = 0; i < in_points.size(); i++) { points_.push_back(in_points[i]); } normal_ = normal; } // This takes the original DrawQuad that this polygon should be based on, // a visible content rect to make the 4 corner points from, and a transformation // to move it and its normal into screen space. DrawPolygon::DrawPolygon(DrawQuad* original_ref, const gfx::RectF& visible_content_rect, const gfx::Transform& transform, int draw_order_index) : order_index_(draw_order_index), original_ref_(original_ref) { normal_ = default_normal; gfx::Point3F points[8]; int num_vertices_in_clipped_quad; gfx::QuadF send_quad(visible_content_rect); // Doing this mapping here is very important, since we can't just transform // the points without clipping and not run into strange geometry issues when // crossing w = 0. At this point, in the constructor, we know that we're // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d // function instead of writing a generic polygon version of it. MathUtil::MapClippedQuad3d( transform, send_quad, points, &num_vertices_in_clipped_quad); for (int i = 0; i < num_vertices_in_clipped_quad; i++) { points_.push_back(points[i]); } ApplyTransformToNormal(transform); } DrawPolygon::~DrawPolygon() { } scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { DrawPolygon* new_polygon = new DrawPolygon(); new_polygon->order_index_ = order_index_; new_polygon->original_ref_ = original_ref_; new_polygon->points_.reserve(points_.size()); new_polygon->points_ = points_; new_polygon->normal_.set_x(normal_.x()); new_polygon->normal_.set_y(normal_.y()); new_polygon->normal_.set_z(normal_.z()); return scoped_ptr<DrawPolygon>(new_polygon); } float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { return gfx::DotProduct(point - points_[0], normal_); } // Checks whether or not shape a lies on the front or back side of b, or // whether they should be considered coplanar. If on the back side, we // say ABeforeB because it should be drawn in that order. // Assumes that layers are split and there are no intersecting planes. BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, const DrawPolygon& b) { // Right away let's check if they're coplanar double dot = gfx::DotProduct(a.normal_, b.normal_); float sign = 0.0f; bool normal_match = false; // This check assumes that the normals are normalized. if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) { normal_match = true; // The normals are matching enough that we only have to test one point. sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_); // Is it on either side of the splitter? if (sign < -compare_threshold) { return BSP_BACK; } if (sign > compare_threshold) { return BSP_FRONT; } // No it wasn't, so the sign of the dot product of the normals // along with document order determines which side it goes on. if (dot >= 0.0f) { if (a.order_index_ < b.order_index_) { return BSP_COPLANAR_FRONT; } return BSP_COPLANAR_BACK; } if (a.order_index_ < b.order_index_) { return BSP_COPLANAR_BACK; } return BSP_COPLANAR_FRONT; } int pos_count = 0; int neg_count = 0; for (size_t i = 0; i < a.points_.size(); i++) { if (!normal_match || (normal_match && i > 0)) { sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); } if (sign < -compare_threshold) { ++neg_count; } else if (sign > compare_threshold) { ++pos_count; } if (pos_count && neg_count) { return BSP_SPLIT; } } if (pos_count) { return BSP_FRONT; } return BSP_BACK; } static bool LineIntersectPlane(const gfx::Point3F& line_start, const gfx::Point3F& line_end, const gfx::Point3F& plane_origin, const gfx::Vector3dF& plane_normal, gfx::Point3F* intersection, float distance_threshold) { gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); // The case where one vertex lies on the thick-plane and the other // is outside of it. if (std::abs(start_distance) < distance_threshold && std::abs(end_distance) > distance_threshold) { intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); return true; } // This is the case where we clearly cross the thick-plane. if ((start_distance > distance_threshold && end_distance < -distance_threshold) || (start_distance < -distance_threshold && end_distance > distance_threshold)) { gfx::Vector3dF v = line_end - line_start; float total_distance = std::abs(start_distance) + std::abs(end_distance); float lerp_factor = std::abs(start_distance) / total_distance; intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), line_start.y() + (v.y() * lerp_factor), line_start.z() + (v.z() * lerp_factor)); return true; } return false; } // This function is separate from ApplyTransform because it is often unnecessary // to transform the normal with the rest of the polygon. // When drawing these polygons, it is necessary to move them back into layer // space before sending them to OpenGL, which requires using ApplyTransform, // but normal information is no longer needed after sorting. void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { // Now we use the inverse transpose of |transform| to transform the normal. gfx::Transform inverse_transform; bool