// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: moll.markus@arcor.de (Markus Moll) // sameeragarwal@google.com (Sameer Agarwal) #include "ceres/polynomial.h" #include <cmath> #include <cstddef> #include <vector> #include "Eigen/Dense" #include "ceres/internal/port.h" #include "ceres/stringprintf.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { // Balancing function as described by B. N. Parlett and C. Reinsch, // "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors". // In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304, // Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404 void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) { CHECK_NOTNULL(companion_matrix_ptr); Matrix& companion_matrix = *companion_matrix_ptr; Matrix companion_matrix_offdiagonal = companion_matrix; companion_matrix_offdiagonal.diagonal().setZero(); const int degree = companion_matrix.rows(); // gamma <= 1 controls how much a change in the scaling has to // lower the 1-norm of the companion matrix to be accepted. // // gamma = 1 seems to lead to cycles (numerical issues?), so // we set it slightly lower. const double gamma = 0.9; // Greedily scale row/column pairs until there is no change. bool scaling_has_changed; do { scaling_has_changed = false; for (int i = 0; i < degree; ++i) { const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>(); const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>(); // Decompose row_norm/col_norm into mantissa * 2^exponent, // where 0.5 <= mantissa < 1. Discard mantissa (return value // of frexp), as only the exponent is needed. int exponent = 0; std::frexp(row_norm / col_norm, &exponent); exponent /= 2; if (exponent != 0) { const double scaled_col_norm = std::ldexp(col_norm, exponent); const double scaled_row_norm = std::ldexp(row_norm, -exponent); if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) { // Accept the new scaling. (Multiplication by powers of 2 should not // introduce rounding errors (ignoring non-normalized numbers and // over- or underflow)) scaling_has_changed = true; companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent); companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent); } } } } while (scaling_has_changed); companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal(); companion_matrix = companion_matrix_offdiagonal; VLOG(3) << "Balanced companion matrix is\n" << companion_matrix; } void BuildCompanionMatrix(const Vector& polynomial, Matrix* companion_matrix_ptr) { CHECK_NOTNULL(companion_matrix_ptr); Matrix& companion_matrix = *companion_matrix_ptr; const int degree = polynomial.size() - 1; companion_matrix.resize(degree, degree); companion_matrix.setZero(); companion_matrix.diagonal(-1).setOnes(); companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree); } // Remove leading terms with zero coefficients. Vector RemoveLeadingZeros(const Vector& polynomial_in) { int i = 0; while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) { ++i; } return polynomial_in.tail(polynomial_in.size() - i); } void FindLinearPolynomialRoots(const Vector& polynomial, Vector* real, Vector* imaginary) { CHECK_EQ(polynomial.size(), 2); if (real != NULL) { real->resize(1); (*real)(0) = -polynomial(1) / polynomial(0); } if (imaginary != NULL) { imaginary->setZero(1); } } void FindQuadraticPolynomialRoots(const Vector& polynomial, Vector* real, Vector* imaginary) { CHECK_EQ(polynomial.size(), 3); const double a = polynomial(0); const double b = polynomial(1); const double c = polynomial(2); const double D = b * b - 4 * a * c; const double sqrt_D = sqrt(fabs(D)); if (real != NULL) { real->setZero(2); } if (imaginary != NULL) { imaginary->setZero(2); } // Real roots. if (D >= 0) { if (real != NULL) { // Stable quadratic roots according to BKP Horn. // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf if (b >= 0) { (*real)(0) = (-b - sqrt_D) / (2.0 * a); (*real)(1) = (2.0 * c) / (-b - sqrt_D); } else { (*real)(0) = (2.0 * c) / (-b + sqrt_D); (*real)(1) = (-b + sqrt_D) / (2.0 * a); } } return; } // Use the normal quadratic formula for the complex case. if (real != NULL) { (*real)(0) = -b / (2.0 * a); (*real)(1) = -b / (2.0 * a); } if (imaginary != NULL) { (*imaginary)(0) = sqrt_D / (2.0 * a); (*imaginary)(1) = -sqrt_D / (2.0 * a); } } } // namespace bool FindPolynomialRoots(const Vector& polynomial_in, Vector* real, Vector* imaginary) { if (polynomial_in.size() == 0) { LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots"; return false; } Vector polynomial = RemoveLeadingZeros(polynomial_in); const int degree = polynomial.size() - 1; VLOG(3) << "Input polynomial: " << polynomial_in.transpose(); if (polynomial.size() != polynomial_in.size()) { VLOG(3) << "Trimmed polynomial: " << polynomial.transpose(); } // Is the polynomial constant? if (degree == 0) { LOG(WARNING) << "Trying to extract roots from a constant " << "polynomial in FindPolynomialRoots"; // We return true with no roots, not false, as