/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <system/camera_metadata.h>
#include <camera_metadata_hidden.h>
#define LOG_TAG "camera_metadata"
#include <cutils/log.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define OK 0
#define ERROR 1
#define NOT_FOUND -ENOENT
#define ALIGN_TO(val, alignment) \
(((uintptr_t)(val) + ((alignment) - 1)) & ~((alignment) - 1))
/**
* A single metadata entry, storing an array of values of a given type. If the
* array is no larger than 4 bytes in size, it is stored in the data.value[]
* array; otherwise, it can found in the parent's data array at index
* data.offset.
*/
#define ENTRY_ALIGNMENT ((size_t) 4)
typedef struct camera_metadata_buffer_entry {
uint32_t tag;
uint32_t count;
union {
uint32_t offset;
uint8_t value[4];
} data;
uint8_t type;
uint8_t reserved[3];
} camera_metadata_buffer_entry_t;
typedef uint32_t metadata_uptrdiff_t;
typedef uint32_t metadata_size_t;
/**
* A packet of metadata. This is a list of entries, each of which may point to
* its values stored at an offset in data.
*
* It is assumed by the utility functions that the memory layout of the packet
* is as follows:
*
* |-----------------------------------------------|
* | camera_metadata_t |
* | |
* |-----------------------------------------------|
* | reserved for future expansion |
* |-----------------------------------------------|
* | camera_metadata_buffer_entry_t #0 |
* |-----------------------------------------------|
* | .... |
* |-----------------------------------------------|
* | camera_metadata_buffer_entry_t #entry_count-1 |
* |-----------------------------------------------|
* | free space for |
* | (entry_capacity-entry_count) entries |
* |-----------------------------------------------|
* | start of camera_metadata.data |
* | |
* |-----------------------------------------------|
* | free space for |
* | (data_capacity-data_count) bytes |
* |-----------------------------------------------|
*
* With the total length of the whole packet being camera_metadata.size bytes.
*
* In short, the entries and data are contiguous in memory after the metadata
* header.
*/
#define METADATA_ALIGNMENT ((size_t) 4)
struct camera_metadata {
metadata_size_t size;
uint32_t version;
uint32_t flags;
metadata_size_t entry_count;
metadata_size_t entry_capacity;
metadata_uptrdiff_t entries_start; // Offset from camera_metadata
metadata_size_t data_count;
metadata_size_t data_capacity;
metadata_uptrdiff_t data_start; // Offset from camera_metadata
uint8_t reserved[];
};
/**
* A datum of metadata. This corresponds to camera_metadata_entry_t::data
* with the difference that each element is not a pointer. We need to have a
* non-pointer type description in order to figure out the largest alignment
* requirement for data (DATA_ALIGNMENT).
*/
#define DATA_ALIGNMENT ((size_t) 8)
typedef union camera_metadata_data {
uint8_t u8;
int32_t i32;
float f;
int64_t i64;
double d;
camera_metadata_rational_t r;
} camera_metadata_data_t;
/**
* The preferred alignment of a packet of camera metadata. In general,
* this is the lowest common multiple of the constituents of a metadata
* package, i.e, of DATA_ALIGNMENT and ENTRY_ALIGNMENT.
