/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_HEAP_INL_H_ #define ART_RUNTIME_GC_HEAP_INL_H_ #include "heap.h" #include "debugger.h" #include "gc/accounting/card_table-inl.h" #include "gc/collector/semi_space.h" #include "gc/space/bump_pointer_space-inl.h" #include "gc/space/dlmalloc_space-inl.h" #include "gc/space/large_object_space.h" #include "gc/space/rosalloc_space-inl.h" #include "runtime.h" #include "handle_scope-inl.h" #include "thread.h" #include "thread-inl.h" #include "verify_object-inl.h" namespace art { namespace gc { template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator, const PreFenceVisitor& pre_fence_visitor) { if (kIsDebugBuild) { CheckPreconditionsForAllocObject(klass, byte_count); // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are // done in the runnable state where suspension is expected. CHECK_EQ(self->GetState(), kRunnable); self->AssertThreadSuspensionIsAllowable(); } // Need to check that we arent the large object allocator since the large object allocation code // path this function. If we didn't check we would have an infinite loop. mirror::Object* obj; if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) { obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count, pre_fence_visitor); if (obj != nullptr) { return obj; } else { // There should be an OOM exception, since we are retrying, clear it. self->ClearException(); } // If the large object allocation failed, try to use the normal spaces (main space, // non moving space). This can happen if there is significant virtual address space // fragmentation. } AllocationTimer alloc_timer(this, &obj); size_t bytes_allocated; size_t usable_size; size_t new_num_bytes_allocated = 0; if (allocator == kAllocatorTypeTLAB) { byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment); } // If we have a thread local allocation we don't need to update bytes allocated. if (allocator == kAllocatorTypeTLAB && byte_count <= self->TlabSize()) { obj = self->AllocTlab(byte_count); DCHECK(obj != nullptr) << "AllocTlab can't fail"; obj->SetClass(klass); if (kUseBakerOrBrooksReadBarrier) { if (kUseBrooksReadBarrier) { obj->SetReadBarrierPointer(obj); } obj->AssertReadBarrierPointer(); } bytes_allocated = byte_count; usable_size = bytes_allocated; pre_fence_visitor(obj, usable_size); QuasiAtomic::ThreadFenceForConstructor(); } else { obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated, &usable_size); if (UNLIKELY(obj == nullptr)) { bool is_current_allocator = allocator == GetCurrentAllocator(); obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size, &klass); if (obj == nullptr) { bool after_is_current_allocator = allocator == GetCurrentAllocator(); // If there is a pending exception, fail the allocation right away since the next one // could cause OOM and abort the runtime. if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) { // If the allocator changed, we need to restart the allocation. return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor); } return nullptr; } } DCHECK_GT(bytes_allocated, 0u); DCHECK_GT(usable_size, 0u); obj->SetClass(klass); if (kUseBakerOrBrooksReadBarrier) { if (kUseBrooksReadBarrier) { obj->SetReadBarrierPointer(obj); } obj->AssertReadBarrierPointer(); } if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) { // (Note this if statement will be constant folded away for the // fast-path quick entry points.) Because SetClass() has no write // barrier, if a non-moving space allocation, we need a write // barrier as the class pointer may point to the bump pointer // space (where the class pointer is an "old-to-young" reference, // though rare) under the GSS collector with the remembered set // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc // cases because we don't directly allocate into the main alloc // space (besides promotions) under the SS/GSS collector. WriteBarrierField(obj, mirror::Object::ClassOffset(), klass); } pre_fence_visitor(obj, usable_size); new_num_bytes_allocated = static_cast<size_t>(num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated)) + bytes_allocated; } if (kIsDebugBuild && Runtime::Current()->IsStarted()) { CHECK_LE(obj->SizeOf(), usable_size); } // TODO: Deprecate. if (kInstrumented) { if (Runtime::Current()->HasStatsEnabled()) { RuntimeStats* thread_stats = self->GetStats(); ++thread_stats->allocated_objects; thread_stats->allocated_bytes += bytes_allocated; RuntimeStats* global_stats = Runtime::Current()->GetStats(); ++global_stats->allocated_objects; global_stats->allocated_bytes += bytes_allocated; } } else { DCHECK(!Runtime::Current()->HasStatsEnabled()); } if (AllocatorHasAllocationStack(allocator)) { PushOnAllocationStack(self, &obj); } if (kInstrumented) { if (Dbg::IsAllocTrackingEnabled()) { Dbg::RecordAllocation(klass, bytes_allocated); } } else { DCHECK(!Dbg::IsAllocTrackingEnabled()); } // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since // the allocator_type should be constant propagated. if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) { CheckConcurrentGC(self, new_num_bytes_allocated, &obj); } VerifyObject(obj); self->VerifyStack(); return obj; } // The