/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_SPACE_SPACE_H_ #define ART_RUNTIME_GC_SPACE_SPACE_H_ #include <memory> #include <string> #include "atomic.h" #include "base/macros.h" #include "base/mutex.h" #include "gc/accounting/space_bitmap.h" #include "gc/collector/garbage_collector.h" #include "globals.h" #include "image.h" #include "mem_map.h" namespace art { namespace mirror { class Object; } // namespace mirror namespace gc { class Heap; namespace space { class AllocSpace; class BumpPointerSpace; class ContinuousMemMapAllocSpace; class ContinuousSpace; class DiscontinuousSpace; class MallocSpace; class DlMallocSpace; class RosAllocSpace; class ImageSpace; class LargeObjectSpace; class ZygoteSpace; static constexpr bool kDebugSpaces = kIsDebugBuild; // See Space::GetGcRetentionPolicy. enum GcRetentionPolicy { // Objects are retained forever with this policy for a space. kGcRetentionPolicyNeverCollect, // Every GC cycle will attempt to collect objects in this space. kGcRetentionPolicyAlwaysCollect, // Objects will be considered for collection only in "full" GC cycles, ie faster partial // collections won't scan these areas such as the Zygote. kGcRetentionPolicyFullCollect, }; std::ostream& operator<<(std::ostream& os, const GcRetentionPolicy& policy); enum SpaceType { kSpaceTypeImageSpace, kSpaceTypeMallocSpace, kSpaceTypeZygoteSpace, kSpaceTypeBumpPointerSpace, kSpaceTypeLargeObjectSpace, }; std::ostream& operator<<(std::ostream& os, const SpaceType& space_type); // A space contains memory allocated for managed objects. class Space { public: // Dump space. Also key method for C++ vtables. virtual void Dump(std::ostream& os) const; // Name of the space. May vary, for example before/after the Zygote fork. const char* GetName() const { return name_.c_str(); } // The policy of when objects are collected associated with this space. GcRetentionPolicy GetGcRetentionPolicy() const { return gc_retention_policy_; } // Is the given object contained within this space? virtual bool Contains(const mirror::Object* obj) const = 0; // The kind of space this: image, alloc, zygote, large object. virtual SpaceType GetType() const = 0; // Is this an image space, ie one backed by a memory mapped image file. bool IsImageSpace() const { return GetType() == kSpaceTypeImageSpace; } ImageSpace* AsImageSpace(); // Is this a dlmalloc backed allocation space? bool IsMallocSpace() const { SpaceType type = GetType(); return type == kSpaceTypeMallocSpace; } MallocSpace* AsMallocSpace(); virtual bool IsDlMallocSpace() const { return false; } virtual DlMallocSpace* AsDlMallocSpace(); virtual bool IsRosAllocSpace() const { return false; } virtual RosAllocSpace* AsRosAllocSpace(); // Is this the space allocated into by the Zygote and no-longer in use for allocation? bool IsZygoteSpace() const { return GetType() == kSpaceTypeZygoteSpace; } virtual ZygoteSpace* AsZygoteSpace(); // Is this space a bump pointer space? bool IsBumpPointerSpace() const { return GetType() == kSpaceTypeBumpPointerSpace; } virtual BumpPointerSpace* AsBumpPointerSpace(); // Does this space hold large objects and implement the large object space abstraction? bool IsLargeObjectSpace() const { return GetType() == kSpaceTypeLargeObjectSpace; } LargeObjectSpace* AsLargeObjectSpace(); virtual bool IsContinuousSpace() const { return false; } ContinuousSpace* AsContinuousSpace(); virtual bool IsDiscontinuousSpace() const { return false; } DiscontinuousSpace* AsDiscontinuousSpace(); virtual bool IsAllocSpace() const { return false; } virtual AllocSpace* AsAllocSpace(); virtual bool IsContinuousMemMapAllocSpace() const { return false; } virtual ContinuousMemMapAllocSpace* AsContinuousMemMapAllocSpace(); // Returns true if objects in the space are movable. virtual bool CanMoveObjects() const = 0; virtual ~Space() {} protected: Space(const std::string& name, GcRetentionPolicy