*/
#define MAX_ALIGNMENT(A, B) (((A) > (B)) ? (A) : (B))
#define METADATA_PACKET_ALIGNMENT \
MAX_ALIGNMENT(MAX_ALIGNMENT(DATA_ALIGNMENT, METADATA_ALIGNMENT), ENTRY_ALIGNMENT);
/** Versioning information */
#define CURRENT_METADATA_VERSION 1
/** Flag definitions */
#define FLAG_SORTED 0x00000001
/** Tag information */
typedef struct tag_info {
const char *tag_name;
uint8_t tag_type;
} tag_info_t;
#include "camera_metadata_tag_info.c"
const size_t camera_metadata_type_size[NUM_TYPES] = {
[TYPE_BYTE] = sizeof(uint8_t),
[TYPE_INT32] = sizeof(int32_t),
[TYPE_FLOAT] = sizeof(float),
[TYPE_INT64] = sizeof(int64_t),
[TYPE_DOUBLE] = sizeof(double),
[TYPE_RATIONAL] = sizeof(camera_metadata_rational_t)
};
const char *camera_metadata_type_names[NUM_TYPES] = {
[TYPE_BYTE] = "byte",
[TYPE_INT32] = "int32",
[TYPE_FLOAT] = "float",
[TYPE_INT64] = "int64",
[TYPE_DOUBLE] = "double",
[TYPE_RATIONAL] = "rational"
};
static camera_metadata_buffer_entry_t *get_entries(
const camera_metadata_t *metadata) {
return (camera_metadata_buffer_entry_t*)
((uint8_t*)metadata + metadata->entries_start);
}
static uint8_t *get_data(const camera_metadata_t *metadata) {
return (uint8_t*)metadata + metadata->data_start;
}
size_t get_camera_metadata_alignment() {
return METADATA_PACKET_ALIGNMENT;
}
camera_metadata_t *allocate_copy_camera_metadata_checked(
const camera_metadata_t *src,
size_t src_size) {
if (src == NULL) {
return NULL;
}
void *buffer = malloc(src_size);
memcpy(buffer, src, src_size);
camera_metadata_t *metadata = (camera_metadata_t*) buffer;
if (validate_camera_metadata_structure(metadata, &src_size) != OK) {
free(buffer);
return NULL;
}
return metadata;
}
camera_metadata_t *allocate_camera_metadata(size_t entry_capacity,
size_t data_capacity) {
size_t memory_needed = calculate_camera_metadata_size(entry_capacity,
data_capacity);
void *buffer = malloc(memory_needed);
return place_camera_metadata(buffer, memory_needed,
entry_capacity,
data_capacity);
}
camera_metadata_t *place_camera_metadata(void *dst,
size_t dst_size,
size_t entry_capacity,
size_t data_capacity) {
if (dst == NULL) return NULL;
size_t memory_needed = calculate_camera_metadata_size(entry_capacity,
data_capacity);
if (memory_needed > dst_size) return NULL;
camera_metadata_t *metadata = (camera_metadata_t*)dst;
metadata->version = CURRENT_METADATA_VERSION;
metadata->flags = 0;
metadata->entry_count = 0;
metadata->entry_capacity = entry_capacity;
metadata->entries_start =
ALIGN_TO(sizeof(camera_metadata_t), ENTRY_ALIGNMENT);
metadata->data_count = 0;
metadata->data_capacity = data_capacity;
metadata->size = memory_needed;
size_t data_unaligned = (uint8_t*)(get_entries(metadata) +
metadata->entry_capacity) - (uint8_t*)metadata;
metadata->data_start = ALIGN_TO(data_unaligned, DATA_ALIGNMENT);
assert(validate_camera_metadata_structure(metadata, NULL) == OK);
return metadata;
}
void free_camera_metadata(camera_metadata_t *metadata) {
free(metadata);
}
size_t calculate_camera_metadata_size(size_t entry_count,
size_t data_count) {
size_t memory_needed = sizeof(camera_metadata_t);
// Start entry list at aligned boundary
memory_needed = ALIGN_TO(memory_needed, ENTRY_ALIGNMENT);
memory_needed += sizeof(camera_metadata_buffer_entry_t[entry_count]);
// Start buffer list at aligned boundary
memory_needed = ALIGN_TO(memory_needed, DATA_ALIGNMENT);