if the polynomial is constant // it is correct that there are no roots. It is not the case that they were // there, but that we have failed to extract them. return true; } // Linear if (degree == 1) { FindLinearPolynomialRoots(polynomial, real, imaginary); return true; } // Quadratic if (degree == 2) { FindQuadraticPolynomialRoots(polynomial, real, imaginary); return true; } // The degree is now known to be at least 3. For cubic or higher // roots we use the method of companion matrices. // Divide by leading term const double leading_term = polynomial(0); polynomial /= leading_term; // Build and balance the companion matrix to the polynomial. Matrix companion_matrix(degree, degree); BuildCompanionMatrix(polynomial, &companion_matrix); BalanceCompanionMatrix(&companion_matrix); // Find its (complex) eigenvalues. Eigen::EigenSolver<Matrix> solver(companion_matrix, false); if (solver.info() != Eigen::Success) { LOG(ERROR) << "Failed to extract eigenvalues from companion matrix."; return false; } // Output roots if (real != NULL) { *real = solver.eigenvalues().real(); } else { LOG(WARNING) << "NULL pointer passed as real argument to " << "FindPolynomialRoots. Real parts of the roots will not " << "be returned."; } if (imaginary != NULL) { *imaginary = solver.eigenvalues().imag(); } return true; } Vector DifferentiatePolynomial(const Vector& polynomial) { const int degree = polynomial.rows() - 1; CHECK_GE(degree, 0); // Degree zero polynomials are constants, and their derivative does // not result in a smaller degree polynomial, just a degree zero // polynomial with value zero. if (degree == 0) { return Eigen::VectorXd::Zero(1); } Vector derivative(degree); for (int i = 0; i < degree; ++i) { derivative(i) = (degree - i) * polynomial(i); } return derivative; } void MinimizePolynomial(const Vector& polynomial, const double x_min, const double x_max, double* optimal_x, double* optimal_value) { // Find the minimum of the polynomial at the two ends. // // We start by inspecting the middle of the interval. Technically // this is not needed, but we do this to make this code as close to // the minFunc package as possible. *optimal_x = (x_min + x_max) / 2.0; *optimal_value = EvaluatePolynomial(polynomial, *optimal_x); const double x_min_value = EvaluatePolynomial(polynomial, x_min); if (x_min_value < *optimal_value) { *optimal_value = x_min_value; *optimal_x = x_min; } const double x_max_value = EvaluatePolynomial(polynomial, x_max); if (x_max_value < *optimal_value) { *optimal_value = x_max_value; *optimal_x = x_max; } // If the polynomial is linear or constant, we are done. if (polynomial.rows() <= 2) { return; } const Vector derivative = DifferentiatePolynomial(polynomial); Vector roots_real; if (!FindPolynomialRoots(derivative, &roots_real, NULL)) { LOG(WARNING) << "Unable to find the critical points of " << "the interpolating polynomial."; return; } // This is a bit of an overkill, as some of the roots may actually // have a complex part, but its simpler to just check these values. for (int i = 0; i < roots_real.rows(); ++i) { const double root = roots_real(i); if ((root < x_min) || (root > x_max)) { continue; } const double value = EvaluatePolynomial(polynomial, root); if (value < *optimal_value) { *optimal_value = value; *optimal_x = root; } } } string FunctionSample::ToDebugString() const { return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, " "value_is_valid: %d, gradient_is_valid: %d]", x, value, gradient, value_is_valid, gradient_is_valid); } Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) { const int num_samples = samples.size(); int num_constraints = 0; for (int i = 0; i < num_samples; ++i) { if (samples[i].value_is_valid) { ++num_constraints; } if (samples[i].gradient_is_valid) { ++num_constraints; } } const int degree = num_constraints - 1; Matrix lhs = Matrix::Zero(num_constraints, num_constraints); Vector rhs = Vector::Zero(num_constraints); int row = 0; for (int i = 0; i < num_samples; ++i) { const FunctionSample& sample = samples[i]; if (sample.value_is_valid) { for (int j = 0; j <= degree; ++j) { lhs(row, j) = pow(sample.x, degree - j); } rhs(row) = sample.value; ++row; } if (sample.gradient_is_valid) { for (int j = 0; j < degree; ++j) { lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1); } rhs(row) = sample.gradient; ++row; } } return lhs.fullPivLu().solve(rhs); } void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples, double x_min, double x_max, double* optimal_x, double* optimal_value) { const Vector polynomial = FindInterpolatingPolynomial(samples); MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value); for (int i = 0; i < samples.size(); ++i) { const FunctionSample& sample = samples[i]; if ((sample.x < x_min) || (sample.x > x_max)) { continue; } const double value = EvaluatePolynomial(polynomial, sample.x); if (value < *optimal_value) { *optimal_x = sample.x; *optimal_value = value; } } } } // namespace internal } // namespace ceres