inverted = transform.GetInverse(&inverse_transform); DCHECK(inverted); if (!inverted) return; inverse_transform.Transpose(); gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); inverse_transform.TransformPoint(&new_normal); // Make sure our normal is still normalized. normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); float normal_magnitude = normal_.Length(); if (normal_magnitude != 0 && normal_magnitude != 1) { normal_.Scale(1.0f / normal_magnitude); } } void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { for (size_t i = 0; i < points_.size(); i++) { transform.TransformPoint(&points_[i]); } } // TransformToScreenSpace assumes we're moving a layer from its layer space // into 3D screen space, which for sorting purposes requires the normal to // be transformed along with the vertices. void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) { ApplyTransform(transform); ApplyTransformToNormal(transform); } // In the case of TransformToLayerSpace, we assume that we are giving the // inverse transformation back to the polygon to move it back into layer space // but we can ignore the costly process of applying the inverse to the normal // since we know the normal will just reset to its original state. void DrawPolygon::TransformToLayerSpace( const gfx::Transform& inverse_transform) { ApplyTransform(inverse_transform); normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f); } bool DrawPolygon::Split(const DrawPolygon& splitter, scoped_ptr<DrawPolygon>* front, scoped_ptr<DrawPolygon>* back) { gfx::Point3F intersections[2]; std::vector<gfx::Point3F> out_points[2]; // vertex_before stores the index of the vertex before its matching // intersection. // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane // which resulted in the line/plane intersection giving us intersections[0]. size_t vertex_before[2]; size_t points_size = points_.size(); size_t current_intersection = 0; size_t current_vertex = 0; // We will only have two intersection points because we assume all polygons // are convex. while (current_intersection < 2) { if (LineIntersectPlane(points_[(current_vertex % points_size)], points_[(current_vertex + 1) % points_size], splitter.points_[0], splitter.normal_, &intersections[current_intersection], split_threshold)) { vertex_before[current_intersection] = current_vertex % points_size; current_intersection++; // We found both intersection points so we're done already. if (current_intersection == 2) { break; } } if (current_vertex++ > points_size) { break; } } DCHECK_EQ(current_intersection, static_cast<size_t>(2)); // Since we found both the intersection points, we can begin building the // vertex set for both our new polygons. size_t start1 = (vertex_before[0] + 1) % points_size; size_t start2 = (vertex_before[1] + 1) % points_size; size_t points_remaining = points_size; // First polygon. out_points[0].push_back(intersections[0]); for (size_t i = start1; i <= vertex_before[1]; i++) { out_points[0].push_back(points_[i]); --points_remaining; } out_points[0].push_back(intersections[1]); // Second polygon. out_points[1].push_back(intersections[1]); size_t index = start2; for (size_t i = 0; i < points_remaining; i++) { out_points[1].push_back(points_[index % points_size]); ++index; } out_points[1].push_back(intersections[0]); // Give both polygons the original splitting polygon's ID, so that they'll // still be sorted properly in co-planar instances. scoped_ptr<DrawPolygon> poly1( new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); scoped_ptr<DrawPolygon> poly2( new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); if (SideCompare(*poly1, splitter) == BSP_FRONT) { *front = poly1.Pass(); *back = poly2.Pass(); } else { *front = poly2.Pass(); *back = poly1.Pass(); } return true; } // This algorithm takes the first vertex in the polygon and uses that as a // pivot point to fan out and create quads from the rest of the vertices. // |offset| starts off as the second vertex, and then |op1| and |op2| indicate // offset+1 and offset+2 respectively. // After the first quad is created, the first vertex in the next quad is the // same as all the rest, the pivot point. The second vertex in the next quad is // the old |op2|, the last vertex added to the previous quad. This continues // until all points are exhausted. // The special case here is where there are only 3 points remaining, in which // case we use the same values for vertex 3 and 4 to make a degenerate quad // that represents a triangle. void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { if (points_.size() <= 2) return; gfx::PointF first(points_[0].x(), points_[0].y()); size_t offset = 1; while (offset < points_.size() - 1) { size_t op1 = offset + 1; size_t op2 = offset + 2; if (op2 >= points_.size()) { // It's going to be a degenerate triangle. op2 = op1; } quads->push_back( gfx::QuadF(first, gfx::PointF(points_[offset].x(), points_[offset].y()), gfx::PointF(points_[op1].x(), points_[op1].y()), gfx::PointF(points_[op2].x(), points_[op2].y()))); offset = op2; } } } // namespace cc