memory_needed += sizeof(uint8_t[data_count]);
return memory_needed;
}
size_t get_camera_metadata_size(const camera_metadata_t *metadata) {
if (metadata == NULL) return ERROR;
return metadata->size;
}
size_t get_camera_metadata_compact_size(const camera_metadata_t *metadata) {
if (metadata == NULL) return ERROR;
return calculate_camera_metadata_size(metadata->entry_count,
metadata->data_count);
}
size_t get_camera_metadata_entry_count(const camera_metadata_t *metadata) {
return metadata->entry_count;
}
size_t get_camera_metadata_entry_capacity(const camera_metadata_t *metadata) {
return metadata->entry_capacity;
}
size_t get_camera_metadata_data_count(const camera_metadata_t *metadata) {
return metadata->data_count;
}
size_t get_camera_metadata_data_capacity(const camera_metadata_t *metadata) {
return metadata->data_capacity;
}
camera_metadata_t* copy_camera_metadata(void *dst, size_t dst_size,
const camera_metadata_t *src) {
size_t memory_needed = get_camera_metadata_compact_size(src);
if (dst == NULL) return NULL;
if (dst_size < memory_needed) return NULL;
camera_metadata_t *metadata =
place_camera_metadata(dst, dst_size, src->entry_count, src->data_count);
metadata->flags = src->flags;
metadata->entry_count = src->entry_count;
metadata->data_count = src->data_count;
memcpy(get_entries(metadata), get_entries(src),
sizeof(camera_metadata_buffer_entry_t[metadata->entry_count]));
memcpy(get_data(metadata), get_data(src),
sizeof(uint8_t[metadata->data_count]));
assert(validate_camera_metadata_structure(metadata, NULL) == OK);
return metadata;
}
int validate_camera_metadata_structure(const camera_metadata_t *metadata,
const size_t *expected_size) {
if (metadata == NULL) {
ALOGE("%s: metadata is null!", __FUNCTION__);
return ERROR;
}
// Check that the metadata pointer is well-aligned first.
{
static const struct {
const char *name;
size_t alignment;
} alignments[] = {
{
.name = "camera_metadata",
.alignment = METADATA_ALIGNMENT
},
{
.name = "camera_metadata_buffer_entry",
.alignment = ENTRY_ALIGNMENT
},
{
.name = "camera_metadata_data",
.alignment = DATA_ALIGNMENT
},
};
for (size_t i = 0; i < sizeof(alignments)/sizeof(alignments[0]); ++i) {
uintptr_t aligned_ptr = ALIGN_TO(metadata, alignments[i].alignment);
if ((uintptr_t)metadata != aligned_ptr) {
ALOGE("%s: Metadata pointer is not aligned (actual %p, "
"expected %p) to type %s",
__FUNCTION__, metadata,
(void*)aligned_ptr, alignments[i].name);
return ERROR;
}
}
}
/**
* Check that the metadata contents are correct
*/
if (expected_size != NULL && metadata->size > *expected_size) {
ALOGE("%s: Metadata size (%" PRIu32 ") should be <= expected size (%zu)",
__FUNCTION__, metadata->size, *expected_size);
return ERROR;
}
if (metadata->entry_count > metadata->entry_capacity) {
ALOGE("%s: Entry count (%" PRIu32 ") should be <= entry capacity "
"(%" PRIu32 ")",
__FUNCTION__, metadata->entry_count, metadata->entry_capacity);
return ERROR;
}
const metadata_uptrdiff_t entries_end =
metadata->entries_start + metadata->entry_capacity;
if (entries_end < metadata->entries_start || // overflow check
entries_end > metadata->data_start) {
ALOGE("%s: Entry start + capacity (%" PRIu32 ") should be <= data start "
"(%" PRIu32 ")",
__FUNCTION__,
(metadata->entries_start + metadata->entry_capacity),
metadata->data_start);
