/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler_internals.h" #include "local_value_numbering.h" #include "dataflow_iterator-inl.h" namespace art { /* * Main table containing data flow attributes for each bytecode. The * first kNumPackedOpcodes entries are for Dalvik bytecode * instructions, where extended opcode at the MIR level are appended * afterwards. * * TODO - many optimization flags are incomplete - they will only limit the * scope of optimizations but will not cause mis-optimizations. */ const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = { // 00 NOP DF_NOP, // 01 MOVE vA, vB DF_DA | DF_UB | DF_IS_MOVE, // 02 MOVE_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 03 MOVE_16 vAAAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 04 MOVE_WIDE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 05 MOVE_WIDE_FROM16 vAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 06 MOVE_WIDE_16 vAAAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 07 MOVE_OBJECT vA, vB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 08 MOVE_OBJECT_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 09 MOVE_OBJECT_16 vAAAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 0A MOVE_RESULT vAA DF_DA, // 0B MOVE_RESULT_WIDE vAA DF_DA | DF_A_WIDE, // 0C MOVE_RESULT_OBJECT vAA DF_DA | DF_REF_A, // 0D MOVE_EXCEPTION vAA DF_DA | DF_REF_A | DF_NON_NULL_DST, // 0E RETURN_VOID DF_NOP, // 0F RETURN vAA DF_UA, // 10 RETURN_WIDE vAA DF_UA | DF_A_WIDE, // 11 RETURN_OBJECT vAA DF_UA | DF_REF_A, // 12 CONST_4 vA, #+B DF_DA | DF_SETS_CONST, // 13 CONST_16 vAA, #+BBBB DF_DA | DF_SETS_CONST, // 14 CONST vAA, #+BBBBBBBB DF_DA | DF_SETS_CONST, // 15 CONST_HIGH16 VAA, #+BBBB0000 DF_DA | DF_SETS_CONST, // 16 CONST_WIDE_16 vAA, #+BBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 17 CONST_WIDE_32 vAA, #+BBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 DF_DA | DF_A_WIDE | DF_SETS_CONST, // 1A CONST_STRING vAA, string@BBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1C CONST_CLASS vAA, type@BBBB DF_DA | DF_REF_A | DF_NON_NULL_DST, // 1D MONITOR_ENTER vAA DF_UA | DF_NULL_CHK_0 | DF_REF_A, // 1E MONITOR_EXIT vAA DF_UA | DF_NULL_CHK_0 | DF_REF_A, // 1F CHK_CAST vAA, type@BBBB DF_UA | DF_REF_A | DF_UMS, // 20 INSTANCE_OF vA, vB, type@CCCC DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS, // 21 ARRAY_LENGTH vA, vB DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B, // 22 NEW_INSTANCE vAA, type@BBBB DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS, // 23 NEW_ARRAY vA, vB, type@CCCC DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS, // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS, // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS, // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB DF_UA | DF_REF_A | DF_UMS, // 27 THROW vAA DF_UA | DF_REF_A | DF_UMS, // 28 GOTO DF_NOP, // 29 GOTO_16 DF_NOP, // 2A GOTO_32 DF_NOP, // 2B PACKED_SWITCH vAA, +BBBBBBBB DF_UA, // 2C SPARSE_SWITCH vAA, +BBBBBBBB DF_UA, // 2D CMPL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2E CMPG_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2F CMPL_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 30 CMPG_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 31 CMP_LONG vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 32 IF_EQ vA, vB, +CCCC DF_UA | DF_UB, // 33 IF_NE vA, vB, +CCCC DF_UA | DF_UB, // 34 IF_LT vA, vB, +CCCC DF_UA | DF_UB, // 35 IF_GE vA, vB, +CCCC DF_UA | DF_UB, // 36 IF_GT vA, vB, +CCCC DF_UA | DF_UB, // 37 IF_LE vA, vB, +CCCC DF_UA | DF_UB, // 38 IF_EQZ vAA, +BBBB DF_UA, // 39 IF_NEZ vAA, +BBBB DF_UA, // 3A IF_LTZ vAA, +BBBB DF_UA, // 3B IF_GEZ vAA, +BBBB DF_UA, // 3C IF_GTZ vAA, +BBBB DF_UA, // 3D IF_LEZ vAA, +BBBB DF_UA, // 3E UNUSED_3E DF_NOP, // 3F UNUSED_3F DF_NOP, // 40 UNUSED_40 DF_NOP, // 41 UNUSED_41 DF_NOP, // 42 UNUSED_42 DF_NOP, // 43 UNUSED_43 DF_NOP, // 44 AGET vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 45 AGET_WIDE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 46 AGET_OBJECT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, // 47 AGET_BOOLEAN vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 48 AGET_BYTE vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 49 AGET_CHAR vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 4A AGET_SHORT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, // 4B APUT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, // 4C APUT_WIDE vAA, vBB, vCC DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C | DF_LVN, // 4D APUT_OBJECT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, // 4E APUT_BOOLEAN vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, // 4F APUT_BYTE vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, // 50 APUT_CHAR vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, // 51 APUT_SHORT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, // 52 IGET vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 53 IGET_WIDE vA, vB, field@CCCC DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 54 