/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <vector> #include "compiler_internals.h" #include "dataflow_iterator.h" #include "dataflow_iterator-inl.h" #include "gtest/gtest.h" namespace art { class ClassInitCheckEliminationTest : public testing::Test { protected: struct SFieldDef { uint16_t field_idx; uintptr_t declaring_dex_file; uint16_t declaring_class_idx; uint16_t declaring_field_idx; }; struct BBDef { static constexpr size_t kMaxSuccessors = 4; static constexpr size_t kMaxPredecessors = 4; BBType type; size_t num_successors; BasicBlockId successors[kMaxPredecessors]; size_t num_predecessors; BasicBlockId predecessors[kMaxPredecessors]; }; struct MIRDef { Instruction::Code opcode; BasicBlockId bbid; uint32_t field_or_method_info; }; #define DEF_SUCC0() \ 0u, { } #define DEF_SUCC1(s1) \ 1u, { s1 } #define DEF_SUCC2(s1, s2) \ 2u, { s1, s2 } #define DEF_SUCC3(s1, s2, s3) \ 3u, { s1, s2, s3 } #define DEF_SUCC4(s1, s2, s3, s4) \ 4u, { s1, s2, s3, s4 } #define DEF_PRED0() \ 0u, { } #define DEF_PRED1(p1) \ 1u, { p1 } #define DEF_PRED2(p1, p2) \ 2u, { p1, p2 } #define DEF_PRED3(p1, p2, p3) \ 3u, { p1, p2, p3 } #define DEF_PRED4(p1, p2, p3, p4) \ 4u, { p1, p2, p3, p4 } #define DEF_BB(type, succ, pred) \ { type, succ, pred } #define DEF_MIR(opcode, bb, field_info) \ { opcode, bb, field_info } void DoPrepareSFields(const SFieldDef* defs, size_t count) { cu_.mir_graph->sfield_lowering_infos_.Reset(); cu_.mir_graph->sfield_lowering_infos_.Resize(count); for (size_t i = 0u; i != count; ++i) { const SFieldDef* def = &defs[i]; MirSFieldLoweringInfo field_info(def->field_idx); if (def->declaring_dex_file != 0u) { field_info.declaring_dex_file_ = reinterpret_cast<const DexFile*>(def->declaring_dex_file); field_info.declaring_class_idx_ = def->declaring_class_idx; field_info.declaring_field_idx_ = def->declaring_field_idx; field_info.flags_ = MirSFieldLoweringInfo::kFlagIsStatic; } ASSERT_EQ(def->declaring_dex_file != 0u, field_info.IsResolved()); ASSERT_FALSE(field_info.IsInitialized()); cu_.mir_graph->sfield_lowering_infos_.Insert(field_info); } } template <size_t count> void PrepareSFields(const SFieldDef (&defs)[count]) { DoPrepareSFields(defs, count); } void DoPrepareBasicBlocks(const BBDef* defs, size_t count) { cu_.mir_graph->block_id_map_.clear(); cu_.mir_graph->block_list_.Reset(); ASSERT_LT(3u, count); // null, entry, exit and at least one bytecode block. ASSERT_EQ(kNullBlock, defs[0].type); ASSERT_EQ(kEntryBlock, defs[1].type); ASSERT_EQ(kExitBlock, defs[2].type); for (size_t i = 0u; i != count; ++i) { const BBDef* def = &defs[i]; BasicBlock* bb = cu_.mir_graph->NewMemBB(def->type, i); cu_.mir_graph->block_list_.Insert(bb); if (def->num_successors <= 2) { bb->successor_block_list_type = kNotUsed; bb->successor_blocks = nullptr; bb->fall_through = (def->num_successors >= 1) ? def->successors[0] : 0u; bb->taken = (def->num_successors >= 2) ? def->successors[1] : 0u; } else { bb->successor_block_list_type = kPackedSwitch; bb->fall_through = 0u; bb->taken = 0u; bb->successor_blocks = new (&cu_.arena) GrowableArray<SuccessorBlockInfo*>( &cu_.arena, def->num_successors, kGrowableArraySuccessorBlocks); for (size_t j = 0u; j != def->num_successors; ++j) { SuccessorBlockInfo* successor_block_info = static_cast<SuccessorBlockInfo*>(cu_.arena.Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = j; successor_block_info->key = 0u; // Not used by class init check elimination. bb->successor_blocks->Insert(successor_block_info); } } bb->predecessors = new (&cu_.arena) GrowableArray<BasicBlockId>( &cu_.arena, def->num_predecessors, kGrowableArrayPredecessors); for (size_t j = 0u; j != def->num_predecessors; ++j) { ASSERT_NE(0u, def->predecessors[j]); bb->predecessors->Insert(def->predecessors[j]); } if (def->type == kDalvikByteCode || def->type == kEntryBlock || def->type == kExitBlock) { bb->data_flow_info = static_cast<BasicBlockDataFlow*>( cu_.arena.Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo)); } } cu_.mir_graph->num_blocks_ = count; ASSERT_EQ(count, cu_.mir_graph->block_list_.Size()); cu_.mir_graph->entry_block_ = cu_.mir_graph->block_list_.Get(1); ASSERT_EQ(kEntryBlock, cu_.mir_graph->entry_block_->block_type); cu_.mir_graph->exit_block_ = cu_.mir_graph->block_list_.Get(2); ASSERT_EQ(kExitBlock, cu_.mir_graph->exit_block_->block_type); } template <size_t count> void PrepareBasicBlocks(const BBDef (&defs)[count]) { DoPrepareBasicBlocks(defs, count); } void DoPrepareMIRs(const MIRDef* defs, size_t count) { mir_count_ = count; mirs_ = reinterpret_cast<MIR*>(cu_.arena.Alloc(sizeof(MIR) * count, kArenaAllocMIR)); uint64_t merged_df_flags = 0u; for (size_t i = 0u; i != count; ++i) { const MIRDef* def = &defs[i]; MIR* mir = &mirs_[i]; mir->dalvikInsn.opcode = def->opcode; ASSERT_LT(def->bbid, cu_.mir_graph->block_list_.Size()); BasicBlock* bb = cu_.mir_graph->block_list_.Get(def->bbid); bb->AppendMIR(mir); if (def->opcode >= Instruction::SGET && def->opcode <= Instruction::SPUT_SHORT) { ASSERT_LT(def->field_or_method_info, cu_.mir_graph->sfield_lowering_infos_.Size()); mir->meta.sfield_lowering_info = def->field_or_method_info; } mir->ssa_rep = nullptr; mir->offset = 2 * i; // All insns need to be at least 2 code units long. mir->optimization_flags = 0u; merged_df_flags |= MIRGraph::GetDataFlowAttributes(def->opcode); } cu_.mir_graph->merged_df_flags_ = merged_df_flags; code_item_ = static_cast<DexFile::CodeItem*>( cu_.arena.Alloc(sizeof(DexFile::CodeItem), kArenaAllocMisc)); memset(code_item_, 0, sizeof(DexFile::CodeItem)); code_item_->insns_size_in_code_units_ = 2u * count; cu_.mir_graph->current_code_item_ = cu_.code_item = code_item_; } template <size_t count> void PrepareMIRs(const MIRDef (&defs)[count]) { DoPrepareMIRs(defs, count); } void PerformClassInitCheckElimination() { cu_.mir_graph->SSATransformationStart(); cu_.mir_graph->ComputeDFSOrders(); cu_.mir_graph->ComputeDominators(); cu_.mir_graph->ComputeTopologicalSortOrder(); cu_.mir_graph->SSATransformationEnd(); bool gate_result = cu_.mir_graph->EliminateClassInitChecksGate(); ASSERT_TRUE(gate_result); LoopRepeatingTopologicalSortIterator iterator(cu_.mir_graph.get()); bool change = false; for (BasicBlock* bb = iterator.Next(change); bb != nullptr; bb = iterator.Next(change)) { change = cu_.mir_graph->EliminateClassInitChecks(bb); } cu_.mir_graph->EliminateClassInitChecksEnd(); } ClassInitCheckEliminationTest() : pool_(), cu_(&pool_), mir_count_(0u), mirs_(nullptr), code_item_(nullptr) { cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena)); } ArenaPool pool_; CompilationUnit cu_; size_t