return ERROR;
}
const metadata_uptrdiff_t data_end =
metadata->data_start + metadata->data_capacity;
if (data_end < metadata->data_start || // overflow check
data_end > metadata->size) {
ALOGE("%s: Data start + capacity (%" PRIu32 ") should be <= total size "
"(%" PRIu32 ")",
__FUNCTION__,
(metadata->data_start + metadata->data_capacity),
metadata->size);
return ERROR;
}
// Validate each entry
const metadata_size_t entry_count = metadata->entry_count;
camera_metadata_buffer_entry_t *entries = get_entries(metadata);
for (size_t i = 0; i < entry_count; ++i) {
if ((uintptr_t)&entries[i] != ALIGN_TO(&entries[i], ENTRY_ALIGNMENT)) {
ALOGE("%s: Entry index %zu had bad alignment (address %p),"
" expected alignment %zu",
__FUNCTION__, i, &entries[i], ENTRY_ALIGNMENT);
return ERROR;
}
camera_metadata_buffer_entry_t entry = entries[i];
if (entry.type >= NUM_TYPES) {
ALOGE("%s: Entry index %zu had a bad type %d",
__FUNCTION__, i, entry.type);
return ERROR;
}
// TODO: fix vendor_tag_ops across processes so we don't need to special
// case vendor-specific tags
uint32_t tag_section = entry.tag >> 16;
int tag_type = get_camera_metadata_tag_type(entry.tag);
if (tag_type != (int)entry.type && tag_section < VENDOR_SECTION) {
ALOGE("%s: Entry index %zu had tag type %d, but the type was %d",
__FUNCTION__, i, tag_type, entry.type);
return ERROR;
}
size_t data_size =
calculate_camera_metadata_entry_data_size(entry.type,
entry.count);
if (data_size != 0) {
camera_metadata_data_t *data =
(camera_metadata_data_t*) (get_data(metadata) +
entry.data.offset);
if ((uintptr_t)data != ALIGN_TO(data, DATA_ALIGNMENT)) {
ALOGE("%s: Entry index %zu had bad data alignment (address %p),"
" expected align %zu, (tag name %s, data size %zu)",
__FUNCTION__, i, data, DATA_ALIGNMENT,
get_camera_metadata_tag_name(entry.tag) ?: "unknown",
data_size);
return ERROR;
}
size_t data_entry_end = entry.data.offset + data_size;
if (data_entry_end < entry.data.offset || // overflow check
data_entry_end > metadata->data_capacity) {
ALOGE("%s: Entry index %zu data ends (%zu) beyond the capacity "
"%" PRIu32, __FUNCTION__, i, data_entry_end,
metadata->data_capacity);
return ERROR;
}
} else if (entry.count == 0) {
if (entry.data.offset != 0) {
ALOGE("%s: Entry index %zu had 0 items, but offset was non-0 "
"(%" PRIu32 "), tag name: %s", __FUNCTION__, i, entry.data.offset,
get_camera_metadata_tag_name(entry.tag) ?: "unknown");
return ERROR;
}
} // else data stored inline, so we look at value which can be anything.
}
return OK;
}
int append_camera_metadata(camera_metadata_t *dst,
const camera_metadata_t *src) {
if (dst == NULL || src == NULL ) return ERROR;
if (dst->entry_capacity < src->entry_count + dst->entry_count) return ERROR;
if (dst->data_capacity < src->data_count + dst->data_count) return ERROR;
memcpy(get_entries(dst) + dst->entry_count, get_entries(src),
sizeof(camera_metadata_buffer_entry_t[src->entry_count]));
memcpy(get_data(dst) + dst->data_count, get_data(src),
sizeof(uint8_t[src->data_count]));
if (dst->data_count != 0) {
camera_metadata_buffer_entry_t *entry = get_entries(dst) + dst->entry_count;
for (size_t i = 0; i < src->entry_count; i++, entry++) {
if ( calculate_camera_metadata_entry_data_size(entry->type,
entry->count) > 0 ) {
entry->data.offset += dst->data_count;
}
}
}
if (dst->entry_count == 0) {