IGET_OBJECT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // 55 IGET_BOOLEAN vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 56 IGET_BYTE vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 57 IGET_CHAR vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 58 IGET_SHORT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // 59 IPUT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // 5A IPUT_WIDE vA, vB, field@CCCC DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN, // 5B IPUT_OBJECT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // 5C IPUT_BOOLEAN vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // 5D IPUT_BYTE vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // 5E IPUT_CHAR vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // 5F IPUT_SHORT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // 60 SGET vAA, field@BBBB DF_DA | DF_SFIELD | DF_UMS, // 61 SGET_WIDE vAA, field@BBBB DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS, // 62 SGET_OBJECT vAA, field@BBBB DF_DA | DF_REF_A | DF_SFIELD | DF_UMS, // 63 SGET_BOOLEAN vAA, field@BBBB DF_DA | DF_SFIELD | DF_UMS, // 64 SGET_BYTE vAA, field@BBBB DF_DA | DF_SFIELD | DF_UMS, // 65 SGET_CHAR vAA, field@BBBB DF_DA | DF_SFIELD | DF_UMS, // 66 SGET_SHORT vAA, field@BBBB DF_DA | DF_SFIELD | DF_UMS, // 67 SPUT vAA, field@BBBB DF_UA | DF_SFIELD | DF_UMS, // 68 SPUT_WIDE vAA, field@BBBB DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS, // 69 SPUT_OBJECT vAA, field@BBBB DF_UA | DF_REF_A | DF_SFIELD | DF_UMS, // 6A SPUT_BOOLEAN vAA, field@BBBB DF_UA | DF_SFIELD | DF_UMS, // 6B SPUT_BYTE vAA, field@BBBB DF_UA | DF_SFIELD | DF_UMS, // 6C SPUT_CHAR vAA, field@BBBB DF_UA | DF_SFIELD | DF_UMS, // 6D SPUT_SHORT vAA, field@BBBB DF_UA | DF_SFIELD | DF_UMS, // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_UMS, // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 73 UNUSED_73 DF_NOP, // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_UMS, // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 79 UNUSED_79 DF_NOP, // 7A UNUSED_7A DF_NOP, // 7B NEG_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7C NOT_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7D NEG_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7E NOT_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7F NEG_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_FP_B, // 80 NEG_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 81 INT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B, // 82 INT_TO_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_CORE_B, // 83 INT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B, // 84 LONG_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 85 LONG_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 86 LONG_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 87 FLOAT_TO_INT vA, vB DF_DA | DF_UB | DF_FP_B | DF_CORE_A, // 88 FLOAT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A, // 89 FLOAT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B, // 8A DOUBLE_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8B DOUBLE_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8C DOUBLE_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 8D INT_TO_BYTE vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8E INT_TO_CHAR vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8F INT_TO_SHORT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 90 ADD_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 91 SUB_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 92 MUL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 93 DIV_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 94 REM_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 95 AND_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 96 OR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 97 XOR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 98 SHL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 99 SHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9A USHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9B ADD_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9C SUB_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9D MUL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9E DIV_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9F REM_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A0 AND_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A1 OR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A2 XOR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A3 SHL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A4 SHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A5 USHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A6 ADD_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A7 SUB_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A8 MUL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A9 DIV_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AA REM_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AB ADD_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AC