size of a thread-local allocation stack in the number of references. static constexpr size_t kThreadLocalAllocationStackSize = 128; inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) { if (kUseThreadLocalAllocationStack) { if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) { PushOnThreadLocalAllocationStackWithInternalGC(self, obj); } } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) { PushOnAllocationStackWithInternalGC(self, obj); } } template <bool kInstrumented, typename PreFenceVisitor> inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class** klass, size_t byte_count, const PreFenceVisitor& pre_fence_visitor) { // Save and restore the class in case it moves. StackHandleScope<1> hs(self); auto klass_wrapper = hs.NewHandleWrapper(klass); return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count, kAllocatorTypeLOS, pre_fence_visitor); } template <const bool kInstrumented, const bool kGrow> inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type, size_t alloc_size, size_t* bytes_allocated, size_t* usable_size) { if (allocator_type != kAllocatorTypeTLAB && UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) { return nullptr; } mirror::Object* ret; switch (allocator_type) { case kAllocatorTypeBumpPointer: { DCHECK(bump_pointer_space_ != nullptr); alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment); ret = bump_pointer_space_->AllocNonvirtual(alloc_size); if (LIKELY(ret != nullptr)) { *bytes_allocated = alloc_size; *usable_size = alloc_size; } break; } case kAllocatorTypeRosAlloc: { if (kInstrumented && UNLIKELY(running_on_valgrind_)) { // If running on valgrind, we should be using the instrumented path. ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); } else { DCHECK(!running_on_valgrind_); ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size); } break; } case kAllocatorTypeDlMalloc: { if (kInstrumented && UNLIKELY(running_on_valgrind_)) { // If running on valgrind, we should be using the instrumented path. ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); } else { DCHECK(!running_on_valgrind_); ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size); } break; } case kAllocatorTypeNonMoving: { ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); break; } case kAllocatorTypeLOS: { ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); // Note that the bump pointer spaces aren't necessarily next to // the other continuous spaces like the non-moving alloc space or // the zygote space. DCHECK(ret == nullptr || large_object_space_->Contains(ret)); break; } case kAllocatorTypeTLAB: { DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment); if (UNLIKELY(self->TlabSize() < alloc_size)) { const size_t new_tlab_size = alloc_size + kDefaultTLABSize; if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) { return nullptr; } // Try allocating a new thread local buffer, if the allocaiton fails the space must be // full so return nullptr. if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) { return nullptr; } *bytes_allocated = new_tlab_size; } else { *bytes_allocated = 0; } // The allocation can't fail. ret = self->AllocTlab(alloc_size); DCHECK(ret != nullptr); *usable_size = alloc_size; break; } default: { LOG(FATAL) << "Invalid allocator type"; ret = nullptr; } } return ret; } inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr) : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) { if (kMeasureAllocationTime) { allocation_start_time_ = NanoTime() / kTimeAdjust; } } inline Heap::AllocationTimer::~AllocationTimer() { if (kMeasureAllocationTime) { mirror::Object* allocated_obj = *allocated_obj_ptr_; // Only if the allocation succeeded, record the time. if (allocated_obj != nullptr) { uint64_t allocation_end_time = NanoTime() / kTimeAdjust; heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_); } } }; inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const { // We need to have a zygote space or else our newly allocated large object can end up in the // Zygote resulting in it being prematurely freed. // We can only do this for primitive objects since large objects will not be within the card table // range. This also means that we rely on SetClass not dirtying the object's card. return byte_count >= large_object_threshold_ && c->IsPrimitiveArray(); } template <bool kGrow> inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) { size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size; if (UNLIKELY(new_footprint > max_allowed_footprint_)) { if (UNLIKELY(new_footprint > growth_limit_)) { return true; } if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) { if (!kGrow) { return true; } // TODO: Grow for allocation is racy, fix it. VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to " << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation"; max_allowed_footprint_ = new_footprint; } } return false; } inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, mirror::Object** obj) { if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) { RequestConcurrentGCAndSaveObject(self, obj); } } } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_HEAP_INL_H_