gc_retention_policy); void SetGcRetentionPolicy(GcRetentionPolicy gc_retention_policy) { gc_retention_policy_ = gc_retention_policy; } // Name of the space that may vary due to the Zygote fork. std::string name_; protected: // When should objects within this space be reclaimed? Not constant as we vary it in the case // of Zygote forking. GcRetentionPolicy gc_retention_policy_; private: friend class art::gc::Heap; DISALLOW_COPY_AND_ASSIGN(Space); }; std::ostream& operator<<(std::ostream& os, const Space& space); // AllocSpace interface. class AllocSpace { public: // Number of bytes currently allocated. virtual uint64_t GetBytesAllocated() = 0; // Number of objects currently allocated. virtual uint64_t GetObjectsAllocated() = 0; // Allocate num_bytes without allowing growth. If the allocation // succeeds, the output parameter bytes_allocated will be set to the // actually allocated bytes which is >= num_bytes. // Alloc can be called from multiple threads at the same time and must be thread-safe. virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, size_t* usable_size) = 0; // Thread-unsafe allocation for when mutators are suspended, used by the semispace collector. virtual mirror::Object* AllocThreadUnsafe(Thread* self, size_t num_bytes, size_t* bytes_allocated, size_t* usable_size) EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) { return Alloc(self, num_bytes, bytes_allocated, usable_size); } // Return the storage space required by obj. virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) = 0; // Returns how many bytes were freed. virtual size_t Free(Thread* self, mirror::Object* ptr) = 0; // Returns how many bytes were freed. virtual size_t FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) = 0; // Revoke any sort of thread-local buffers that are used to speed up allocations for the given // thread, if the alloc space implementation uses any. virtual void RevokeThreadLocalBuffers(Thread* thread) = 0; // Revoke any sort of thread-local buffers that are used to speed up allocations for all the // threads, if the alloc space implementation uses any. virtual void RevokeAllThreadLocalBuffers() = 0; virtual void LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) = 0; protected: struct SweepCallbackContext { SweepCallbackContext(bool swap_bitmaps, space::Space* space); const bool swap_bitmaps; space::Space* const space; Thread* const self; collector::ObjectBytePair freed; }; AllocSpace() {} virtual ~AllocSpace() {} private: DISALLOW_COPY_AND_ASSIGN(AllocSpace); }; // Continuous spaces have bitmaps, and an address range. Although not required, objects within // continuous spaces can be marked in the card table. class ContinuousSpace : public Space { public: // Address at which the space begins. byte* Begin() const { return begin_; } // Current address at which the space ends, which may vary as the space is filled. byte* End() const { return end_.LoadRelaxed(); } // The end of the address range covered by the space. byte* Limit() const { return limit_; } // Change the end of the space. Be careful with use since changing the end of a space to an // invalid value may break the GC. void SetEnd(byte* end) { end_.StoreRelaxed(end); } void SetLimit(byte* limit) { limit_ = limit; } // Current size of space size_t Size() const { return End() - Begin(); } virtual accounting::ContinuousSpaceBitmap* GetLiveBitmap() const = 0; virtual accounting::ContinuousSpaceBitmap* GetMarkBitmap() const = 0; // Maximum which the mapped space can grow to. virtual size_t Capacity() const { return Limit() - Begin(); } // Is object within this space? We check to see if the pointer is beyond the end first as // continuous spaces are iterated over from low to high. bool HasAddress(const mirror::Object* obj) const { const byte* byte_ptr = reinterpret_cast<const byte*>(obj); return byte_ptr >= Begin() && byte_ptr < Limit(); } bool Contains(const