// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/line_search_direction.h" #include "ceres/line_search_minimizer.h" #include "ceres/low_rank_inverse_hessian.h" #include "ceres/internal/eigen.h" #include "glog/logging.h" namespace ceres { namespace internal { class SteepestDescent : public LineSearchDirection { public: virtual ~SteepestDescent() {} bool NextDirection(const LineSearchMinimizer::State& previous, const LineSearchMinimizer::State& current, Vector* search_direction) { *search_direction = -current.gradient; return true; } }; class NonlinearConjugateGradient : public LineSearchDirection { public: NonlinearConjugateGradient(const NonlinearConjugateGradientType type, const double function_tolerance) : type_(type), function_tolerance_(function_tolerance) { } bool NextDirection(const LineSearchMinimizer::State& previous, const LineSearchMinimizer::State& current, Vector* search_direction) { double beta = 0.0; Vector gradient_change; switch (type_) { case FLETCHER_REEVES: beta = current.gradient_squared_norm / previous.gradient_squared_norm; break; case POLAK_RIBIERE: gradient_change = current.gradient - previous.gradient; beta = (current.gradient.dot(gradient_change) / previous.gradient_squared_norm); break; case HESTENES_STIEFEL: gradient_change = current.gradient - previous.gradient; beta = (current.gradient.dot(gradient_change) / previous.search_direction.dot(gradient_change)); break; default: LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_; } *search_direction = -current.gradient + beta * previous.search_direction; const double directional_derivative = current.gradient.dot(*search_direction); if (directional_derivative > -function_tolerance_) { LOG(WARNING) << "Restarting non-linear conjugate gradients: " << directional_derivative; *search_direction = -current.gradient; }; return true; } private: const NonlinearConjugateGradientType type_; const double function_tolerance_; }; class LBFGS : public LineSearchDirection { public: LBFGS(const int num_parameters, const int max_lbfgs_rank, const bool use_approximate_eigenvalue_bfgs_scaling) : low_rank_inverse_hessian_(num_parameters, max_lbfgs_rank, use_approximate_eigenvalue_bfgs_scaling), is_positive_definite_(true) {} virtual ~LBFGS() {} bool NextDirection(const LineSearchMinimizer::State& previous, const LineSearchMinimizer::State& current, Vector* search_direction) { CHECK(is_positive_definite_) << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian " << "approximation has become indefinite, please contact the " << "developers!"; low_rank_inverse_hessian_.Update( previous.search_direction * previous.step_size, current.gradient - previous.gradient); search_direction->setZero(); low_rank_inverse_hessian_.RightMultiply(current.gradient.data(), search_direction->data()); *search_direction *= -1.0; if (search_direction->dot(current.gradient) >= 0.0) { LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian " << "approximation is not positive definite, and thus " << "initial gradient for search direction is positive: " << search_direction->dot(current.gradient); is_positive_definite_ = false; return false; } return true; } private: LowRankInverseHessian low_rank_inverse_hessian_; bool is_positive_definite_; }; class BFGS : public LineSearchDirection { public: BFGS(const int num_parameters, const bool use_approximate_eigenvalue_scaling) : num_parameters_(num_parameters), use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling), initialized_(false), is_positive_definite_(true) { LOG_IF(WARNING, num_parameters_ >= 1e3) << "BFGS line search being created with: " << num_parameters_ << " parameters, this will allocate a dense approximate inverse Hessian" << " of size: " << num_parameters_ << " x " << num_parameters_ << ", consider using the L-BFGS memory-efficient line search direction " << "instead."; // Construct inverse_hessian_ after logging warning about size s.t. if the // allocation crashes us, the log will highlight what the issue likely was. inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters); } virtual ~BFGS() {} bool NextDirection(const LineSearchMinimizer::State& previous, const LineSearchMinimizer::State& current, Vector* search_direction) { CHECK(is_positive_definite_) << "Ceres bug: NextDirection() called on BFGS after inverse Hessian " << "approximation has become indefinite, please contact the " << "developers!"; const Vector delta_x = previous.search_direction * previous.step_size; const Vector delta_gradient = current.gradient - previous.gradient; const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient); // The (L)BFGS algorithm explicitly requires that the secant equation: // // B_{k+1} * s_k = y_k // // Is satisfied at each iteration, where B_{k+1} is the approximated // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be // positive definite, this is equivalent to the condition: // // s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0] // // This condition would always be satisfied if the function was strictly // convex, alternatively, it is always satisfied provided that a Wolfe line // search is used (even if the function is not strictly convex). See [1] // (p138) for a proof. // // Although Ceres will always use a Wolfe line search when using (L)BFGS, // practical implementation considerations mean that the line search // may return a point that satisfies only the Armijo condition, and thus // could violate the Secant equation. As such, we will only use a step // to update the Hessian approximation if: // // s_k^T * y_k > tolerance // // It is important that tolerance is very small (and >=0), as otherwise we // might skip the update too often and fail to capture important curvature // information in the Hessian. For example going from 1e-10 -> 1e-14 // improves the NIST benchmark score from 43/54 to 