// Appending onto empty buffer, keep sorted state
dst->flags |= src->flags & FLAG_SORTED;
} else if (src->entry_count != 0) {
// Both src, dst are nonempty, cannot assume sort remains
dst->flags &= ~FLAG_SORTED;
} else {
// Src is empty, keep dst sorted state
}
dst->entry_count += src->entry_count;
dst->data_count += src->data_count;
assert(validate_camera_metadata_structure(dst, NULL) == OK);
return OK;
}
camera_metadata_t *clone_camera_metadata(const camera_metadata_t *src) {
int res;
if (src == NULL) return NULL;
camera_metadata_t *clone = allocate_camera_metadata(
get_camera_metadata_entry_count(src),
get_camera_metadata_data_count(src));
if (clone != NULL) {
res = append_camera_metadata(clone, src);
if (res != OK) {
free_camera_metadata(clone);
clone = NULL;
}
}
assert(validate_camera_metadata_structure(clone, NULL) == OK);
return clone;
}
size_t calculate_camera_metadata_entry_data_size(uint8_t type,
size_t data_count) {
if (type >= NUM_TYPES) return 0;
size_t data_bytes = data_count *
camera_metadata_type_size[type];
return data_bytes <= 4 ? 0 : ALIGN_TO(data_bytes, DATA_ALIGNMENT);
}
static int add_camera_metadata_entry_raw(camera_metadata_t *dst,
uint32_t tag,
uint8_t type,
const void *data,
size_t data_count) {
if (dst == NULL) return ERROR;
if (dst->entry_count == dst->entry_capacity) return ERROR;
if (data == NULL) return ERROR;
size_t data_bytes =
calculate_camera_metadata_entry_data_size(type, data_count);
if (data_bytes + dst->data_count > dst->data_capacity) return ERROR;
size_t data_payload_bytes =
data_count * camera_metadata_type_size[type];
camera_metadata_buffer_entry_t *entry = get_entries(dst) + dst->entry_count;
memset(entry, 0, sizeof(camera_metadata_buffer_entry_t));
entry->tag = tag;
entry->type = type;
entry->count = data_count;
if (data_bytes == 0) {
memcpy(entry->data.value, data,
data_payload_bytes);
} else {
entry->data.offset = dst->data_count;
memcpy(get_data(dst) + entry->data.offset, data,
data_payload_bytes);
dst->data_count += data_bytes;
}
dst->entry_count++;
dst->flags &= ~FLAG_SORTED;
assert(validate_camera_metadata_structure(dst, NULL) == OK);
return OK;
}
int add_camera_metadata_entry(camera_metadata_t *dst,
uint32_t tag,
const void *data,
size_t data_count) {
int type = get_camera_metadata_tag_type(tag);
if (type == -1) {
ALOGE("%s: Unknown tag %04x.", __FUNCTION__, tag);
return ERROR;
}
return add_camera_metadata_entry_raw(dst,
tag,
type,
data,
data_count);
}
static int compare_entry_tags(const void *p1, const void *p2) {
uint32_t tag1 = ((camera_metadata_buffer_entry_t*)p1)->tag;
uint32_t tag2 = ((camera_metadata_buffer_entry_t*)p2)->tag;
return tag1 < tag2 ? -1 :
tag1 == tag2 ? 0 :
1;
}
int sort_camera_metadata(camera_metadata_t *dst) {
if (dst == NULL) return ERROR;
if (dst->flags & FLAG_SORTED) return OK;
qsort(get_entries(dst), dst->entry_count,
sizeof(camera_metadata_buffer_entry_t),
compare_entry_tags);
dst->flags |= FLAG_SORTED;
assert(validate_camera_metadata_structure(dst, NULL) == OK);
return OK;
}
int get_camera_metadata_entry(camera_metadata_t *src,
size_t index,
camera_metadata_entry_t *entry) {
if (src == NULL || entry == NULL) return ERROR;
if (index >= src->entry_count) return ERROR;
camera_metadata_buffer_entry_t *buffer_entry = get_entries(src) + index;
entry->index = index;