SUB_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AD MUL_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AE DIV_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AF REM_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // B0 ADD_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B1 SUB_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B2 MUL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B3 DIV_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B4 REM_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B5 AND_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B6 OR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B7 XOR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B8 SHL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B9 SHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BA USHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BB ADD_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BC SUB_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BD MUL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BE DIV_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BF REM_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C0 AND_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C1 OR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C2 XOR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C3 SHL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C4 SHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C5 USHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C6 ADD_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C7 SUB_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C8 MUL_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C9 DIV_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CA REM_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CB ADD_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CC SUB_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CD MUL_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CE DIV_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CF REM_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // D0 ADD_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D1 RSUB_INT vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D2 MUL_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D3 DIV_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D4 REM_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D5 AND_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D6 OR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D7 XOR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D8 ADD_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D9 RSUB_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DA MUL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DB DIV_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DC REM_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DD AND_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DE OR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DF XOR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E0 SHL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E1 SHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E2 USHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E3 IGET_VOLATILE DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // E4 IPUT_VOLATILE DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, // E5 SGET_VOLATILE DF_DA | DF_SFIELD | DF_UMS, // E6 SPUT_VOLATILE DF_UA | DF_SFIELD | DF_UMS, // E7 IGET_OBJECT_VOLATILE DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // E8 IGET_WIDE_VOLATILE DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, // E9 IPUT_WIDE_VOLATILE DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN, // EA SGET_WIDE_VOLATILE DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS, // EB SPUT_WIDE_VOLATILE DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS, // EC BREAKPOINT DF_NOP, // ED THROW_VERIFICATION_ERROR DF_NOP | DF_UMS, // EE EXECUTE_INLINE DF_FORMAT_35C, // EF EXECUTE_INLINE_RANGE DF_FORMAT_3RC, // F0 INVOKE_OBJECT_INIT_RANGE DF_NOP | DF_NULL_CHK_0, // F1 RETURN_VOID_BARRIER DF_NOP, // F2 IGET_QUICK DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, // F3 IGET_WIDE_QUICK DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, // F4 IGET_OBJECT_QUICK DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, // F5 IPUT_QUICK DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN, // F6 IPUT_WIDE_QUICK DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_IFIELD | DF_LVN, // F7 IPUT_OBJECT_QUICK DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN, // F8 INVOKE_VIRTUAL_QUICK DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // F9 INVOKE_VIRTUAL_QUICK_RANGE DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // FA INVOKE_SUPER_QUICK DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // FB INVOKE_SUPER_QUICK_RANGE DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // FC IPUT_OBJECT_VOLATILE DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, // FD