mirror::Object* obj) const { return HasAddress(obj); } virtual bool IsContinuousSpace() const { return true; } virtual ~ContinuousSpace() {} protected: ContinuousSpace(const std::string& name, GcRetentionPolicy gc_retention_policy, byte* begin, byte* end, byte* limit) : Space(name, gc_retention_policy), begin_(begin), end_(end), limit_(limit) { } // The beginning of the storage for fast access. byte* begin_; // Current end of the space. Atomic<byte*> end_; // Limit of the space. byte* limit_; private: DISALLOW_COPY_AND_ASSIGN(ContinuousSpace); }; // A space where objects may be allocated higgledy-piggledy throughout virtual memory. Currently // the card table can't cover these objects and so the write barrier shouldn't be triggered. This // is suitable for use for large primitive arrays. class DiscontinuousSpace : public Space { public: accounting::LargeObjectBitmap* GetLiveBitmap() const { return live_bitmap_.get(); } accounting::LargeObjectBitmap* GetMarkBitmap() const { return mark_bitmap_.get(); } virtual bool IsDiscontinuousSpace() const OVERRIDE { return true; } virtual ~DiscontinuousSpace() {} protected: DiscontinuousSpace(const std::string& name, GcRetentionPolicy gc_retention_policy); std::unique_ptr<accounting::LargeObjectBitmap> live_bitmap_; std::unique_ptr<accounting::LargeObjectBitmap> mark_bitmap_; private: DISALLOW_COPY_AND_ASSIGN(DiscontinuousSpace); }; class MemMapSpace : public ContinuousSpace { public: // Size of the space without a limit on its growth. By default this is just the Capacity, but // for the allocation space we support starting with a small heap and then extending it. virtual size_t NonGrowthLimitCapacity() const { return Capacity(); } MemMap* GetMemMap() { return mem_map_.get(); } const MemMap* GetMemMap() const { return mem_map_.get(); } MemMap* ReleaseMemMap() { return mem_map_.release(); } protected: MemMapSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end, byte* limit, GcRetentionPolicy gc_retention_policy) : ContinuousSpace(name, gc_retention_policy, begin, end, limit), mem_map_(mem_map) { } // Underlying storage of the space std::unique_ptr<MemMap> mem_map_; private: DISALLOW_COPY_AND_ASSIGN(MemMapSpace); }; // Used by the heap compaction interface to enable copying from one type of alloc space to another. class ContinuousMemMapAllocSpace : public MemMapSpace, public AllocSpace { public: bool IsAllocSpace() const OVERRIDE { return true; } AllocSpace* AsAllocSpace() OVERRIDE { return this; } bool IsContinuousMemMapAllocSpace() const OVERRIDE { return true; } ContinuousMemMapAllocSpace* AsContinuousMemMapAllocSpace() { return this; } bool HasBoundBitmaps() const EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); void BindLiveToMarkBitmap() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); // Swap the live and mark bitmaps of this space. This is used by the GC for concurrent sweeping. void SwapBitmaps(); // Clear the space back to an empty space. virtual void Clear() = 0; accounting::ContinuousSpaceBitmap* GetLiveBitmap() const OVERRIDE { return live_bitmap_.get(); } accounting::ContinuousSpaceBitmap* GetMarkBitmap() const OVERRIDE { return mark_bitmap_.get(); } collector::ObjectBytePair Sweep(bool swap_bitmaps); virtual accounting::ContinuousSpaceBitmap::SweepCallback* GetSweepCallback() = 0; protected: std::unique_ptr<accounting::ContinuousSpaceBitmap> live_bitmap_; std::unique_ptr<accounting::ContinuousSpaceBitmap> mark_bitmap_; std::unique_ptr<accounting::ContinuousSpaceBitmap> temp_bitmap_; ContinuousMemMapAllocSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end, byte* limit, GcRetentionPolicy gc_retention_policy) : MemMapSpace(name, mem_map, begin, end, limit, gc_retention_policy) { } private: friend class gc::Heap; DISALLOW_COPY_AND_ASSIGN(ContinuousMemMapAllocSpace); }; } // namespace space } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_SPACE_SPACE_H_