53/54. // // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999. // // TODO(alexs.mac): Consider using Damped BFGS update instead of // skipping update. const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14; if (delta_x_dot_delta_gradient <= kBFGSSecantConditionHessianUpdateTolerance) { VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too " << "small: " << delta_x_dot_delta_gradient << ", tolerance: " << kBFGSSecantConditionHessianUpdateTolerance << " (Secant condition)."; } else { // Update dense inverse Hessian approximation. if (!initialized_ && use_approximate_eigenvalue_scaling_) { // Rescale the initial inverse Hessian approximation (H_0) to be // iteratively updated so that it is of similar 'size' to the true // inverse Hessian at the start point. As shown in [1]: // // \gamma = (delta_gradient_{0}' * delta_x_{0}) / // (delta_gradient_{0}' * delta_gradient_{0}) // // Satisfies: // // (1 / \lambda_m) <= \gamma <= (1 / \lambda_1) // // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues // of the true initial Hessian (not the inverse) respectively. Thus, // \gamma is an approximate eigenvalue of the true inverse Hessian, and // choosing: H_0 = I * \gamma will yield a starting point that has a // similar scale to the true inverse Hessian. This technique is widely // reported to often improve convergence, however this is not // universally true, particularly if there are errors in the initial // gradients, or if there are significant differences in the sensitivity // of the problem to the parameters (i.e. the range of the magnitudes of // the components of the gradient is large). // // The original origin of this rescaling trick is somewhat unclear, the // earliest reference appears to be Oren [1], however it is widely // discussed without specific attributation in various texts including // [2] (p143). // // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms // Part II: Implementation and experiments, Management Science, // 20(5), 863-874, 1974. // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999. const double approximate_eigenvalue_scale = delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient); inverse_hessian_ *= approximate_eigenvalue_scale; VLOG(4) << "Applying approximate_eigenvalue_scale: " << approximate_eigenvalue_scale << " to initial inverse " << "Hessian approximation."; } initialized_ = true; // Efficient O(num_parameters^2) BFGS update [2]. // // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and // using: y_k = delta_gradient, s_k = delta_x: // // \rho_k = 1.0 / (s_k' * y_k) // V_k = I - \rho_k * y_k * s_k' // H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k') // // This update involves matrix, matrix products which naively O(N^3), // however we can exploit our knowledge that H_k is positive definite // and thus by defn. symmetric to reduce the cost of the update: // // Expanding the update above yields: // // H_k = H_{k-1} + // \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' - // (s_k * y_k' * H_k + H_k * y_k * s_k') ) // // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the // last term simplifies to (A + A'). Note that although A is not symmetric // (A + A') is symmetric. For ease of construction we also define // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn // symmetric due to construction from: s_k * s_k'. // // Now we can write the BFGS update as: // // H_k = H_{k-1} + \rho_k * (B - (A + A')) // For efficiency, as H_k is by defn. symmetric, we will only maintain the // *lower* triangle of H_k (and all intermediary terms). const double rho_k = 1.0 / delta_x_dot_delta_gradient; // Calculate: A = s_k * y_k' * H_k Matrix A = delta_x * (delta_gradient.transpose() * inverse_hessian_.selfadjointView<Eigen::Lower>()); // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k) const double delta_x_times_delta_x_transpose_scale_factor = (1.0 + (rho_k * delta_gradient.transpose() * inverse_hessian_.selfadjointView<Eigen::Lower>() * delta_gradient)); // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' Matrix B = Matrix::Zero(num_parameters_, num_parameters_); B.selfadjointView<Eigen::Lower>(). rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor); // Finally, update inverse Hessian approximation according to: // H_k = H_{k-1} + \rho_k * (B - (A + A')). Note that (A + A') is // symmetric, even though A is not. inverse_hessian_.triangularView<Eigen::Lower>() += rho_k * (B - A - A.transpose()); } *search_direction = inverse_hessian_.selfadjointView<Eigen::Lower>() * (-1.0 * current.gradient); if (search_direction->dot(current.gradient) >= 0.0) { LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian " << "approximation is not positive definite, and thus " << "initial gradient for search direction is positive: " << search_direction->dot(current.gradient); is_positive_definite_ = false; return false; } return true; } private: const int num_parameters_; const bool use_approximate_eigenvalue_scaling_; Matrix inverse_hessian_; bool initialized_; bool is_positive_definite_; }; LineSearchDirection* LineSearchDirection::Create(const LineSearchDirection::Options& options) { if (options.type == STEEPEST_DESCENT) { return new SteepestDescent; } if (options.type == NONLINEAR_CONJUGATE_GRADIENT) { return new NonlinearConjugateGradient( options.nonlinear_conjugate_gradient_type, options.function_tolerance); } if (options.type == ceres::LBFGS) { return new ceres::internal::LBFGS( options.num_parameters, options.max_lbfgs_rank, options.use_approximate_eigenvalue_bfgs_scaling); } if (options.type == ceres::BFGS) { return new ceres::internal::BFGS( options.num_parameters, options.use_approximate_eigenvalue_bfgs_scaling); } LOG(ERROR) << "Unknown line search direction type: " << options.type; return NULL; } } // namespace internal } // namespace ceres