SGET_OBJECT_VOLATILE DF_DA | DF_REF_A | DF_SFIELD | DF_UMS, // FE SPUT_OBJECT_VOLATILE DF_UA | DF_REF_A | DF_SFIELD | DF_UMS, // FF UNUSED_FF DF_NOP, // Beginning of extended MIR opcodes // 100 MIR_PHI DF_DA | DF_NULL_TRANSFER_N, // 101 MIR_COPY DF_DA | DF_UB | DF_IS_MOVE, // 102 MIR_FUSED_CMPL_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 103 MIR_FUSED_CMPG_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 104 MIR_FUSED_CMPL_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 105 MIR_FUSED_CMPG_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 106 MIR_FUSED_CMP_LONG DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 107 MIR_NOP DF_NOP, // 108 MIR_NULL_CHECK 0, // 109 MIR_RANGE_CHECK 0, // 110 MIR_DIV_ZERO_CHECK 0, // 111 MIR_CHECK 0, // 112 MIR_CHECKPART2 0, // 113 MIR_SELECT DF_DA | DF_UB, // 114 MirOpConstVector DF_DA, // 115 MirOpMoveVector 0, // 116 MirOpPackedMultiply 0, // 117 MirOpPackedAddition 0, // 118 MirOpPackedSubtract 0, // 119 MirOpPackedShiftLeft 0, // 120 MirOpPackedSignedShiftRight 0, // 121 MirOpPackedUnsignedShiftRight 0, // 122 MirOpPackedAnd 0, // 123 MirOpPackedOr 0, // 124 MirOpPackedXor 0, // 125 MirOpPackedAddReduce DF_DA | DF_UA, // 126 MirOpPackedReduce DF_DA, // 127 MirOpPackedSet DF_UB, // 128 MirOpReserveVectorRegisters 0, // 129 MirOpReturnVectorRegisters 0, }; /* Return the base virtual register for a SSA name */ int MIRGraph::SRegToVReg(int ssa_reg) const { return ssa_base_vregs_->Get(ssa_reg); } /* Any register that is used before being defined is considered live-in */ void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, int dalvik_reg_id) { use_v->SetBit(dalvik_reg_id); if (!def_v->IsBitSet(dalvik_reg_id)) { live_in_v->SetBit(dalvik_reg_id); } } /* Mark a reg as being defined */ void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) { def_v->SetBit(dalvik_reg_id); } void MIRGraph::HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, const MIR::DecodedInstruction& d_insn) { switch (static_cast<int>(d_insn.opcode)) { default: LOG(ERROR) << "Unexpected Extended Opcode " << d_insn.opcode; break; } } /* * Find out live-in variables for natural loops. Variables that are live-in in * the main loop body are considered to be defined in the entry block. */ bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) { MIR* mir; ArenaBitVector *use_v, *def_v, *live_in_v; if (bb->data_flow_info == NULL) return false; use_v = bb->data_flow_info->use_v = new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse); def_v = bb->data_flow_info->def_v = new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef); live_in_v = bb->data_flow_info->live_in_v = new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn); for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { uint64_t df_attributes = GetDataFlowAttributes(mir); MIR::DecodedInstruction* d_insn = &mir->dalvikInsn; if (df_attributes & DF_HAS_USES) { if (df_attributes & DF_UA) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA); if (df_attributes & DF_A_WIDE) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1); } } if (df_attributes & DF_UB) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB); if (df_attributes & DF_B_WIDE) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1); } } if (df_attributes & DF_UC) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC); if (df_attributes & DF_C_WIDE) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1); } } } if (df_attributes & DF_FORMAT_35C) { for (unsigned int i = 0; i < d_insn->vA; i++) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]); } } if (df_attributes & DF_FORMAT_3RC) { for (unsigned int i = 0; i < d_insn->vA; i++) { HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i); } } if (df_attributes & DF_HAS_DEFS) { HandleDef(def_v, d_insn->vA); if (df_attributes & DF_A_WIDE) { HandleDef(def_v, d_insn->vA+1); } } if (df_attributes & DF_FORMAT_EXTENDED) { HandleExtended(use_v, def_v, live_in_v, mir->dalvikInsn); } } return true; } int MIRGraph::AddNewSReg(int v_reg) { // Compiler temps always have a subscript of 0 int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg]; uint32_t ssa_reg = GetNumSSARegs(); SetNumSSARegs(ssa_reg + 1); ssa_base_vregs_->Insert(v_reg); ssa_subscripts_->Insert(subscript); DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size()); // If we are expanding very late, update use counts too. if (ssa_reg > 0 && use_counts_.Size() == ssa_reg) { // Need to expand the counts. use_counts_.Insert(0); raw_use_counts_.Insert(0); } return ssa_reg; } /* Find out the latest SSA register for a given Dalvik register */ void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) { DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers)); uses[reg_index] = vreg_to_ssa_map_[dalvik_reg]; } /* Setup a new SSA register for a given Dalvik register */ void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) { DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers)); int ssa_reg = AddNewSReg(dalvik_reg); vreg_to_ssa_map_[dalvik_reg] = ssa_reg; defs[reg_index] = ssa_reg; } void