/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/mutex-inl.h" #include "mirror/class-inl.h" #include "mirror/object.h" #include "mirror/object-inl.h" #include "thread-inl.h" #include "thread_list.h" #include "rosalloc.h" #include <map> #include <list> #include <vector> namespace art { namespace gc { namespace allocator { extern "C" void* art_heap_rosalloc_morecore(RosAlloc* rosalloc, intptr_t increment); static constexpr bool kUsePrefetchDuringAllocRun = true; static constexpr bool kPrefetchNewRunDataByZeroing = false; static constexpr size_t kPrefetchStride = 64; size_t RosAlloc::bracketSizes[kNumOfSizeBrackets]; size_t RosAlloc::numOfPages[kNumOfSizeBrackets]; size_t RosAlloc::numOfSlots[kNumOfSizeBrackets]; size_t RosAlloc::headerSizes[kNumOfSizeBrackets]; size_t RosAlloc::bulkFreeBitMapOffsets[kNumOfSizeBrackets]; size_t RosAlloc::threadLocalFreeBitMapOffsets[kNumOfSizeBrackets]; bool RosAlloc::initialized_ = false; size_t RosAlloc::dedicated_full_run_storage_[kPageSize / sizeof(size_t)] = { 0 }; RosAlloc::Run* RosAlloc::dedicated_full_run_ = reinterpret_cast<RosAlloc::Run*>(dedicated_full_run_storage_); RosAlloc::RosAlloc(void* base, size_t capacity, size_t max_capacity, PageReleaseMode page_release_mode, size_t page_release_size_threshold) : base_(reinterpret_cast<byte*>(base)), footprint_(capacity), capacity_(capacity), max_capacity_(max_capacity), lock_("rosalloc global lock", kRosAllocGlobalLock), bulk_free_lock_("rosalloc bulk free lock", kRosAllocBulkFreeLock), page_release_mode_(page_release_mode), page_release_size_threshold_(page_release_size_threshold) { DCHECK_EQ(RoundUp(capacity, kPageSize), capacity); DCHECK_EQ(RoundUp(max_capacity, kPageSize), max_capacity); CHECK_LE(capacity, max_capacity); CHECK(IsAligned<kPageSize>(page_release_size_threshold_)); if (!initialized_) { Initialize(); } VLOG(heap) << "RosAlloc base=" << std::hex << (intptr_t)base_ << ", end=" << std::hex << (intptr_t)(base_ + capacity_) << ", capacity=" << std::dec << capacity_ << ", max_capacity=" << std::dec << max_capacity_; for (size_t i = 0; i < kNumOfSizeBrackets; i++) { size_bracket_lock_names_[i] = StringPrintf("an rosalloc size bracket %d lock", static_cast<int>(i)); size_bracket_locks_[i] = new Mutex(size_bracket_lock_names_[i].c_str(), kRosAllocBracketLock); current_runs_[i] = dedicated_full_run_; } DCHECK_EQ(footprint_, capacity_); size_t num_of_pages = footprint_ / kPageSize; size_t max_num_of_pages = max_capacity_ / kPageSize; std::string error_msg; page_map_mem_map_.reset(MemMap::MapAnonymous("rosalloc page map", NULL, RoundUp(max_num_of_pages, kPageSize), PROT_READ | PROT_WRITE, false, &error_msg)); CHECK(page_map_mem_map_.get() != nullptr) << "Couldn't allocate the page map : " << error_msg; page_map_ = page_map_mem_map_->Begin(); page_map_size_ = num_of_pages; max_page_map_size_ = max_num_of_pages; free_page_run_size_map_.resize(num_of_pages); FreePageRun* free_pages = reinterpret_cast<FreePageRun*>(base_); if (kIsDebugBuild) { free_pages->magic_num_ = kMagicNumFree; } free_pages->SetByteSize(this, capacity_); DCHECK_EQ(capacity_ % kPageSize, static_cast<size_t>(0)); DCHECK(free_pages->IsFree()); free_pages->ReleasePages(this); DCHECK(free_pages->IsFree()); free_page_runs_.insert(free_pages); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::RosAlloc() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(free_pages) << " into free_page_runs_"; } } RosAlloc::~RosAlloc() { for (size_t i = 0; i < kNumOfSizeBrackets; i++) { delete size_bracket_locks_[i]; } } void* RosAlloc::AllocPages(Thread* self, size_t num_pages, byte page_map_type) { lock_.AssertHeld(self); DCHECK(page_map_type == kPageMapRun || page_map_type == kPageMapLargeObject); FreePageRun* res = NULL; const size_t req_byte_size = num_pages * kPageSize; // Find the lowest address free page run that's large enough. for (auto it = free_page_runs_.begin(); it != free_page_runs_.end(); ) { FreePageRun* fpr = *it; DCHECK(fpr->IsFree()); size_t fpr_byte_size = fpr->ByteSize(this); DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0)); if (req_byte_size <= fpr_byte_size) { // Found one. free_page_runs_.erase(it++); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr) << " from free_page_runs_"; } if (req_byte_size < fpr_byte_size) { // Split. FreePageRun* remainder = reinterpret_cast<FreePageRun*>(reinterpret_cast<byte*>(fpr) + req_byte_size); if (kIsDebugBuild) { remainder->magic_num_ = kMagicNumFree; } remainder->SetByteSize(this, fpr_byte_size - req_byte_size); DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0)); // Don't need to call madvise on remainder here. free_page_runs_.insert(remainder); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(remainder) << " into free_page_runs_"; } fpr->SetByteSize(this, req_byte_size); DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); } res = fpr; break; } else { ++it; } } // Failed to allocate pages. Grow the footprint, if possible. if (UNLIKELY(res == NULL && capacity_ > footprint_)) { FreePageRun* last_free_page_run = NULL; size_t last_free_page_run_size; auto it = free_page_runs_.rbegin(); if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) { // There is a free page run at the end. DCHECK(last_free_page_run->IsFree()); DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run))); last_free_page_run_size = last_free_page_run->ByteSize(this); } else { // There is no free page run at the end. last_free_page_run_size = 0; } DCHECK_LT(last_free_page_run_size, req_byte_size); if (capacity_ - footprint_ + last_free_page_run_size >= req_byte_size) { // If we grow the heap, we can allocate it. size_t increment = std::min(std::max(2 * MB, req_byte_size - last_free_page_run_size), capacity_ - footprint_); DCHECK_EQ(increment % kPageSize, static_cast<size_t>(0)); size_t new_footprint = footprint_ + increment; size_t new_num_of_pages = new_footprint / kPageSize; DCHECK_LT(page_map_size_, new_num_of_pages); DCHECK_LT(free_page_run_size_map_.size(), new_num_of_pages); page_map_size_ = new_num_of_pages; DCHECK_LE(page_map_size_, max_page_map_size_); free_page_run_size_map_.resize(new_num_of_pages); art_heap_rosalloc_morecore(this, increment); if (last_free_page_run_size > 0) { // There was a free page run at the end. Expand its size. DCHECK_EQ(last_free_page_run_size, last_free_page_run->ByteSize(this)); last_free_page_run->SetByteSize(this, last_free_page_run_size + increment); DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); DCHECK_EQ(last_free_page_run->End(this), base_ + new_footprint); } else { // Otherwise, insert a new free page run at the end. FreePageRun* new_free_page_run = reinterpret_cast<FreePageRun*>(base_ + footprint_); if (kIsDebugBuild) { new_free_page_run->magic_num_ = kMagicNumFree; } new_free_page_run->SetByteSize(this, increment); DCHECK_EQ(new_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); free_page_runs_.insert(new_free_page_run); DCHECK_EQ(*free_page_runs_.rbegin(), new_free_page_run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AlloPages() : Grew the heap by inserting run 0x" << std::hex << reinterpret_cast<intptr_t>(new_free_page_run) << " into free_page_runs_"; } } DCHECK_LE(footprint_ + increment, capacity_); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : increased the footprint from " << footprint_ << " to " << new_footprint; } footprint_ = new_footprint; // And retry the last free page run. it = free_page_runs_.rbegin(); DCHECK(it != free_page_runs_.rend()); FreePageRun* fpr = *it; if (kIsDebugBuild && last_free_page_run_size > 0) { DCHECK(last_free_page_run != NULL); DCHECK_EQ(last_free_page_run, fpr); } size_t fpr_byte_size = fpr->ByteSize(this); DCHECK_EQ(fpr_byte_size % kPageSize, static_cast<size_t>(0)); DCHECK_LE(req_byte_size, fpr_byte_size); free_page_runs_.erase(fpr); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr) << " from free_page_runs_"; } if (req_byte_size < fpr_byte_size) { // Split if there's a remainder. FreePageRun* remainder = reinterpret_cast<FreePageRun*>(reinterpret_cast<byte*>(fpr) + req_byte_size); if (kIsDebugBuild) { remainder->magic_num_ = kMagicNumFree; } remainder->SetByteSize(this, fpr_byte_size - req_byte_size); DCHECK_EQ(remainder->ByteSize(this) % kPageSize, static_cast<size_t>(0)); free_page_runs_.insert(remainder); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(remainder) << " into free_page_runs_"; } fpr->SetByteSize(this, req_byte_size); DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); } res = fpr; } } if (LIKELY(res != NULL)) { // Update the page map. size_t page_map_idx = ToPageMapIndex(res); for (size_t i = 0; i < num_pages; i++) { DCHECK(IsFreePage(page_map_idx + i)); } switch (page_map_type) { case kPageMapRun: page_map_[page_map_idx] = kPageMapRun; for (size_t i = 1; i < num_pages; i++) { page_map_[page_map_idx + i] = kPageMapRunPart; } break; case kPageMapLargeObject: page_map_[page_map_idx] = kPageMapLargeObject; for (size_t i = 1; i < num_pages; i++) { page_map_[page_map_idx + i] = kPageMapLargeObjectPart; } break; default: LOG(FATAL) << "Unreachable - page map type: " << page_map_type; break; } if (kIsDebugBuild) { // Clear the first page since it is not madvised due to the magic number. memset(res, 0, kPageSize); } if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : 0x" << std::hex << reinterpret_cast<intptr_t>(res) << "-0x" << (reinterpret_cast<intptr_t>(res) + num_pages * kPageSize) << "(" << std::dec << (num_pages * kPageSize) << ")"; } return res; } // Fail. if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocPages() : NULL"; } return nullptr; } size_t RosAlloc::FreePages(Thread* self, void* ptr, bool already_zero) { lock_.AssertHeld(self); size_t pm_idx = ToPageMapIndex(ptr); DCHECK_LT(pm_idx, page_map_size_); byte pm_type = page_map_[pm_idx]; DCHECK(pm_type == kPageMapRun || pm_type == kPageMapLargeObject); byte pm_part_type; switch (pm_type) { case kPageMapRun: pm_part_type = kPageMapRunPart; break; case kPageMapLargeObject: pm_part_type = kPageMapLargeObjectPart; break; default: LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << " : " << "pm_idx=" << pm_idx << ", pm_type=" << static_cast<int>(pm_type) << ", ptr=" << std::hex << reinterpret_cast<intptr_t>(ptr); return 0; } // Update the page map and count the number of pages. size_t num_pages = 1; page_map_[pm_idx] = kPageMapEmpty; size_t idx = pm_idx + 1; size_t end = page_map_size_; while (idx < end && page_map_[idx] == pm_part_type) { page_map_[idx] = kPageMapEmpty; num_pages++; idx++; } const size_t byte_size = num_pages * kPageSize; if (already_zero) { if (kCheckZeroMemory) { const uword* word_ptr = reinterpret_cast<uword*>(ptr); for (size_t i = 0; i < byte_size / sizeof(uword); ++i) { CHECK_EQ(word_ptr[i], 0U) << "words don't match at index " << i; } } } else if (!DoesReleaseAllPages()) { memset(ptr, 0, byte_size); } if (kTraceRosAlloc) { LOG(INFO) << __PRETTY_FUNCTION__ << " : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr) << "-0x" << (reinterpret_cast<intptr_t>(ptr) + byte_size) << "(" << std::dec << (num_pages * kPageSize) << ")"; } // Turn it into a free run. FreePageRun* fpr = reinterpret_cast<FreePageRun*>(ptr); if (kIsDebugBuild) { fpr->magic_num_ = kMagicNumFree; } fpr->SetByteSize(this, byte_size); DCHECK(IsAligned<kPageSize>(fpr->ByteSize(this))); DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end()); if (!free_page_runs_.empty()) { // Try to coalesce in the higher address direction. if (kTraceRosAlloc) { LOG(INFO) << __PRETTY_FUNCTION__ << "RosAlloc::FreePages() : trying to coalesce a free page run 0x" << std::hex << reinterpret_cast<uintptr_t>(fpr) << " [" << std::dec << pm_idx << "] -0x" << std::hex << reinterpret_cast<uintptr_t>(fpr->End(this)) << " [" << std::dec << (fpr->End(this) == End() ? page_map_size_ : ToPageMapIndex(fpr->End(this))) << "]"; } auto higher_it = free_page_runs_.upper_bound(fpr); if (higher_it != free_page_runs_.end()) { for (auto it = higher_it; it != free_page_runs_.end(); ) { FreePageRun* h = *it; DCHECK_EQ(h->ByteSize(this) % kPageSize, static_cast<size_t>(0)); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a higher free page run 0x" << std::hex << reinterpret_cast<uintptr_t>(h) << " [" << std::dec << ToPageMapIndex(h) << "] -0x" << std::hex << reinterpret_cast<uintptr_t>(h->End(this)) << " [" << std::dec << (h->End(this) == End() ? page_map_size_ : ToPageMapIndex(h->End(this))) << "]"; } if (fpr->End(this) == h->Begin()) { if (kTraceRosAlloc) { LOG(INFO) << "Success"; } // Clear magic num since this is no longer the start of a free page run. if (kIsDebugBuild) { h->magic_num_ = 0; } free_page_runs_.erase(it++); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(h) << " from free_page_runs_"; } fpr->SetByteSize(this, fpr->ByteSize(this) + h->ByteSize(this)); DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); } else { // Not adjacent. Stop. if (kTraceRosAlloc) { LOG(INFO) << "Fail"; } break; } } } // Try to coalesce in the lower address direction. auto lower_it = free_page_runs_.upper_bound(fpr); if (lower_it != free_page_runs_.begin()) { --lower_it; for (auto it = lower_it; ; ) { // We want to try to coalesce with the first element but // there's no "<=" operator for the iterator. bool to_exit_loop = it == free_page_runs_.begin(); FreePageRun* l = *it; DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0)); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreePages() : trying to coalesce with a lower free page run 0x" << std::hex << reinterpret_cast<uintptr_t>(l) << " [" << std::dec << ToPageMapIndex(l) << "] -0x" << std::hex << reinterpret_cast<uintptr_t>(l->End(this)) << " [" << std::dec << (l->End(this) == End() ? page_map_size_ : ToPageMapIndex(l->End(this))) << "]"; } if (l->End(this) == fpr->Begin()) { if (kTraceRosAlloc) { LOG(INFO) << "Success"; } free_page_runs_.erase(it--); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreePages() : (coalesce) Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(l) << " from free_page_runs_"; } l->SetByteSize(this, l->ByteSize(this) + fpr->ByteSize(this)); DCHECK_EQ(l->ByteSize(this) % kPageSize, static_cast<size_t>(0)); // Clear magic num since this is no longer the start of a free page run. if (kIsDebugBuild) { fpr->magic_num_ = 0; } fpr = l; } else { // Not adjacent. Stop. if (kTraceRosAlloc) { LOG(INFO) << "Fail"; } break; } if (to_exit_loop) { break; } } } } // Insert it. DCHECK_EQ(fpr->ByteSize(this) % kPageSize, static_cast<size_t>(0)); DCHECK(free_page_runs_.find(fpr) == free_page_runs_.end()); DCHECK(fpr->IsFree()); fpr->ReleasePages(this); DCHECK(fpr->IsFree()); free_page_runs_.insert(fpr); DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end()); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreePages() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(fpr) << " into free_page_runs_"; } return byte_size; } void* RosAlloc::AllocLargeObject(Thread* self, size_t size, size_t* bytes_allocated) { DCHECK_GT(size, kLargeSizeThreshold); size_t num_pages = RoundUp(size, kPageSize) / kPageSize; void* r; { MutexLock mu(self, lock_); r = AllocPages(self, num_pages, kPageMapLargeObject); } if (UNLIKELY(r == nullptr)) { if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocLargeObject() : NULL"; } return nullptr; } const size_t total_bytes = num_pages * kPageSize; *bytes_allocated = total_bytes; if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocLargeObject() : 0x" << std::hex << reinterpret_cast<intptr_t>(r) << "-0x" << (reinterpret_cast<intptr_t>(r) + num_pages * kPageSize) << "(" << std::dec << (num_pages * kPageSize) << ")"; } // Check if the returned memory is really all zero. if (kCheckZeroMemory) { CHECK_EQ(total_bytes % sizeof(uword), 0U); const uword* words = reinterpret_cast<uword*>(r); for (size_t i = 0; i < total_bytes / sizeof(uword); ++i) { CHECK_EQ(words[i], 0U); } } return r; } size_t RosAlloc::FreeInternal(Thread* self, void* ptr) { DCHECK_LE(base_, ptr); DCHECK_LT(ptr, base_ + footprint_); size_t pm_idx = RoundDownToPageMapIndex(ptr); Run* run = nullptr; { MutexLock mu(self, lock_); DCHECK_LT(pm_idx, page_map_size_); byte page_map_entry = page_map_[pm_idx]; if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeInternal() : " << std::hex << ptr << ", pm_idx=" << std::dec << pm_idx << ", page_map_entry=" << static_cast<int>(page_map_entry); } switch (page_map_[pm_idx]) { case kPageMapLargeObject: return FreePages(self, ptr, false); case kPageMapLargeObjectPart: LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; return 0; case kPageMapRunPart: { // Find the beginning of the run. do { --pm_idx; DCHECK_LT(pm_idx, capacity_ / kPageSize); } while (page_map_[pm_idx] != kPageMapRun); // Fall-through. case kPageMapRun: run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); DCHECK_EQ(run->magic_num_, kMagicNum); break; case kPageMapReleased: // Fall-through. case kPageMapEmpty: LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; return 0; } default: LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; return 0; } } DCHECK(run != nullptr); return FreeFromRun(self, ptr, run); } size_t RosAlloc::Free(Thread* self, void* ptr) { ReaderMutexLock rmu(self, bulk_free_lock_); return FreeInternal(self, ptr); } RosAlloc::Run* RosAlloc::AllocRun(Thread* self, size_t idx) { RosAlloc::Run* new_run = nullptr; { MutexLock mu(self, lock_); new_run = reinterpret_cast<Run*>(AllocPages(self, numOfPages[idx], kPageMapRun)); } if (LIKELY(new_run != nullptr)) { if (kIsDebugBuild) { new_run->magic_num_ = kMagicNum; } new_run->size_bracket_idx_ = idx; new_run->SetAllocBitMapBitsForInvalidSlots(); DCHECK(!new_run->IsThreadLocal()); DCHECK_EQ(new_run->first_search_vec_idx_, 0U); DCHECK(!new_run->to_be_bulk_freed_); if (kUsePrefetchDuringAllocRun && idx < kNumThreadLocalSizeBrackets) { // Take ownership of the cache lines if we are likely to be thread local run. if (kPrefetchNewRunDataByZeroing) { // Zeroing the data is sometimes faster than prefetching but it increases memory usage // since we end up dirtying zero pages which may have been madvised. new_run->ZeroData(); } else { const size_t num_of_slots = numOfSlots[idx]; const size_t bracket_size = bracketSizes[idx]; const size_t num_of_bytes = num_of_slots * bracket_size; byte* begin = reinterpret_cast<byte*>(new_run) + headerSizes[idx]; for (size_t i = 0; i < num_of_bytes; i += kPrefetchStride) { __builtin_prefetch(begin + i); } } } } return new_run; } RosAlloc::Run* RosAlloc::RefillRun(Thread* self, size_t idx) { // Get the lowest address non-full run from the binary tree. std::set<Run*>* const bt = &non_full_runs_[idx]; if (!bt->empty()) { // If there's one, use it as the current run. auto it = bt->begin(); Run* non_full_run = *it; DCHECK(non_full_run != nullptr); DCHECK(!non_full_run->IsThreadLocal()); bt->erase(it); return non_full_run; } // If there's