entry->tag = buffer_entry->tag;
entry->type = buffer_entry->type;
entry->count = buffer_entry->count;
if (buffer_entry->count *
camera_metadata_type_size[buffer_entry->type] > 4) {
entry->data.u8 = get_data(src) + buffer_entry->data.offset;
} else {
entry->data.u8 = buffer_entry->data.value;
}
return OK;
}
int get_camera_metadata_ro_entry(const camera_metadata_t *src,
size_t index,
camera_metadata_ro_entry_t *entry) {
return get_camera_metadata_entry((camera_metadata_t*)src, index,
(camera_metadata_entry_t*)entry);
}
int find_camera_metadata_entry(camera_metadata_t *src,
uint32_t tag,
camera_metadata_entry_t *entry) {
if (src == NULL) return ERROR;
uint32_t index;
if (src->flags & FLAG_SORTED) {
// Sorted entries, do a binary search
camera_metadata_buffer_entry_t *search_entry = NULL;
camera_metadata_buffer_entry_t key;
key.tag = tag;
search_entry = bsearch(&key,
get_entries(src),
src->entry_count,
sizeof(camera_metadata_buffer_entry_t),
compare_entry_tags);
if (search_entry == NULL) return NOT_FOUND;
index = search_entry - get_entries(src);
} else {
// Not sorted, linear search
camera_metadata_buffer_entry_t *search_entry = get_entries(src);
for (index = 0; index < src->entry_count; index++, search_entry++) {
if (search_entry->tag == tag) {
break;
}
}
if (index == src->entry_count) return NOT_FOUND;
}
return get_camera_metadata_entry(src, index,
entry);
}
int find_camera_metadata_ro_entry(const camera_metadata_t *src,
uint32_t tag,
camera_metadata_ro_entry_t *entry) {
return find_camera_metadata_entry((camera_metadata_t*)src, tag,
(camera_metadata_entry_t*)entry);
}
int delete_camera_metadata_entry(camera_metadata_t *dst,
size_t index) {
if (dst == NULL) return ERROR;
if (index >= dst->entry_count) return ERROR;
camera_metadata_buffer_entry_t *entry = get_entries(dst) + index;
size_t data_bytes = calculate_camera_metadata_entry_data_size(entry->type,
entry->count);
if (data_bytes > 0) {
// Shift data buffer to overwrite deleted data
uint8_t *start = get_data(dst) + entry->data.offset;
uint8_t *end = start + data_bytes;
size_t length = dst->data_count - entry->data.offset - data_bytes;
memmove(start, end, length);
// Update all entry indices to account for shift
camera_metadata_buffer_entry_t *e = get_entries(dst);
size_t i;
for (i = 0; i < dst->entry_count; i++) {
if (calculate_camera_metadata_entry_data_size(
e->type, e->count) > 0 &&
e->data.offset > entry->data.offset) {
e->data.offset -= data_bytes;
}
++e;
}
dst->data_count -= data_bytes;
}
// Shift entry array
memmove(entry, entry + 1,
sizeof(camera_metadata_buffer_entry_t) *
(dst->entry_count - index - 1) );
dst->entry_count -= 1;
assert(validate_camera_metadata_structure(dst, NULL) == OK);
return OK;
}
int update_camera_metadata_entry(camera_metadata_t *dst,
size_t index,
const void *data,
size_t data_count,
camera_metadata_entry_t *updated_entry) {
if (dst == NULL) return ERROR;
if (index >= dst->entry_count) return ERROR;
camera_metadata_buffer_entry_t *entry = get_entries(dst) + index;
size_t data_bytes =
calculate_camera_metadata_entry_data_size(entry->type,
data_count);
size_t data_payload_bytes =
data_count * camera_metadata_type_size[entry->type];
size_t entry_bytes =
calculate_camera_metadata_entry_data_size(entry->type,
entry->count);
if (data_bytes != entry_bytes) {
// May need to shift/add to data array