mir_count_; MIR* mirs_; DexFile::CodeItem* code_item_; }; TEST_F(ClassInitCheckEliminationTest, SingleBlock) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u }, { 1u, 1u, 1u, 1u }, { 2u, 1u, 2u, 2u }, { 3u, 1u, 3u, 3u }, // Same declaring class as sfield[4]. { 4u, 1u, 3u, 4u }, // Same declaring class as sfield[3]. { 5u, 0u, 0u, 0u }, // Unresolved. }; static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(1)), }; static const MIRDef mirs[] = { DEF_MIR(Instruction::SPUT, 3u, 5u), // Unresolved. DEF_MIR(Instruction::SPUT, 3u, 0u), DEF_MIR(Instruction::SGET, 3u, 1u), DEF_MIR(Instruction::SGET, 3u, 2u), DEF_MIR(Instruction::SGET, 3u, 5u), // Unresolved. DEF_MIR(Instruction::SGET, 3u, 0u), DEF_MIR(Instruction::SGET, 3u, 1u), DEF_MIR(Instruction::SGET, 3u, 2u), DEF_MIR(Instruction::SGET, 3u, 5u), // Unresolved. DEF_MIR(Instruction::SGET, 3u, 3u), DEF_MIR(Instruction::SGET, 3u, 4u), }; static const bool expected_ignore_clinit_check[] = { false, false, false, false, true, true, true, true, true, false, true }; PrepareSFields(sfields); PrepareBasicBlocks(bbs); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Diamond) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u }, { 1u, 1u, 1u, 1u }, { 2u, 1u, 2u, 2u }, { 3u, 1u, 3u, 3u }, { 4u, 1u, 4u, 4u }, { 5u, 1u, 5u, 5u }, { 6u, 1u, 6u, 6u }, { 7u, 1u, 7u, 7u }, { 8u, 1u, 8u, 8u }, // Same declaring class as sfield[9]. { 9u, 1u, 8u, 9u }, // Same declaring class as sfield[8]. { 10u, 0u, 0u, 0u }, // Unresolved. }; static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 5), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(4, 5)), }; static const MIRDef mirs[] = { // NOTE: MIRs here are ordered by unique tests. They will be put into appropriate blocks. DEF_MIR(Instruction::SGET, 3u, 10u), // Unresolved. DEF_MIR(Instruction::SPUT, 3u, 10u), // Unresolved. DEF_MIR(Instruction::SPUT, 3u, 0u), DEF_MIR(Instruction::SGET, 6u, 0u), // Eliminated (block #3 dominates #6). DEF_MIR(Instruction::SPUT, 4u, 1u), DEF_MIR(Instruction::SGET, 6u, 1u), // Not eliminated (block #4 doesn't dominate #6). DEF_MIR(Instruction::SGET, 3u, 2u), DEF_MIR(Instruction::SGET, 4u, 2u), // Eliminated (block #3 dominates #4). DEF_MIR(Instruction::SGET, 3u, 3u), DEF_MIR(Instruction::SGET, 5u, 3u), // Eliminated (block #3 dominates #5). DEF_MIR(Instruction::SGET, 3u, 4u), DEF_MIR(Instruction::SGET, 6u, 4u), // Eliminated (block #3 dominates #6). DEF_MIR(Instruction::SGET, 4u, 5u), DEF_MIR(Instruction::SGET, 6u, 5u), // Not eliminated (block #4 doesn't dominate #6). DEF_MIR(Instruction::SGET, 5u, 6u), DEF_MIR(Instruction::SGET, 6u, 6u), // Not eliminated (block #5 doesn't dominate #6). DEF_MIR(Instruction::SGET, 4u, 7u), DEF_MIR(Instruction::SGET, 5u, 7u), DEF_MIR(Instruction::SGET, 6u, 7u), // Eliminated (initialized in both blocks #3 and #4). DEF_MIR(Instruction::SGET, 4u, 8u), DEF_MIR(Instruction::SGET, 5u, 9u), DEF_MIR(Instruction::SGET, 6u, 8u), // Eliminated (with sfield[9] in block #5). DEF_MIR(Instruction::SPUT, 6u, 9u), // Eliminated (with sfield[8] in block #4). }; static const bool expected_ignore_clinit_check[] = { false, true, // Unresolved: sfield[10], method[2] false, true, // sfield[0] false, false, // sfield[1] false, true, // sfield[2] false, true, // sfield[3] false, true, // sfield[4] false, false, // sfield[5] false, false, // sfield[6] false, false, true, // sfield[7] false, false, true, true, // sfield[8], sfield[9] }; PrepareSFields(sfields); PrepareBasicBlocks(bbs); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Loop) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u }, { 1u, 1u, 1u, 1u }, }; static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED2(3, 4)), // "taken" loops to self. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)), }; static const MIRDef mirs[] = { DEF_MIR(Instruction::SGET, 3u, 0u), DEF_MIR(Instruction::SGET, 4u, 1u), DEF_MIR(Instruction::SGET, 5u, 0u), // Eliminated. DEF_MIR(Instruction::SGET, 5u, 1u), // Eliminated. }; static const bool expected_ignore_clinit_check[] = { false, false, true, true }; PrepareSFields(sfields); PrepareBasicBlocks(bbs); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i; } } TEST_F(ClassInitCheckEliminationTest, Catch) { static const SFieldDef sfields[] = { { 0u, 1u, 0u, 0u }, { 1u, 1u, 1u, 1u }, { 2u, 1u, 2u, 2u }, { 3u, 1u, 3u, 3u }, }; static const BBDef bbs[] = { DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()), DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()), DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)), DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)), // The top. DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), // The throwing insn. DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)), // Catch handler. DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(4, 5)), // The merged block. }; static const MIRDef mirs[] = { DEF_MIR(Instruction::SGET, 3u, 0u), // Before the exception edge. DEF_MIR(Instruction::SGET, 3u, 1u), // Before the exception edge. DEF_MIR(Instruction::SGET, 4u, 2u), // After the exception edge. DEF_MIR(Instruction::SGET, 4u, 3u), // After the exception edge. DEF_MIR(Instruction::SGET, 5u, 0u), // In catch handler; class init check eliminated. DEF_MIR(Instruction::SGET, 5u, 2u), // In catch handler; class init check not eliminated. DEF_MIR(Instruction::SGET, 6u, 0u), // Class init check eliminated. DEF_MIR(Instruction::SGET, 6u, 1u), // Class init check eliminated. DEF_MIR(Instruction::SGET, 6u, 2u), // Class init check eliminated. DEF_MIR(Instruction::SGET, 6u, 3u), // Class init check not eliminated. }; static const bool expected_ignore_clinit_check[] = { false, false, false, false, true, false, true, true, true, false }; PrepareSFields(sfields); PrepareBasicBlocks(bbs); BasicBlock* catch_handler = cu_.mir_graph->GetBasicBlock(5u); catch_handler->catch_entry = true; // Add successor block info to the check block. BasicBlock* check_bb = cu_.mir_graph->GetBasicBlock(3u); check_bb->successor_block_list_type = kCatch; check_bb->successor_blocks = new (&cu_.arena) GrowableArray<SuccessorBlockInfo*>( &cu_.arena, 2, kGrowableArraySuccessorBlocks); SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*> (cu_.arena.Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor)); successor_block_info->block = catch_handler->id; check_bb->successor_blocks->Insert(successor_block_info); PrepareMIRs(mirs); PerformClassInitCheckElimination(); ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_); for (size_t i = 0u; i != arraysize(mirs); ++i) { EXPECT_EQ(expected_ignore_clinit_check[i], (mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i; } } } // namespace art