none, allocate a new run and use it as the current run. return AllocRun(self, idx); } inline void* RosAlloc::AllocFromCurrentRunUnlocked(Thread* self, size_t idx) { Run* current_run = current_runs_[idx]; DCHECK(current_run != nullptr); void* slot_addr = current_run->AllocSlot(); if (UNLIKELY(slot_addr == nullptr)) { // The current run got full. Try to refill it. DCHECK(current_run->IsFull()); if (kIsDebugBuild && current_run != dedicated_full_run_) { full_runs_[idx].insert(current_run); if (kTraceRosAlloc) { LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(current_run) << " into full_runs_[" << std::dec << idx << "]"; } DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(current_run) != full_runs_[idx].end()); } current_run = RefillRun(self, idx); if (UNLIKELY(current_run == nullptr)) { // Failed to allocate a new run, make sure that it is the dedicated full run. current_runs_[idx] = dedicated_full_run_; return nullptr; } DCHECK(current_run != nullptr); DCHECK(non_full_runs_[idx].find(current_run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(current_run) == full_runs_[idx].end()); current_run->SetIsThreadLocal(false); current_runs_[idx] = current_run; DCHECK(!current_run->IsFull()); slot_addr = current_run->AllocSlot(); // Must succeed now with a new run. DCHECK(slot_addr != nullptr); } return slot_addr; } void* RosAlloc::AllocFromRunThreadUnsafe(Thread* self, size_t size, size_t* bytes_allocated) { DCHECK_LE(size, kLargeSizeThreshold); size_t bracket_size; size_t idx = SizeToIndexAndBracketSize(size, &bracket_size); DCHECK_EQ(idx, SizeToIndex(size)); DCHECK_EQ(bracket_size, IndexToBracketSize(idx)); DCHECK_EQ(bracket_size, bracketSizes[idx]); DCHECK_LE(size, bracket_size); DCHECK(size > 512 || bracket_size - size < 16); Locks::mutator_lock_->AssertExclusiveHeld(self); void* slot_addr = AllocFromCurrentRunUnlocked(self, idx); if (LIKELY(slot_addr != nullptr)) { DCHECK(bytes_allocated != nullptr); *bytes_allocated = bracket_size; // Caller verifies that it is all 0. } return slot_addr; } void* RosAlloc::AllocFromRun(Thread* self, size_t size, size_t* bytes_allocated) { DCHECK_LE(size, kLargeSizeThreshold); size_t bracket_size; size_t idx = SizeToIndexAndBracketSize(size, &bracket_size); DCHECK_EQ(idx, SizeToIndex(size)); DCHECK_EQ(bracket_size, IndexToBracketSize(idx)); DCHECK_EQ(bracket_size, bracketSizes[idx]); DCHECK_LE(size, bracket_size); DCHECK(size > 512 || bracket_size - size < 16); void* slot_addr; if (LIKELY(idx < kNumThreadLocalSizeBrackets)) { // Use a thread-local run. Run* thread_local_run = reinterpret_cast<Run*>(self->GetRosAllocRun(idx)); // Allow invalid since this will always fail the allocation. if (kIsDebugBuild) { // Need the lock to prevent race conditions. MutexLock mu(self, *size_bracket_locks_[idx]); CHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); CHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); } DCHECK(thread_local_run != nullptr); DCHECK(thread_local_run->IsThreadLocal() || thread_local_run == dedicated_full_run_); slot_addr = thread_local_run->AllocSlot(); // The allocation must fail if the run is invalid. DCHECK(thread_local_run != dedicated_full_run_ || slot_addr == nullptr) << "allocated from an invalid run"; if (UNLIKELY(slot_addr == nullptr)) { // The run got full. Try to free slots. DCHECK(thread_local_run->IsFull()); MutexLock mu(self, *size_bracket_locks_[idx]); bool is_all_free_after_merge; // This is safe to do for the dedicated_full_run_ since the bitmaps are empty. if (thread_local_run->MergeThreadLocalFreeBitMapToAllocBitMap(&is_all_free_after_merge)) { DCHECK_NE(thread_local_run, dedicated_full_run_); // Some slot got freed. Keep it. DCHECK(!thread_local_run->IsFull()); DCHECK_EQ(is_all_free_after_merge, thread_local_run->IsAllFree()); if (is_all_free_after_merge) { // Check that the bitmap idx is back at 0 if it's all free. DCHECK_EQ(thread_local_run->first_search_vec_idx_, 0U); } } else { // No slots got freed. Try to refill the thread-local run. DCHECK(thread_local_run->IsFull()); if (thread_local_run != dedicated_full_run_) { thread_local_run->SetIsThreadLocal(false); if (kIsDebugBuild) { full_runs_[idx].insert(thread_local_run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocFromRun() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(thread_local_run) << " into full_runs_[" << std::dec << idx << "]"; } } DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(thread_local_run) != full_runs_[idx].end()); } thread_local_run = RefillRun(self, idx); if (UNLIKELY(thread_local_run == nullptr)) { self->SetRosAllocRun(idx, dedicated_full_run_); return nullptr; } DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); thread_local_run->SetIsThreadLocal(true); self->SetRosAllocRun(idx, thread_local_run); DCHECK(!thread_local_run->IsFull()); } DCHECK(thread_local_run != nullptr); DCHECK(!thread_local_run->IsFull()); DCHECK(thread_local_run->IsThreadLocal()); slot_addr = thread_local_run->AllocSlot(); // Must succeed now with a new run. DCHECK(slot_addr != nullptr); } if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocFromRun() thread-local : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) << "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size) << "(" << std::dec << (bracket_size) << ")"; } } else { // Use the (shared) current run. MutexLock mu(self, *size_bracket_locks_[idx]); slot_addr = AllocFromCurrentRunUnlocked(self, idx); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::AllocFromRun() : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) << "-0x" << (reinterpret_cast<intptr_t>(slot_addr) + bracket_size) << "(" << std::dec << (bracket_size) << ")"; } } DCHECK(bytes_allocated != nullptr); *bytes_allocated = bracket_size; // Caller verifies that it is all 0. return slot_addr; } size_t RosAlloc::FreeFromRun(Thread* self, void* ptr, Run* run) { DCHECK_EQ(run->magic_num_, kMagicNum); DCHECK_LT(run, ptr); DCHECK_LT(ptr, run->End()); const size_t idx = run->size_bracket_idx_; const size_t bracket_size = bracketSizes[idx]; bool run_was_full = false; MutexLock mu(self, *size_bracket_locks_[idx]); if (kIsDebugBuild) { run_was_full = run->IsFull(); } if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeFromRun() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr); } if (LIKELY(run->IsThreadLocal())) { // It's a thread-local run. Just mark the thread-local free bit map and return. DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets); DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); run->MarkThreadLocalFreeBitMap(ptr); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeFromRun() : Freed a slot in a thread local run 0x" << std::hex << reinterpret_cast<intptr_t>(run); } // A thread local run will be kept as a thread local even if it's become all free. return bracket_size; } // Free the slot in the run. run->FreeSlot(ptr); std::set<Run*>* non_full_runs = &non_full_runs_[idx]; if (run->IsAllFree()) { // It has just become completely free. Free the pages of this run. std::set<Run*>::iterator pos = non_full_runs->find(run); if (pos != non_full_runs->end()) { non_full_runs->erase(pos); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " from non_full_runs_"; } } if (run == current_runs_[idx]) { current_runs_[idx] = dedicated_full_run_; } DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); run->ZeroHeader(); { MutexLock mu(self, lock_); FreePages(self, run, true); } } else { // It is not completely free. If it wasn't the current run or // already in the non-full run set (i.e., it was full) insert it // into the non-full run set. if (run != current_runs_[idx]) { std::unordered_set<Run*, hash_run, eq_run>* full_runs = kIsDebugBuild ? &full_runs_[idx] : NULL; std::set<Run*>::iterator pos = non_full_runs->find(run); if (pos == non_full_runs->end()) { DCHECK(run_was_full); DCHECK(full_runs->find(run) != full_runs->end()); if (kIsDebugBuild) { full_runs->erase(run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeFromRun() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " from full_runs_"; } } non_full_runs->insert(run); DCHECK(!run->IsFull()); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::FreeFromRun() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " into non_full_runs_[" << std::dec << idx << "]"; } } } } return bracket_size; } std::string RosAlloc::Run::BitMapToStr(uint32_t* bit_map_base, size_t num_vec) { std::string bit_map_str; for (size_t v = 0; v < num_vec; v++) { uint32_t vec = bit_map_base[v]; if (v != num_vec - 1) { bit_map_str.append(StringPrintf("%x-", vec)); } else { bit_map_str.append(StringPrintf("%x", vec)); } } return bit_map_str.c_str(); } std::string RosAlloc::Run::Dump() { size_t idx = size_bracket_idx_; size_t num_slots = numOfSlots[idx]; size_t num_vec = RoundUp(num_slots, 32) / 32; std::ostringstream stream; stream << "RosAlloc Run = " << reinterpret_cast<void*>(this) << "{ magic_num=" << static_cast<int>(magic_num_) << " size_bracket_idx=" << idx << " is_thread_local=" << static_cast<int>(is_thread_local_) << " to_be_bulk_freed=" << static_cast<int>(to_be_bulk_freed_) << " first_search_vec_idx=" << first_search_vec_idx_ << " alloc_bit_map=" << BitMapToStr(alloc_bit_map_, num_vec) << " bulk_free_bit_map=" << BitMapToStr(BulkFreeBitMap(), num_vec) << " thread_local_bit_map=" << BitMapToStr(ThreadLocalFreeBitMap(), num_vec) << " }" << std::endl; return stream.str(); } inline