if (dst->data_capacity < dst->data_count + data_bytes - entry_bytes) {
// No room
return ERROR;
}
if (entry_bytes != 0) {
// Remove old data
uint8_t *start = get_data(dst) + entry->data.offset;
uint8_t *end = start + entry_bytes;
size_t length = dst->data_count - entry->data.offset - entry_bytes;
memmove(start, end, length);
dst->data_count -= entry_bytes;
// Update all entry indices to account for shift
camera_metadata_buffer_entry_t *e = get_entries(dst);
size_t i;
for (i = 0; i < dst->entry_count; i++) {
if (calculate_camera_metadata_entry_data_size(
e->type, e->count) > 0 &&
e->data.offset > entry->data.offset) {
e->data.offset -= entry_bytes;
}
++e;
}
}
if (data_bytes != 0) {
// Append new data
entry->data.offset = dst->data_count;
memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes);
dst->data_count += data_bytes;
}
} else if (data_bytes != 0) {
// data size unchanged, reuse same data location
memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes);
}
if (data_bytes == 0) {
// Data fits into entry
memcpy(entry->data.value, data,
data_payload_bytes);
}
entry->count = data_count;
if (updated_entry != NULL) {
get_camera_metadata_entry(dst,
index,
updated_entry);
}
assert(validate_camera_metadata_structure(dst, NULL) == OK);
return OK;
}
static const vendor_tag_ops_t *vendor_tag_ops = NULL;
const char *get_camera_metadata_section_name(uint32_t tag) {
uint32_t tag_section = tag >> 16;
if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
return vendor_tag_ops->get_section_name(
vendor_tag_ops,
tag);
}
if (tag_section >= ANDROID_SECTION_COUNT) {
return NULL;
}
return camera_metadata_section_names[tag_section];
}
const char *get_camera_metadata_tag_name(uint32_t tag) {
uint32_t tag_section = tag >> 16;
if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
return vendor_tag_ops->get_tag_name(
vendor_tag_ops,
tag);
}
if (tag_section >= ANDROID_SECTION_COUNT ||
tag >= camera_metadata_section_bounds[tag_section][1] ) {
return NULL;
}
uint32_t tag_index = tag & 0xFFFF;
return tag_info[tag_section][tag_index].tag_name;
}
int get_camera_metadata_tag_type(uint32_t tag) {
uint32_t tag_section = tag >> 16;
if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) {
return vendor_tag_ops->get_tag_type(
vendor_tag_ops,
tag);
}
if (tag_section >= ANDROID_SECTION_COUNT ||
tag >= camera_metadata_section_bounds[tag_section][1] ) {
return -1;
}
uint32_t tag_index = tag & 0xFFFF;
return tag_info[tag_section][tag_index].tag_type;
}
int set_camera_metadata_vendor_tag_ops(const vendor_tag_query_ops_t* ops) {
// **DEPRECATED**
ALOGE("%s: This function has been deprecated", __FUNCTION__);
return ERROR;
}
// Declared in system/media/private/camera/include/camera_metadata_hidden.h
int set_camera_metadata_vendor_ops(const vendor_tag_ops_t* ops) {
vendor_tag_ops = ops;
return OK;
}
static void print_data(int fd, const uint8_t *data_ptr, uint32_t tag, int type,
int count,
int indentation);
void dump_camera_metadata(const camera_metadata_t *metadata,
int fd,
int verbosity) {
dump_indented_camera_metadata(metadata, fd, verbosity, 0);
}
void dump_indented_camera_metadata(const camera_metadata_t *metadata,
int fd,
int verbosity,
int indentation) {
if (metadata == NULL) {
dprintf(fd, "%*sDumping camera metadata array: Not allocated\n",
indentation, "");
return;
}