MIRGraph::AllocateSSAUseData(MIR *mir, int num_uses) { mir->ssa_rep->num_uses = num_uses; if (mir->ssa_rep->num_uses_allocated < num_uses) { mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, kArenaAllocDFInfo)); // NOTE: will be filled in during type & size inference pass mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, kArenaAllocDFInfo)); } } void MIRGraph::AllocateSSADefData(MIR *mir, int num_defs) { mir->ssa_rep->num_defs = num_defs; if (mir->ssa_rep->num_defs_allocated < num_defs) { mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs, kArenaAllocDFInfo)); mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs, kArenaAllocDFInfo)); } } /* Look up new SSA names for format_35c instructions */ void MIRGraph::DataFlowSSAFormat35C(MIR* mir) { MIR::DecodedInstruction* d_insn = &mir->dalvikInsn; int num_uses = d_insn->vA; int i; AllocateSSAUseData(mir, num_uses); for (i = 0; i < num_uses; i++) { HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i); } } /* Look up new SSA names for format_3rc instructions */ void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) { MIR::DecodedInstruction* d_insn = &mir->dalvikInsn; int num_uses = d_insn->vA; int i; AllocateSSAUseData(mir, num_uses); for (i = 0; i < num_uses; i++) { HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i); } } void MIRGraph::DataFlowSSAFormatExtended(MIR* mir) { switch (static_cast<int>(mir->dalvikInsn.opcode)) { default: LOG(ERROR) << "Missing case for extended MIR: " << mir->dalvikInsn.opcode; break; } } /* Entry function to convert a block into SSA representation */ bool MIRGraph::DoSSAConversion(BasicBlock* bb) { MIR* mir; if (bb->data_flow_info == NULL) return false; for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { mir->ssa_rep = static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation), kArenaAllocDFInfo)); memset(mir->ssa_rep, 0, sizeof(*mir->ssa_rep)); uint64_t df_attributes = GetDataFlowAttributes(mir); // If not a pseudo-op, note non-leaf or can throw if (!MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode); if ((flags & Instruction::kInvoke) != 0 && (mir->optimization_flags & MIR_INLINED) == 0) { attributes_ &= ~METHOD_IS_LEAF; } } int num_uses = 0; if (df_attributes & DF_FORMAT_35C) { DataFlowSSAFormat35C(mir); continue; } if (df_attributes & DF_FORMAT_3RC) { DataFlowSSAFormat3RC(mir); continue; } if (df_attributes & DF_FORMAT_EXTENDED) { DataFlowSSAFormatExtended(mir); continue; } if (df_attributes & DF_HAS_USES) { if (df_attributes & DF_UA) { num_uses++; if (df_attributes & DF_A_WIDE) { num_uses++; } } if (df_attributes & DF_UB) { num_uses++; if (df_attributes & DF_B_WIDE) { num_uses++; } } if (df_attributes & DF_UC) { num_uses++; if (df_attributes & DF_C_WIDE) { num_uses++; } } } AllocateSSAUseData(mir, num_uses); int num_defs = 0; if (df_attributes & DF_HAS_DEFS) { num_defs++; if (df_attributes & DF_A_WIDE) { num_defs++; } } AllocateSSADefData(mir, num_defs); MIR::DecodedInstruction* d_insn = &mir->dalvikInsn; if (df_attributes & DF_HAS_USES) { num_uses = 0; if (df_attributes & DF_UA) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++); if (df_attributes & DF_A_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++); } } if (df_attributes & DF_UB) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++); if (df_attributes & DF_B_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++); } } if (df_attributes & DF_UC) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++); if (df_attributes & DF_C_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++); } } } if (df_attributes & DF_HAS_DEFS) { mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A; HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0); if (df_attributes & DF_A_WIDE) { mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A; HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1); } } } /* * Take a snapshot of Dalvik->SSA mapping at the end of each block. The * input to PHI nodes can be derived from the snapshot of all * predecessor blocks. */ bb->data_flow_info->vreg_to_ssa_map_exit = static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers, kArenaAllocDFInfo)); memcpy(bb->data_flow_info->vreg_to_ssa_map_exit, vreg_to_ssa_map_, sizeof(int) * cu_->num_dalvik_registers); return true; } /* Setup the basic data structures for SSA conversion */ void MIRGraph::CompilerInitializeSSAConversion() { size_t num_dalvik_reg = cu_->num_dalvik_registers; ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128, kGrowableArraySSAtoDalvikMap); ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128, kGrowableArraySSAtoDalvikMap); /* * Initial number of SSA registers is equal to the number of Dalvik * registers. */ SetNumSSARegs(num_dalvik_reg); /* * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements, * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value * into "(0 << 16) | i" */ for (unsigned int i = 0; i < num_dalvik_reg; i++) { ssa_base_vregs_->Insert(i); ssa_subscripts_->Insert(0); } /* * Initialize the DalvikToSSAMap map. There is one entry for each * Dalvik