void* RosAlloc::Run::AllocSlot() { const size_t idx = size_bracket_idx_; while (true) { if (kIsDebugBuild) { // Make sure that no slots leaked, the bitmap should be full for all previous vectors. for (size_t i = 0; i < first_search_vec_idx_; ++i) { CHECK_EQ(~alloc_bit_map_[i], 0U); } } uint32_t* const alloc_bitmap_ptr = &alloc_bit_map_[first_search_vec_idx_]; uint32_t ffz1 = __builtin_ffs(~*alloc_bitmap_ptr); if (LIKELY(ffz1 != 0)) { const uint32_t ffz = ffz1 - 1; const uint32_t slot_idx = ffz + first_search_vec_idx_ * sizeof(*alloc_bitmap_ptr) * kBitsPerByte; const uint32_t mask = 1U << ffz; DCHECK_LT(slot_idx, numOfSlots[idx]) << "out of range"; // Found an empty slot. Set the bit. DCHECK_EQ(*alloc_bitmap_ptr & mask, 0U); *alloc_bitmap_ptr |= mask; DCHECK_NE(*alloc_bitmap_ptr & mask, 0U); byte* slot_addr = reinterpret_cast<byte*>(this) + headerSizes[idx] + slot_idx * bracketSizes[idx]; if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::Run::AllocSlot() : 0x" << std::hex << reinterpret_cast<intptr_t>(slot_addr) << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; } return slot_addr; } const size_t num_words = RoundUp(numOfSlots[idx], 32) / 32; if (first_search_vec_idx_ + 1 >= num_words) { DCHECK(IsFull()); // Already at the last word, return null. return nullptr; } // Increase the index to the next word and try again. ++first_search_vec_idx_; } } void RosAlloc::Run::FreeSlot(void* ptr) { DCHECK(!IsThreadLocal()); const byte idx = size_bracket_idx_; const size_t bracket_size = bracketSizes[idx]; const size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) - (reinterpret_cast<byte*>(this) + headerSizes[idx]); DCHECK_EQ(offset_from_slot_base % bracket_size, static_cast<size_t>(0)); size_t slot_idx = offset_from_slot_base / bracket_size; DCHECK_LT(slot_idx, numOfSlots[idx]); size_t vec_idx = slot_idx / 32; if (kIsDebugBuild) { size_t num_vec = RoundUp(numOfSlots[idx], 32) / 32; DCHECK_LT(vec_idx, num_vec); } size_t vec_off = slot_idx % 32; uint32_t* vec = &alloc_bit_map_[vec_idx]; first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(vec_idx)); const uint32_t mask = 1U << vec_off; DCHECK_NE(*vec & mask, 0U); *vec &= ~mask; DCHECK_EQ(*vec & mask, 0U); // Zero out the memory. // TODO: Investigate alternate memset since ptr is guaranteed to be aligned to 16. memset(ptr, 0, bracket_size); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::Run::FreeSlot() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr) << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; } } inline bool RosAlloc::Run::MergeThreadLocalFreeBitMapToAllocBitMap(bool* is_all_free_after_out) { DCHECK(IsThreadLocal()); // Free slots in the alloc bit map based on the thread local free bit map. const size_t idx = size_bracket_idx_; const size_t num_of_slots = numOfSlots[idx]; const size_t num_vec = RoundUp(num_of_slots, 32) / 32; bool changed = false; uint32_t* vecp = &alloc_bit_map_[0]; uint32_t* tl_free_vecp = &ThreadLocalFreeBitMap()[0]; bool is_all_free_after = true; for (size_t v = 0; v < num_vec; v++, vecp++, tl_free_vecp++) { uint32_t tl_free_vec = *tl_free_vecp; uint32_t vec_before = *vecp; uint32_t vec_after; if (tl_free_vec != 0) { first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(v)); vec_after = vec_before & ~tl_free_vec; *vecp = vec_after; changed = true; *tl_free_vecp = 0; // clear the thread local free bit map. } else { vec_after = vec_before; } if (vec_after != 0) { if (v == num_vec - 1) { // Only not all free if a bit other than the mask bits are set. is_all_free_after = is_all_free_after && GetBitmapLastVectorMask(num_of_slots, num_vec) == vec_after; } else { is_all_free_after = false; } } DCHECK_EQ(*tl_free_vecp, static_cast<uint32_t>(0)); } *is_all_free_after_out = is_all_free_after; // Return true if there was at least a bit set in the thread-local // free bit map and at least a bit in the alloc bit map changed. return changed; } inline void RosAlloc::Run::MergeBulkFreeBitMapIntoAllocBitMap() { DCHECK(!IsThreadLocal()); // Free slots in the alloc bit map based on the bulk free bit map. const size_t num_vec = NumberOfBitmapVectors(); uint32_t* vecp = &alloc_bit_map_[0]; uint32_t* free_vecp = &BulkFreeBitMap()[0]; for (size_t v = 0; v < num_vec; v++, vecp++, free_vecp++) { uint32_t free_vec = *free_vecp; if (free_vec != 0) { first_search_vec_idx_ = std::min(first_search_vec_idx_, static_cast<uint32_t>(v)); *vecp &= ~free_vec; *free_vecp = 0; // clear the bulk free bit map. } DCHECK_EQ(*free_vecp, static_cast<uint32_t>(0)); } } inline void RosAlloc::Run::UnionBulkFreeBitMapToThreadLocalFreeBitMap() { DCHECK(IsThreadLocal()); // Union the thread local bit map with the bulk free bit map. size_t num_vec = NumberOfBitmapVectors(); uint32_t* to_vecp = &ThreadLocalFreeBitMap()[0]; uint32_t* from_vecp = &BulkFreeBitMap()[0]; for (size_t v = 0; v < num_vec; v++, to_vecp++, from_vecp++) { uint32_t from_vec = *from_vecp; if (from_vec != 0) { *to_vecp |= from_vec; *from_vecp = 0; // clear the bulk free bit map. } DCHECK_EQ(*from_vecp, static_cast<uint32_t>(0)); } } inline void RosAlloc::Run::MarkThreadLocalFreeBitMap(void* ptr) { DCHECK(IsThreadLocal()); MarkFreeBitMapShared(ptr, ThreadLocalFreeBitMap(), "MarkThreadLocalFreeBitMap"); } inline size_t RosAlloc::Run::MarkBulkFreeBitMap(void* ptr) { return MarkFreeBitMapShared(ptr, BulkFreeBitMap(), "MarkFreeBitMap"); } inline size_t RosAlloc::Run::MarkFreeBitMapShared(void* ptr, uint32_t* free_bit_map_base, const char* caller_name) { const byte idx = size_bracket_idx_; const size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) - (reinterpret_cast<byte*>(this) + headerSizes[idx]); const size_t bracket_size = bracketSizes[idx]; memset(ptr, 0, bracket_size); DCHECK_EQ(offset_from_slot_base % bracket_size, static_cast<size_t>(0)); size_t slot_idx = offset_from_slot_base / bracket_size; DCHECK_LT(slot_idx, numOfSlots[idx]); size_t vec_idx = slot_idx / 32; if (kIsDebugBuild) { size_t num_vec = NumberOfBitmapVectors(); DCHECK_LT(vec_idx, num_vec); } size_t vec_off = slot_idx % 32; uint32_t* vec = &free_bit_map_base[vec_idx]; const uint32_t mask = 1U << vec_off; DCHECK_EQ(*vec & mask, 0U); *vec |= mask; DCHECK_NE(*vec & mask, 0U); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::Run::" << caller_name << "() : 0x" << std::hex << reinterpret_cast<intptr_t>(ptr) << ", bracket_size=" << std::dec << bracketSizes[idx] << ", slot_idx=" << slot_idx; } return bracket_size; } inline uint32_t RosAlloc::Run::GetBitmapLastVectorMask(size_t num_slots, size_t num_vec) { const size_t kBitsPerVec = 32; DCHECK_GE(num_slots * kBitsPerVec, num_vec); size_t remain = num_vec * kBitsPerVec - num_slots; DCHECK_NE(remain, kBitsPerVec); return ((1U << remain) - 1) << (kBitsPerVec - remain); } inline bool RosAlloc::Run::IsAllFree() { const byte idx = size_bracket_idx_; const size_t num_slots = numOfSlots[idx]; const size_t num_vec = NumberOfBitmapVectors(); DCHECK_NE(num_vec, 0U); // Check the last vector after the loop since it uses a special case for the masked bits. for (size_t v = 0; v < num_vec - 1; v++) { uint32_t vec = alloc_bit_map_[v]; if (vec != 0) { return false; } } // Make sure the last word is equal to the mask, all other bits must be 0. return alloc_bit_map_[num_vec - 1] == GetBitmapLastVectorMask(num_slots, num_vec); } inline bool RosAlloc::Run::IsFull() { const size_t num_vec = NumberOfBitmapVectors(); for (size_t v = 0; v < num_vec; ++v) { if (~alloc_bit_map_[v] != 0) { return false; } } return true; } inline bool RosAlloc::Run::IsBulkFreeBitmapClean() { const size_t num_vec = NumberOfBitmapVectors(); for (size_t v = 0; v < num_vec; v++) { uint32_t vec = BulkFreeBitMap()[v]; if (vec != 0) { return false; } } return true; } inline bool RosAlloc::Run::IsThreadLocalFreeBitmapClean() { const size_t num_vec = NumberOfBitmapVectors(); for (size_t v = 0; v < num_vec; v++) { uint32_t vec = ThreadLocalFreeBitMap()[v]; if (vec != 0) { return false; } } return true; } inline void RosAlloc::Run::SetAllocBitMapBitsForInvalidSlots() { const size_t idx = size_bracket_idx_; const size_t num_slots = numOfSlots[idx]; const size_t num_vec = RoundUp(num_slots, 32) / 32; DCHECK_NE(num_vec, 0U); // Make sure to set the bits at the end of the bitmap so that we don't allocate there since they // don't represent valid slots. alloc_bit_map_[num_vec - 1] |= GetBitmapLastVectorMask(num_slots, num_vec); } inline void RosAlloc::Run::ZeroHeader() { const byte idx = size_bracket_idx_; memset(this, 0, headerSizes[idx]); } inline void RosAlloc::Run::ZeroData() { const byte idx = size_bracket_idx_; byte* slot_begin = reinterpret_cast<byte*>(this) + headerSizes[idx]; memset(slot_begin, 0, numOfSlots[idx] * bracketSizes[idx]); } inline void RosAlloc::Run::FillAllocBitMap() { size_t num_vec = NumberOfBitmapVectors(); memset(alloc_bit_map_, 0xFF, sizeof(uint32_t) * num_vec); first_search_vec_idx_ = num_vec - 1; // No free bits in any of the bitmap words. } void RosAlloc::Run::InspectAllSlots(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg), void* arg) { size_t idx = size_bracket_idx_; byte* slot_base = reinterpret_cast<byte*>(this) + headerSizes[idx]; size_t num_slots = numOfSlots[idx]; size_t bracket_size = IndexToBracketSize(idx); DCHECK_EQ(slot_base + num_slots * bracket_size, reinterpret_cast<byte*>(this) + numOfPages[idx] * kPageSize); size_t num_vec = RoundUp(num_slots, 32) / 32; size_t slots = 0; for (size_t v = 0; v < num_vec; v++, slots += 32) { DCHECK_GE(num_slots, slots); uint32_t vec = alloc_bit_map_[v]; size_t end = std::min(num_slots - slots, static_cast<size_t>(32)); for (size_t i = 0; i < end; ++i) { bool is_allocated = ((vec >> i) & 0x1) != 0; byte* slot_addr = slot_base + (slots + i) * bracket_size; if (is_allocated) { handler(slot_addr, slot_addr + bracket_size, bracket_size, arg); } else { handler(slot_addr, slot_addr + bracket_size, 0, arg); } } } } // If true, read the page map entries in BulkFree() without using the // lock for better performance, assuming that the existence of an // allocated chunk/pointer being freed in BulkFree() guarantees that // the page map entry won't change. Disabled for now. static constexpr bool kReadPageMapEntryWithoutLockInBulkFree = true; size_t RosAlloc::BulkFree(Thread* self, void** ptrs, size_t num_ptrs) { size_t freed_bytes = 0; if (false) { // Used only to test Free() as GC uses only BulkFree(). for (size_t i = 0; i < num_ptrs; ++i) { freed_bytes += FreeInternal(self, ptrs[i]); } return freed_bytes; } WriterMutexLock wmu(self, bulk_free_lock_); // First mark slots to free in the bulk free bit map without locking the // size bracket locks. On host, unordered_set is faster than vector + flag. #ifdef HAVE_ANDROID_OS std::vector<Run*> runs; #else std::unordered_set<Run*, hash_run, eq_run> runs; #endif for (size_t i = 0; i < num_ptrs; i++) { void* ptr = ptrs[i]; DCHECK_LE(base_, ptr); DCHECK_LT(ptr, base_ + footprint_); size_t pm_idx = RoundDownToPageMapIndex(ptr); Run* run = nullptr; if (kReadPageMapEntryWithoutLockInBulkFree) { // Read the page map entries without locking the lock. byte page_map_entry = page_map_[pm_idx]; if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx=" << std::dec << pm_idx << ", page_map_entry=" << static_cast<int>(page_map_entry); } if (LIKELY(page_map_entry == kPageMapRun)) { run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); } else if (LIKELY(page_map_entry == kPageMapRunPart)) { size_t pi = pm_idx; // Find the beginning of the run. do { --pi; DCHECK_LT(pi, capacity_ / kPageSize); } while (page_map_[pi] != kPageMapRun); run = reinterpret_cast<Run*>(base_ + pi * kPageSize); } else if (page_map_entry == kPageMapLargeObject) { MutexLock mu(self, lock_); freed_bytes += FreePages(self, ptr, false); continue; } else { LOG(FATAL) << "Unreachable - page map type: " << page_map_entry; } } else { // Read the page map entries with a lock. MutexLock mu(self, lock_); DCHECK_LT(pm_idx, page_map_size_); byte page_map_entry = page_map_[pm_idx]; if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : " << std::hex << ptr << ", pm_idx=" << std::dec << pm_idx << ", page_map_entry=" << static_cast<int>(page_map_entry); } if (LIKELY(page_map_entry == kPageMapRun)) { run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); } else if (LIKELY(page_map_entry == kPageMapRunPart)) { size_t pi = pm_idx; // Find the beginning of the run. do { --pi; DCHECK_LT(pi, capacity_ / kPageSize); } while (page_map_[pi] != kPageMapRun); run = reinterpret_cast<Run*>(base_ + pi * kPageSize); } else if (page_map_entry == kPageMapLargeObject) { freed_bytes += FreePages(self, ptr, false); continue; } else { LOG(FATAL) << "Unreachable - page map type: " << page_map_entry; } } DCHECK(run != nullptr); DCHECK_EQ(run->magic_num_, kMagicNum); // Set the bit in the bulk free bit map. freed_bytes += run->MarkBulkFreeBitMap(ptr); #ifdef HAVE_ANDROID_OS if (!run->to_be_bulk_freed_) { run->to_be_bulk_freed_ = true; runs.push_back(run); } #else runs.insert(run); #endif } // Now, iterate over the affected runs and update the alloc bit map // based on the bulk free bit map (for non-thread-local runs) and // union the bulk free bit map into the thread-local free bit map // (for thread-local runs.) for (Run* run : runs) { #ifdef HAVE_ANDROID_OS DCHECK(run->to_be_bulk_freed_); run->to_be_bulk_freed_ = false; #endif size_t idx = run->size_bracket_idx_; MutexLock mu(self, *size_bracket_locks_[idx]); if (run->IsThreadLocal()) { DCHECK_LT(run->size_bracket_idx_, kNumThreadLocalSizeBrackets); DCHECK(non_full_runs_[idx].find(run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(run) == full_runs_[idx].end()); run->UnionBulkFreeBitMapToThreadLocalFreeBitMap(); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a thread local run 0x" << std::hex << reinterpret_cast<intptr_t>(run); } DCHECK(run->IsThreadLocal()); // A thread local run will be kept as a thread local even if // it's become all free. } else { bool run_was_full = run->IsFull(); run->MergeBulkFreeBitMapIntoAllocBitMap(); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Freed slot(s) in a run 0x" << std::hex << reinterpret_cast<intptr_t>(run); } // Check if the run should be moved to non_full_runs_ or // free_page_runs_. std::set<Run*>* non_full_runs = &non_full_runs_[idx]; std::unordered_set<Run*, hash_run, eq_run>* full_runs = kIsDebugBuild ? &full_runs_[idx] : NULL; if (run->IsAllFree()) { // It has just become completely free. Free the pages of the // run. bool run_was_current = run == current_runs_[idx]; if (run_was_current) { DCHECK(full_runs->find(run) == full_runs->end()); DCHECK(non_full_runs->find(run) == non_full_runs->end()); // If it was a current run, reuse it. } else if (run_was_full) { // If it was full, remove it from the full run set (debug // only.) if (kIsDebugBuild) { std::unordered_set<Run*, hash_run, eq_run>::iterator pos = full_runs->find(run); DCHECK(pos != full_runs->end()); full_runs->erase(pos); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " from full_runs_"; } DCHECK(full_runs->find(run) == full_runs->end()); } } else { // If it was in a non full run set, remove it from the set. DCHECK(full_runs->find(run) == full_runs->end()); DCHECK(non_full_runs->find(run) != non_full_runs->end()); non_full_runs->erase(run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " from non_full_runs_"; } DCHECK(non_full_runs->find(run) == non_full_runs->end()); } if (!run_was_current) { run->ZeroHeader(); MutexLock mu(self, lock_); FreePages(self, run, true); } } else { // It is not completely free. If it wasn't the current run or // already in the non-full run set (i.e., it was full) insert // it into the non-full run set. if (run == current_runs_[idx]) { DCHECK(non_full_runs->find(run) == non_full_runs->end()); DCHECK(full_runs->find(run) == full_runs->end()); // If it was a current run, keep it. } else if (run_was_full) { // If it was full, remove it from the full run set (debug // only) and insert into the non-full run set. DCHECK(full_runs->find(run) != full_runs->end()); DCHECK(non_full_runs->find(run) == non_full_runs->end()); if (kIsDebugBuild) { full_runs->erase(run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Erased run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " from full_runs_"; } } non_full_runs->insert(run); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::BulkFree() : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " into non_full_runs_[" << std::dec << idx; } } else { // If it was not full, so leave it in the non full run set. DCHECK(full_runs->find(run) == full_runs->end()); DCHECK(non_full_runs->find(run) != non_full_runs->end()); } } } } return freed_bytes; } std::string RosAlloc::DumpPageMap() { std::ostringstream stream; stream << "RosAlloc PageMap: " << std::endl; lock_.AssertHeld(Thread::Current()); size_t end = page_map_size_; FreePageRun* curr_fpr = NULL; size_t curr_fpr_size = 0; size_t remaining_curr_fpr_size = 0; size_t num_running_empty_pages = 0; for (size_t i = 0; i < end; ++i) { byte pm = page_map_[i]; switch (pm) { case kPageMapReleased: // Fall-through. case kPageMapEmpty: { FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); if (free_page_runs_.find(fpr) != free_page_runs_.end()) { // Encountered a fresh free page run. DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); DCHECK(fpr->IsFree()); DCHECK(curr_fpr == NULL); DCHECK_EQ(curr_fpr_size, static_cast<size_t>(0)); curr_fpr = fpr; curr_fpr_size = fpr->ByteSize(this); DCHECK_EQ(curr_fpr_size % kPageSize, static_cast<size_t>(0)); remaining_curr_fpr_size = curr_fpr_size - kPageSize; stream << "[" << i << "]=" << (pm == kPageMapReleased ? "Released" : "Empty") << " (FPR start) fpr_size=" << curr_fpr_size << " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl; if (remaining_curr_fpr_size == 0) { // Reset at the end of the current free page run. curr_fpr = NULL; curr_fpr_size = 0; } stream << "curr_fpr=0x" << std::hex << reinterpret_cast<intptr_t>(curr_fpr) << std::endl; DCHECK_EQ(num_running_empty_pages, static_cast<size_t>(0)); } else { // Still part of the current free page run. DCHECK_NE(num_running_empty_pages, static_cast<size_t>(0)); DCHECK(curr_fpr != NULL && curr_fpr_size > 0 && remaining_curr_fpr_size > 0); DCHECK_EQ(remaining_curr_fpr_size % kPageSize, static_cast<size_t>(0)); DCHECK_GE(remaining_curr_fpr_size, static_cast<size_t>(kPageSize)); remaining_curr_fpr_size -= kPageSize; stream << "[" << i << "]=Empty (FPR part)" << " remaining_fpr_size=" << remaining_curr_fpr_size << std::endl; if (remaining_curr_fpr_size == 0) { // Reset at the end of the current free page run. curr_fpr = NULL; curr_fpr_size = 0; } } num_running_empty_pages++; break; } case kPageMapLargeObject: { DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); num_running_empty_pages = 0; stream << "[" << i << "]=Large (start)" << std::endl; break; } case kPageMapLargeObjectPart: DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); num_running_empty_pages = 0; stream << "[" << i << "]=Large (part)" << std::endl; break; case kPageMapRun: { DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); num_running_empty_pages = 0; Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); size_t idx = run->size_bracket_idx_; stream << "[" << i << "]=Run (start)" << " idx=" << idx << " numOfPages=" << numOfPages[idx] << " is_thread_local=" << run->is_thread_local_ << " is_all_free=" << (run->IsAllFree() ? 