unsigned int i;
dprintf(fd,
"%*sDumping camera metadata array: %" PRIu32 " / %" PRIu32 " entries, "
"%" PRIu32 " / %" PRIu32 " bytes of extra data.\n", indentation, "",
metadata->entry_count, metadata->entry_capacity,
metadata->data_count, metadata->data_capacity);
dprintf(fd, "%*sVersion: %d, Flags: %08x\n",
indentation + 2, "",
metadata->version, metadata->flags);
camera_metadata_buffer_entry_t *entry = get_entries(metadata);
for (i=0; i < metadata->entry_count; i++, entry++) {
const char *tag_name, *tag_section;
tag_section = get_camera_metadata_section_name(entry->tag);
if (tag_section == NULL) {
tag_section = "unknownSection";
}
tag_name = get_camera_metadata_tag_name(entry->tag);
if (tag_name == NULL) {
tag_name = "unknownTag";
}
const char *type_name;
if (entry->type >= NUM_TYPES) {
type_name = "unknown";
} else {
type_name = camera_metadata_type_names[entry->type];
}
dprintf(fd, "%*s%s.%s (%05x): %s[%" PRIu32 "]\n",
indentation + 2, "",
tag_section,
tag_name,
entry->tag,
type_name,
entry->count);
if (verbosity < 1) continue;
if (entry->type >= NUM_TYPES) continue;
size_t type_size = camera_metadata_type_size[entry->type];
uint8_t *data_ptr;
if ( type_size * entry->count > 4 ) {
if (entry->data.offset >= metadata->data_count) {
ALOGE("%s: Malformed entry data offset: %" PRIu32 " (max %" PRIu32 ")",
__FUNCTION__,
entry->data.offset,
metadata->data_count);
continue;
}
data_ptr = get_data(metadata) + entry->data.offset;
} else {
data_ptr = entry->data.value;
}
int count = entry->count;
if (verbosity < 2 && count > 16) count = 16;
print_data(fd, data_ptr, entry->tag, entry->type, count, indentation);
}
}
static void print_data(int fd, const uint8_t *data_ptr, uint32_t tag,
int type, int count, int indentation) {
static int values_per_line[NUM_TYPES] = {
[TYPE_BYTE] = 16,
[TYPE_INT32] = 4,
[TYPE_FLOAT] = 8,
[TYPE_INT64] = 2,
[TYPE_DOUBLE] = 4,
[TYPE_RATIONAL] = 2,
};
size_t type_size = camera_metadata_type_size[type];
char value_string_tmp[CAMERA_METADATA_ENUM_STRING_MAX_SIZE];
uint32_t value;
int lines = count / values_per_line[type];
if (count % values_per_line[type] != 0) lines++;
int index = 0;
int j, k;
for (j = 0; j < lines; j++) {
dprintf(fd, "%*s[", indentation + 4, "");
for (k = 0;
k < values_per_line[type] && count > 0;
k++, count--, index += type_size) {
switch (type) {
case TYPE_BYTE:
value = *(data_ptr + index);
if (camera_metadata_enum_snprint(tag,
value,
value_string_tmp,
sizeof(value_string_tmp))
== OK) {
dprintf(fd, "%s ", value_string_tmp);
} else {
dprintf(fd, "%hhu ",
*(data_ptr + index));
}
break;
case TYPE_INT32:
value =
*(int32_t*)(data_ptr + index);
if (camera_metadata_enum_snprint(tag,
value,
value_string_tmp,
sizeof(value_string_tmp))
== OK) {
dprintf(fd, "%s ", value_string_tmp);
} else {
dprintf(fd, "%" PRId32 " ",
*(int32_t*)(data_ptr + index));
}
break;
case TYPE_FLOAT:
dprintf(fd, "%0.8f ",
*(float*)(data_ptr + index));
break;
case TYPE_INT64:
dprintf(fd, "%" PRId64 " ",
*(int64_t*)(data_ptr + index));
break;
case TYPE_DOUBLE:
dprintf(fd, "%0.8f ",
*(double*)(data_ptr + index));
break;
case TYPE_RATIONAL: {
int32_t numerator = *(int32_t*)(data_ptr + index);
int32_t denominator = *(int32_t*)(data_ptr + index + 4);
dprintf(fd, "(%d / %d) ",
numerator, denominator);
break;
}
default:
dprintf(fd, "??? ");
}
}
dprintf(fd, "]\n");
}
}