register, and the SSA names for those are the same. */ vreg_to_ssa_map_ = static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg, kArenaAllocDFInfo)); /* Keep track of the higest def for each dalvik reg */ ssa_last_defs_ = static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg, kArenaAllocDFInfo)); for (unsigned int i = 0; i < num_dalvik_reg; i++) { vreg_to_ssa_map_[i] = i; ssa_last_defs_[i] = 0; } // Create a compiler temporary for Method*. This is done after SSA initialization. GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false); /* * Allocate the BasicBlockDataFlow structure for the entry and code blocks */ GrowableArray<BasicBlock*>::Iterator iterator(&block_list_); while (true) { BasicBlock* bb = iterator.Next(); if (bb == NULL) break; if (bb->hidden == true) continue; if (bb->block_type == kDalvikByteCode || bb->block_type == kEntryBlock || bb->block_type == kExitBlock) { bb->data_flow_info = static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo)); } } } /* * This function will make a best guess at whether the invoke will * end up using Method*. It isn't critical to get it exactly right, * and attempting to do would involve more complexity than it's * worth. */ bool MIRGraph::InvokeUsesMethodStar(MIR* mir) { InvokeType type; Instruction::Code opcode = mir->dalvikInsn.opcode; switch (opcode) { case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: type = kStatic; break; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: type = kDirect; break; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: type = kVirtual; break; case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: return false; case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_SUPER: type = kSuper; break; default: LOG(WARNING) << "Unexpected invoke op: " << opcode; return false; } DexCompilationUnit m_unit(cu_); MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB); int vtable_idx; uintptr_t direct_code; uintptr_t direct_method; uint32_t current_offset = static_cast<uint32_t>(current_offset_); bool fast_path = cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset, false, true, &type, &target_method, &vtable_idx, &direct_code, &direct_method) && !(cu_->enable_debug & (1 << kDebugSlowInvokePath)); return (((type == kDirect) || (type == kStatic)) && fast_path && ((direct_code == 0) || (direct_method == 0))); } /* * Count uses, weighting by loop nesting depth. This code only * counts explicitly used s_regs. A later phase will add implicit * counts for things such as Method*, null-checked references, etc. */ void MIRGraph::CountUses(struct BasicBlock* bb) { if (bb->block_type != kDalvikByteCode) { return; } // Each level of nesting adds *100 to count, up to 3 levels deep. uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth)); uint32_t weight = std::max(1U, depth * 100); for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) { if (mir->ssa_rep == NULL) { continue; } for (int i = 0; i < mir->ssa_rep->num_uses; i++) { int s_reg = mir->ssa_rep->uses[i]; raw_use_counts_.Increment(s_reg); use_counts_.Put(s_reg, use_counts_.Get(s_reg) + weight); } if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) { uint64_t df_attributes = GetDataFlowAttributes(mir); // Implicit use of Method* ? */ if (df_attributes & DF_UMS) { /* * Some invokes will not use Method* - need to perform test similar * to that found in GenInvoke() to decide whether to count refs * for Method* on invoke-class opcodes. This is a relatively expensive * operation, so should only be done once. * TODO: refactor InvokeUsesMethodStar() to perform check at parse time, * and save results for both here and GenInvoke. For now, go ahead * and assume all invokes use method*. */ raw_use_counts_.Increment(method_sreg_); use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + weight); } } } } /* Verify if all the successor is connected with all the claimed predecessors */ bool MIRGraph::VerifyPredInfo(BasicBlock* bb) { GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors); while (true) { BasicBlock* pred_bb = GetBasicBlock(iter.Next()); if (!pred_bb) break; bool found = false; if (pred_bb->taken == bb->id) { found = true; } else if (pred_bb->fall_through == bb->id) { found = true; } else if (pred_bb->successor_block_list_type != kNotUsed) { GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_blocks); while (true) { SuccessorBlockInfo *successor_block_info = iterator.Next(); if (successor_block_info == NULL) break; BasicBlockId succ_bb = successor_block_info->block; if (succ_bb == bb->id) { found = true; break; } } } if (found == false) { char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN]; GetBlockName(bb, block_name1); GetBlockName(pred_bb, block_name2); DumpCFG("/sdcard/cfg/", false); LOG(FATAL) << "Successor " << block_name1 << "not found from " << block_name2; } } return true; } void MIRGraph::VerifyDataflow() { /* Verify if all blocks are connected as claimed */ AllNodesIterator iter(this); for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { VerifyPredInfo(bb); } } } // namespace art