1 : 0) << std::endl; break; } case kPageMapRunPart: DCHECK_EQ(remaining_curr_fpr_size, static_cast<size_t>(0)); num_running_empty_pages = 0; stream << "[" << i << "]=Run (part)" << std::endl; break; default: stream << "[" << i << "]=Unrecognizable page map type: " << pm; break; } } return stream.str(); } size_t RosAlloc::UsableSize(void* ptr) { DCHECK_LE(base_, ptr); DCHECK_LT(ptr, base_ + footprint_); size_t pm_idx = RoundDownToPageMapIndex(ptr); MutexLock mu(Thread::Current(), lock_); switch (page_map_[pm_idx]) { case kPageMapReleased: // Fall-through. case kPageMapEmpty: LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr=" << std::hex << reinterpret_cast<intptr_t>(ptr); break; case kPageMapLargeObject: { size_t num_pages = 1; size_t idx = pm_idx + 1; size_t end = page_map_size_; while (idx < end && page_map_[idx] == kPageMapLargeObjectPart) { num_pages++; idx++; } return num_pages * kPageSize; } case kPageMapLargeObjectPart: LOG(FATAL) << "Unreachable - " << __PRETTY_FUNCTION__ << ": pm_idx=" << pm_idx << ", ptr=" << std::hex << reinterpret_cast<intptr_t>(ptr); break; case kPageMapRun: case kPageMapRunPart: { // Find the beginning of the run. while (page_map_[pm_idx] != kPageMapRun) { pm_idx--; DCHECK_LT(pm_idx, capacity_ / kPageSize); } DCHECK_EQ(page_map_[pm_idx], kPageMapRun); Run* run = reinterpret_cast<Run*>(base_ + pm_idx * kPageSize); DCHECK_EQ(run->magic_num_, kMagicNum); size_t idx = run->size_bracket_idx_; size_t offset_from_slot_base = reinterpret_cast<byte*>(ptr) - (reinterpret_cast<byte*>(run) + headerSizes[idx]); DCHECK_EQ(offset_from_slot_base % bracketSizes[idx], static_cast<size_t>(0)); return IndexToBracketSize(idx); } default: { LOG(FATAL) << "Unreachable - page map type: " << page_map_[pm_idx]; break; } } return 0; } bool RosAlloc::Trim() { MutexLock mu(Thread::Current(), lock_); FreePageRun* last_free_page_run; DCHECK_EQ(footprint_ % kPageSize, static_cast<size_t>(0)); auto it = free_page_runs_.rbegin(); if (it != free_page_runs_.rend() && (last_free_page_run = *it)->End(this) == base_ + footprint_) { // Remove the last free page run, if any. DCHECK(last_free_page_run->IsFree()); DCHECK(IsFreePage(ToPageMapIndex(last_free_page_run))); DCHECK_EQ(last_free_page_run->ByteSize(this) % kPageSize, static_cast<size_t>(0)); DCHECK_EQ(last_free_page_run->End(this), base_ + footprint_); free_page_runs_.erase(last_free_page_run); size_t decrement = last_free_page_run->ByteSize(this); size_t new_footprint = footprint_ - decrement; DCHECK_EQ(new_footprint % kPageSize, static_cast<size_t>(0)); size_t new_num_of_pages = new_footprint / kPageSize; DCHECK_GE(page_map_size_, new_num_of_pages); // Zero out the tail of the page map. byte* zero_begin = const_cast<byte*>(page_map_) + new_num_of_pages; byte* madvise_begin = AlignUp(zero_begin, kPageSize); DCHECK_LE(madvise_begin, page_map_mem_map_->End()); size_t madvise_size = page_map_mem_map_->End() - madvise_begin; if (madvise_size > 0) { DCHECK_ALIGNED(madvise_begin, kPageSize); DCHECK_EQ(RoundUp(madvise_size, kPageSize), madvise_size); if (!kMadviseZeroes) { memset(madvise_begin, 0, madvise_size); } CHECK_EQ(madvise(madvise_begin, madvise_size, MADV_DONTNEED), 0); } if (madvise_begin - zero_begin) { memset(zero_begin, 0, madvise_begin - zero_begin); } page_map_size_ = new_num_of_pages; free_page_run_size_map_.resize(new_num_of_pages); DCHECK_EQ(free_page_run_size_map_.size(), new_num_of_pages); art_heap_rosalloc_morecore(this, -(static_cast<intptr_t>(decrement))); if (kTraceRosAlloc) { LOG(INFO) << "RosAlloc::Trim() : decreased the footprint from " << footprint_ << " to " << new_footprint; } DCHECK_LT(new_footprint, footprint_); DCHECK_LT(new_footprint, capacity_); footprint_ = new_footprint; return true; } return false; } void RosAlloc::InspectAll(void (*handler)(void* start, void* end, size_t used_bytes, void* callback_arg), void* arg) { // Note: no need to use this to release pages as we already do so in FreePages(). if (handler == NULL) { return; } MutexLock mu(Thread::Current(), lock_); size_t pm_end = page_map_size_; size_t i = 0; while (i < pm_end) { byte pm = page_map_[i]; switch (pm) { case kPageMapReleased: // Fall-through. case kPageMapEmpty: { // The start of a free page run. FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); DCHECK(free_page_runs_.find(fpr) != free_page_runs_.end()); size_t fpr_size = fpr->ByteSize(this); DCHECK(IsAligned<kPageSize>(fpr_size)); void* start = fpr; if (kIsDebugBuild) { // In the debug build, the first page of a free page run // contains a magic number for debugging. Exclude it. start = reinterpret_cast<byte*>(fpr) + kPageSize; } void* end = reinterpret_cast<byte*>(fpr) + fpr_size; handler(start, end, 0, arg); size_t num_pages = fpr_size / kPageSize; if (kIsDebugBuild) { for (size_t j = i + 1; j < i + num_pages; ++j) { DCHECK(IsFreePage(j)); } } i += fpr_size / kPageSize; DCHECK_LE(i, pm_end); break; } case kPageMapLargeObject: { // The start of a large object. size_t num_pages = 1; size_t idx = i + 1; while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) { num_pages++; idx++; } void* start = base_ + i * kPageSize; void* end = base_ + (i + num_pages) * kPageSize; size_t used_bytes = num_pages * kPageSize; handler(start, end, used_bytes, arg); if (kIsDebugBuild) { for (size_t j = i + 1; j < i + num_pages; ++j) { DCHECK_EQ(page_map_[j], kPageMapLargeObjectPart); } } i += num_pages; DCHECK_LE(i, pm_end); break; } case kPageMapLargeObjectPart: LOG(FATAL) << "Unreachable - page map type: " << pm; break; case kPageMapRun: { // The start of a run. Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); DCHECK_EQ(run->magic_num_, kMagicNum); // The dedicated full run doesn't contain any real allocations, don't visit the slots in // there. run->InspectAllSlots(handler, arg); size_t num_pages = numOfPages[run->size_bracket_idx_]; if (kIsDebugBuild) { for (size_t j = i + 1; j < i + num_pages; ++j) { DCHECK_EQ(page_map_[j], kPageMapRunPart); } } i += num_pages; DCHECK_LE(i, pm_end); break; } case kPageMapRunPart: LOG(FATAL) << "Unreachable - page map type: " << pm; break; default: LOG(FATAL) << "Unreachable - page map type: " << pm; break; } } } size_t RosAlloc::Footprint() { MutexLock mu(Thread::Current(), lock_); return footprint_; } size_t RosAlloc::FootprintLimit() { MutexLock mu(Thread::Current(), lock_); return capacity_; } void RosAlloc::SetFootprintLimit(size_t new_capacity) { MutexLock mu(Thread::Current(), lock_); DCHECK_EQ(RoundUp(new_capacity, kPageSize), new_capacity); // Only growing is supported here. But Trim() is supported. if (capacity_ < new_capacity) { CHECK_LE(new_capacity, max_capacity_); capacity_ = new_capacity; VLOG(heap) << "new capacity=" << capacity_; } } void RosAlloc::RevokeThreadLocalRuns(Thread* thread) { Thread* self = Thread::Current(); // Avoid race conditions on the bulk free bit maps with BulkFree() (GC). ReaderMutexLock wmu(self, bulk_free_lock_); for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) { MutexLock mu(self, *size_bracket_locks_[idx]); Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx)); CHECK(thread_local_run != nullptr); // Invalid means already revoked. DCHECK(thread_local_run->IsThreadLocal()); if (thread_local_run != dedicated_full_run_) { thread->SetRosAllocRun(idx, dedicated_full_run_); DCHECK_EQ(thread_local_run->magic_num_, kMagicNum); // Note the thread local run may not be full here. bool dont_care; thread_local_run->MergeThreadLocalFreeBitMapToAllocBitMap(&dont_care); thread_local_run->SetIsThreadLocal(false); thread_local_run->MergeBulkFreeBitMapIntoAllocBitMap(); DCHECK(non_full_runs_[idx].find(thread_local_run) == non_full_runs_[idx].end()); DCHECK(full_runs_[idx].find(thread_local_run) == full_runs_[idx].end()); RevokeRun(self, idx, thread_local_run); } } } void RosAlloc::RevokeRun(Thread* self, size_t idx, Run* run) { size_bracket_locks_[idx]->AssertHeld(self); DCHECK(run != dedicated_full_run_); if (run->IsFull()) { if (kIsDebugBuild) { full_runs_[idx].insert(run); DCHECK(full_runs_[idx].find(run) != full_runs_[idx].end()); if (kTraceRosAlloc) { LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " into full_runs_[" << std::dec << idx << "]"; } } } else if (run->IsAllFree()) { run->ZeroHeader(); MutexLock mu(self, lock_); FreePages(self, run, true); } else { non_full_runs_[idx].insert(run); DCHECK(non_full_runs_[idx].find(run) != non_full_runs_[idx].end()); if (kTraceRosAlloc) { LOG(INFO) << __PRETTY_FUNCTION__ << " : Inserted run 0x" << std::hex << reinterpret_cast<intptr_t>(run) << " into non_full_runs_[" << std::dec << idx << "]"; } } } void RosAlloc::RevokeThreadUnsafeCurrentRuns() { // Revoke the current runs which share the same idx as thread local runs. Thread* self = Thread::Current(); for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) { MutexLock mu(self, *size_bracket_locks_[idx]); if (current_runs_[idx] != dedicated_full_run_) { RevokeRun(self, idx, current_runs_[idx]); current_runs_[idx] = dedicated_full_run_; } } } void RosAlloc::RevokeAllThreadLocalRuns() { // This is called when a mutator thread won't allocate such as at // the Zygote creation time or during the GC pause. MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_); MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_); std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : thread_list) { RevokeThreadLocalRuns(thread); } RevokeThreadUnsafeCurrentRuns(); } void RosAlloc::AssertThreadLocalRunsAreRevoked(Thread* thread) { if (kIsDebugBuild) { Thread* self = Thread::Current(); // Avoid race conditions on the bulk free bit maps with BulkFree() (GC). ReaderMutexLock wmu(self, bulk_free_lock_); for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; idx++) { MutexLock mu(self, *size_bracket_locks_[idx]); Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(idx)); DCHECK(thread_local_run == nullptr || thread_local_run == dedicated_full_run_); } } } void RosAlloc::AssertAllThreadLocalRunsAreRevoked() { if (kIsDebugBuild) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::runtime_shutdown_lock_); MutexLock mu2(self, *Locks::thread_list_lock_); std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (Thread* t : thread_list) { AssertThreadLocalRunsAreRevoked(t); } for (size_t idx = 0; idx < kNumThreadLocalSizeBrackets; ++idx) { MutexLock mu(self, *size_bracket_locks_[idx]); CHECK_EQ(current_runs_[idx], dedicated_full_run_); } } } void RosAlloc::Initialize() { // bracketSizes. for (size_t i = 0; i < kNumOfSizeBrackets; i++) { if (i < kNumOfSizeBrackets - 2) { bracketSizes[i] = 16 * (i + 1); } else if (i == kNumOfSizeBrackets - 2) { bracketSizes[i] = 1 * KB; } else { DCHECK_EQ(i, kNumOfSizeBrackets - 1); bracketSizes[i] = 2 * KB; } if (kTraceRosAlloc) { LOG(INFO) << "bracketSizes[" << i << "]=" << bracketSizes[i]; } } // numOfPages. for (size_t i = 0; i < kNumOfSizeBrackets; i++) { if (i < 4) { numOfPages[i] = 1; } else if (i < 8) { numOfPages[i] = 1; } else if (i < 16) { numOfPages[i] = 4; } else if (i < 32) { numOfPages[i] = 8; } else if (i == 32) { DCHECK_EQ(i, kNumOfSizeBrackets - 2); numOfPages[i] = 16; } else { DCHECK_EQ(i, kNumOfSizeBrackets - 1); numOfPages[i] = 32; } if (kTraceRosAlloc) { LOG(INFO) << "numOfPages[" << i << "]=" << numOfPages[i]; } } // Compute numOfSlots and slotOffsets. for (size_t i = 0; i < kNumOfSizeBrackets; i++) { size_t bracket_size = bracketSizes[i]; size_t run_size = kPageSize * numOfPages[i]; size_t max_num_of_slots = run_size / bracket_size; // Compute the actual number of slots by taking the header and // alignment into account. size_t fixed_header_size = RoundUp(Run::fixed_header_size(), sizeof(uint32_t)); DCHECK_EQ(fixed_header_size, static_cast<size_t>(8)); size_t header_size = 0; size_t bulk_free_bit_map_offset = 0; size_t thread_local_free_bit_map_offset = 0; size_t num_of_slots = 0; // Search for the maximum number of slots that allows enough space // for the header (including the bit maps.) for (int s = max_num_of_slots; s >= 0; s--) { size_t tmp_slots_size = bracket_size * s; size_t tmp_bit_map_size = RoundUp(s, sizeof(uint32_t) * kBitsPerByte) / kBitsPerByte; size_t tmp_bulk_free_bit_map_size = tmp_bit_map_size; size_t tmp_bulk_free_bit_map_off = fixed_header_size + tmp_bit_map_size; size_t tmp_thread_local_free_bit_map_size = tmp_bit_map_size; size_t tmp_thread_local_free_bit_map_off = tmp_bulk_free_bit_map_off + tmp_bulk_free_bit_map_size; size_t tmp_unaligned_header_size = tmp_thread_local_free_bit_map_off + tmp_thread_local_free_bit_map_size; // Align up the unaligned header size. bracket_size may not be a power of two. size_t tmp_header_size = (tmp_unaligned_header_size % bracket_size == 0) ? tmp_unaligned_header_size : tmp_unaligned_header_size + (bracket_size - tmp_unaligned_header_size % bracket_size); DCHECK_EQ(tmp_header_size % bracket_size, static_cast<size_t>(0)); DCHECK_EQ(tmp_header_size % 8, static_cast<size_t>(0)); if (tmp_slots_size + tmp_header_size <= run_size) { // Found the right number of slots, that is, there was enough // space for the header (including the bit maps.) num_of_slots = s; header_size = tmp_header_size; bulk_free_bit_map_offset = tmp_bulk_free_bit_map_off; thread_local_free_bit_map_offset = tmp_thread_local_free_bit_map_off; break; } } DCHECK(num_of_slots > 0 && header_size > 0 && bulk_free_bit_map_offset > 0); // Add the padding for the alignment remainder. header_size += run_size % bracket_size; DCHECK_EQ(header_size + num_of_slots * bracket_size, run_size); numOfSlots[i] = num_of_slots; headerSizes[i] = header_size; bulkFreeBitMapOffsets[i] = bulk_free_bit_map_offset; threadLocalFreeBitMapOffsets[i] = thread_local_free_bit_map_offset; if (kTraceRosAlloc) { LOG(INFO) << "numOfSlots[" << i << "]=" << numOfSlots[i] << ", headerSizes[" << i << "]=" << headerSizes[i] << ", bulkFreeBitMapOffsets[" << i << "]=" << bulkFreeBitMapOffsets[i] << ", threadLocalFreeBitMapOffsets[" << i << "]=" << threadLocalFreeBitMapOffsets[i];; } } // Fill the alloc bitmap so nobody can successfully allocate from it. if (kIsDebugBuild) { dedicated_full_run_->magic_num_ = kMagicNum; } // It doesn't matter which size bracket we use since the main goal is to have the allocation // fail 100% of the time you attempt to allocate into the dedicated full run. dedicated_full_run_->size_bracket_idx_ = 0; dedicated_full_run_->FillAllocBitMap(); dedicated_full_run_->SetIsThreadLocal(true); } void RosAlloc::BytesAllocatedCallback(void* start, void* end, size_t used_bytes, void* arg) { if (used_bytes == 0) { return; } size_t* bytes_allocated = reinterpret_cast<size_t*>(arg); *bytes_allocated += used_bytes; } void RosAlloc::ObjectsAllocatedCallback(void* start, void* end, size_t used_bytes, void* arg) { if (used_bytes == 0) { return; } size_t* objects_allocated = reinterpret_cast<size_t*>(arg); ++(*objects_allocated); } void RosAlloc::Verify() { Thread* self = Thread::Current(); CHECK(Locks::mutator_lock_->IsExclusiveHeld(self)) << "The mutator locks isn't exclusively locked at " << __PRETTY_FUNCTION__; MutexLock mu(self, *Locks::thread_list_lock_); ReaderMutexLock wmu(self, bulk_free_lock_); std::vector<Run*> runs; { MutexLock mu(self, lock_); size_t pm_end = page_map_size_; size_t i = 0; while (i < pm_end) { byte pm = page_map_[i]; switch (pm) { case kPageMapReleased: // Fall-through. case kPageMapEmpty: { // The start of a free page run. FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); DCHECK_EQ(fpr->magic_num_, kMagicNumFree); CHECK(free_page_runs_.find(fpr) != free_page_runs_.end()) << "An empty page must belong to the free page run set"; size_t fpr_size = fpr->ByteSize(this); CHECK(IsAligned<kPageSize>(fpr_size)) << "A free page run size isn't page-aligned : " << fpr_size; size_t num_pages = fpr_size / kPageSize; CHECK_GT(num_pages, static_cast<uintptr_t>(0)) << "A free page run size must be > 0 : " << fpr_size; for (size_t j = i + 1; j < i + num_pages; ++j) { CHECK(IsFreePage(j)) << "A mismatch between the page map table for kPageMapEmpty " << " at page index " << j << " and the free page run size : page index range : " << i << " to " << (i + num_pages) << std::endl << DumpPageMap(); } i += num_pages; CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end << std::endl << DumpPageMap(); break; } case kPageMapLargeObject: { // The start of a large object. size_t num_pages = 1; size_t idx = i + 1; while (idx < pm_end && page_map_[idx] == kPageMapLargeObjectPart) { num_pages++; idx++; } void* start = base_ + i * kPageSize; mirror::Object* obj = reinterpret_cast<mirror::Object*>(start); size_t obj_size = obj->SizeOf(); CHECK_GT(obj_size, kLargeSizeThreshold) << "A rosalloc large object size must be > " << kLargeSizeThreshold; CHECK_EQ(num_pages, RoundUp(obj_size, kPageSize) / kPageSize) << "A rosalloc large object size " << obj_size << " does not match the page map table " << (num_pages * kPageSize) << std::endl << DumpPageMap(); i += num_pages; CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end << std::endl << DumpPageMap(); break; } case kPageMapLargeObjectPart: LOG(FATAL) << "Unreachable - page map type: " << pm << std::endl << DumpPageMap(); break; case kPageMapRun: { // The start of a run. Run* run = reinterpret_cast<Run*>(base_ + i * kPageSize); DCHECK_EQ(run->magic_num_, kMagicNum); size_t idx = run->size_bracket_idx_; CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << idx; size_t num_pages = numOfPages[idx]; CHECK_GT(num_pages, static_cast<uintptr_t>(0)) << "Run size must be > 0 : " << num_pages; for (size_t j = i + 1; j < i + num_pages; ++j) { CHECK_EQ(page_map_[j], kPageMapRunPart) << "A mismatch between the page map table for kPageMapRunPart " << " at page index " << j << " and the run size : page index range " << i << " to " << (i + num_pages) << std::endl << DumpPageMap(); } // Don't verify the dedicated_full_run_ since it doesn't have any real allocations. runs.push_back(run); i += num_pages; CHECK_LE(i, pm_end) << "Page map index " << i << " out of range < " << pm_end << std::endl << DumpPageMap(); break; } case kPageMapRunPart: // Fall-through. default: LOG(FATAL) << "Unreachable - page map type: " << pm << std::endl << DumpPageMap(); break; } } } std::list<Thread*> threads = Runtime::Current()->GetThreadList()->GetList(); for (Thread* thread : threads) { for (size_t i = 0; i < kNumThreadLocalSizeBrackets; ++i) { MutexLock mu(self, *size_bracket_locks_[i]); Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i)); CHECK(thread_local_run != nullptr); CHECK(thread_local_run->IsThreadLocal()); CHECK(thread_local_run == dedicated_full_run_ || thread_local_run->size_bracket_idx_ == i); } } for (size_t i = 0; i < kNumOfSizeBrackets; i++) { MutexLock mu(self, *size_bracket_locks_[i]); Run* current_run = current_runs_[i]; CHECK(current_run != nullptr); if (current_run != dedicated_full_run_) { // The dedicated full run is currently marked as thread local. CHECK(!current_run->IsThreadLocal()); CHECK_EQ(current_run->size_bracket_idx_, i); } } // Call Verify() here for the lock order. for (auto& run : runs) { run->Verify(self, this); } } void RosAlloc::Run::Verify(Thread* self, RosAlloc* rosalloc) { DCHECK_EQ(magic_num_, kMagicNum) << "Bad magic number : " << Dump(); const size_t idx = size_bracket_idx_; CHECK_LT(idx, kNumOfSizeBrackets) << "Out of range size bracket index : " << Dump(); byte* slot_base = reinterpret_cast<byte*>(this) + headerSizes[idx]; const size_t num_slots = numOfSlots[idx]; const size_t num_vec = RoundUp(num_slots, 32) / 32; CHECK_GT(num_vec, 0U); size_t bracket_size = IndexToBracketSize(idx); CHECK_EQ(slot_base + num_slots * bracket_size, reinterpret_cast<byte*>(this) + numOfPages[idx] * kPageSize) << "Mismatch in the end address of the run " << Dump(); // Check that the bulk free bitmap is clean. It's only used during BulkFree(). CHECK(IsBulkFreeBitmapClean()) << "The bulk free bit map isn't clean " << Dump(); uint32_t last_word_mask = GetBitmapLastVectorMask(num_slots, num_vec); // Make sure all the bits at the end of the run are set so that we don't allocate there. CHECK_EQ(alloc_bit_map_[num_vec - 1] & last_word_mask, last_word_mask); // Ensure that the first bitmap index is valid. CHECK_LT(first_search_vec_idx_, num_vec); // Check the thread local runs, the current runs, and the run sets. if (IsThreadLocal()) { // If it's a thread local run, then it must be pointed to by an owner thread. bool owner_found = false; std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList(); for (auto it = thread_list.begin(); it != thread_list.end(); ++it) { Thread* thread = *it; for (size_t i = 0; i < kNumThreadLocalSizeBrackets; i++) { MutexLock mu(self, *rosalloc->size_bracket_locks_[i]); Run* thread_local_run = reinterpret_cast<Run*>(thread->GetRosAllocRun(i)); if (thread_local_run == this) { CHECK(!owner_found) << "A thread local run has more than one owner thread " << Dump(); CHECK_EQ(i, idx) << "A mismatching size bracket index in a thread local run " << Dump(); owner_found = true; } } } CHECK(owner_found) << "A thread local run has no owner thread " << Dump(); } else { // If it's not thread local, check that the thread local free bitmap is clean. CHECK(IsThreadLocalFreeBitmapClean()) << "A non-thread-local run's thread local free bitmap isn't clean " << Dump(); // Check if it's a current run for the size bucket. bool is_current_run = false; for (size_t i = 0; i < kNumOfSizeBrackets; i++) { MutexLock mu(self, *rosalloc->size_bracket_locks_[i]); Run* current_run = rosalloc->current_runs_[i]; if (idx == i) { if (this == current_run) { is_current_run = true; } } else { // If the size bucket index does not match, then it must not // be a current run. CHECK_NE(this, current_run) << "A current run points to a run with a wrong size bracket index " << Dump(); } } // If it's neither a thread local or current run, then it must be // in a run set. if (!is_current_run) { MutexLock mu(self, rosalloc->lock_); std::set<Run*>& non_full_runs = rosalloc->non_full_runs_[idx]; // If it's all free, it must be a free page run rather than a run. CHECK(!IsAllFree()) << "A free run must be in a free page run set " << Dump(); if (!IsFull()) { // If it's not full, it must in the non-full run set. CHECK(non_full_runs.find(this) != non_full_runs.end()) << "A non-full run isn't in the non-full run set " << Dump(); } else { // If it's full, it must in the full run set (debug build only.) if (kIsDebugBuild) { std::unordered_set<Run*, hash_run, eq_run>& full_runs = rosalloc->full_runs_[idx]; CHECK(full_runs.find(this) != full_runs.end()) << " A full run isn't in the full run set " << Dump(); } } } } // Check each slot. size_t slots = 0; for (size_t v = 0; v < num_vec; v++, slots += 32) { DCHECK_GE(num_slots, slots) << "Out of bounds"; uint32_t vec = alloc_bit_map_[v]; uint32_t thread_local_free_vec = ThreadLocalFreeBitMap()[v]; size_t end = std::min(num_slots - slots, static_cast<size_t>(32)); for (size_t i = 0; i < end; ++i) { bool is_allocated = ((vec >> i) & 0x1) != 0; // If a thread local run, slots may be marked freed in the // thread local free bitmap. bool is_thread_local_freed = IsThreadLocal() && ((thread_local_free_vec >> i) & 0x1) != 0; if (is_allocated && !is_thread_local_freed) { byte* slot_addr = slot_base + (slots + i) * bracket_size; mirror::Object* obj = reinterpret_cast<mirror::Object*>(slot_addr); size_t obj_size = obj->SizeOf(); CHECK_LE(obj_size, kLargeSizeThreshold) << "A run slot contains a large object " << Dump(); CHECK_EQ(SizeToIndex(obj_size), idx) << PrettyTypeOf(obj) << " " << "obj_size=" << obj_size << ", idx=" << idx << " " << "A run slot contains an object with wrong size " << Dump(); } } } } size_t RosAlloc::ReleasePages() { VLOG(heap) << "RosAlloc::ReleasePages()"; DCHECK(!DoesReleaseAllPages()); Thread* self = Thread::Current(); size_t reclaimed_bytes = 0; size_t i = 0; // Check the page map size which might have changed due to grow/shrink. while (i < page_map_size_) { // Reading the page map without a lock is racy but the race is benign since it should only // result in occasionally not releasing pages which we could release. byte pm = page_map_[i]; switch (pm) { case kPageMapReleased: // Fall through. case kPageMapEmpty: { // This is currently the start of a free page run. // Acquire the lock to prevent other threads racing in and modifying the page map. MutexLock mu(self, lock_); // Check that it's still empty after we acquired the lock since another thread could have // raced in and placed an allocation here. if (IsFreePage(i)) { // Free page runs can start with a released page if we coalesced a released page free // page run with an empty page run. FreePageRun* fpr = reinterpret_cast<FreePageRun*>(base_ + i * kPageSize); // There is a race condition where FreePage can coalesce fpr with the previous // free page run before we acquire lock_. In that case free_page_runs_.find will not find // a run starting at fpr. To handle this race, we skip reclaiming the page range and go // to the next page. if (free_page_runs_.find(fpr) != free_page_runs_.end()) { size_t fpr_size = fpr->ByteSize(this); DCHECK(IsAligned<kPageSize>(fpr_size)); byte* start = reinterpret_cast<byte*>(fpr); reclaimed_bytes += ReleasePageRange(start, start + fpr_size); size_t pages = fpr_size / kPageSize; CHECK_GT(pages, 0U) << "Infinite loop probable"; i += pages; DCHECK_LE(i, page_map_size_); break; } } // Fall through. } case kPageMapLargeObject: // Fall through. case kPageMapLargeObjectPart: // Fall through. case kPageMapRun: // Fall through. case kPageMapRunPart: // Fall through. ++i; break; // Skip. default: LOG(FATAL) << "Unreachable - page map type: " << pm; break; } } return reclaimed_bytes; } size_t RosAlloc::ReleasePageRange(byte* start, byte* end) { DCHECK_ALIGNED(start, kPageSize); DCHECK_ALIGNED(end, kPageSize); DCHECK_LT(start, end); if (kIsDebugBuild) { // In the debug build, the first page of a free page run // contains a magic number for debugging. Exclude it. start += kPageSize; } if (!kMadviseZeroes) { // TODO: Do this when we resurrect the page instead. memset(start, 0, end - start); } CHECK_EQ(madvise(start, end - start, MADV_DONTNEED), 0); size_t pm_idx = ToPageMapIndex(start); size_t reclaimed_bytes = 0; // Calculate reclaimed bytes and upate page map. const size_t max_idx = pm_idx + (end - start) / kPageSize; for (; pm_idx < max_idx; ++pm_idx) { DCHECK(IsFreePage(pm_idx)); if (page_map_[pm_idx] == kPageMapEmpty) { // Mark the page as released and update how many bytes we released. reclaimed_bytes += kPageSize; page_map_[pm_idx] = kPageMapReleased; } } return reclaimed_bytes; } void RosAlloc::LogFragmentationAllocFailure(std::ostream& os, size_t failed_alloc_bytes) { Thread* self = Thread::Current(); size_t largest_continuous_free_pages = 0; WriterMutexLock wmu(self, bulk_free_lock_); MutexLock mu(self, lock_); for (FreePageRun* fpr : free_page_runs_) { largest_continuous_free_pages = std::max(largest_continuous_free_pages, fpr->ByteSize(this)); } if (failed_alloc_bytes > kLargeSizeThreshold) { // Large allocation. size_t required_bytes = RoundUp(failed_alloc_bytes, kPageSize); if (required_bytes > largest_continuous_free_pages) { os << "; failed due to fragmentation (required continguous free " << required_bytes << " bytes where largest contiguous free " << largest_continuous_free_pages << " bytes)"; } } else { // Non-large allocation. size_t required_bytes = numOfPages[SizeToIndex(failed_alloc_bytes)] * kPageSize; if (required_bytes > largest_continuous_free_pages) { os << "; failed due to fragmentation (required continguous free " << required_bytes << " bytes for a new buffer where largest contiguous free " << largest_continuous_free_pages << " bytes)"; } } } } // namespace allocator } // namespace gc } // namespace art