/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <openssl/evp.h>
#include <openssl/x509.h>
#include <keymaster/key_blob.h>
#include <keymaster/keymaster_defs.h>
#include "asymmetric_key.h"
#include "dsa_operation.h"
#include "ecdsa_operation.h"
#include "openssl_utils.h"
#include "rsa_operation.h"
namespace keymaster {
const uint32_t RSA_DEFAULT_KEY_SIZE = 2048;
const uint64_t RSA_DEFAULT_EXPONENT = 65537;
const uint32_t DSA_DEFAULT_KEY_SIZE = 2048;
const uint32_t ECDSA_DEFAULT_KEY_SIZE = 192;
keymaster_error_t AsymmetricKey::LoadKey(const KeyBlob& blob) {
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> evp_key(EVP_PKEY_new());
if (evp_key.get() == NULL)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
EVP_PKEY* tmp_pkey = evp_key.get();
const uint8_t* key_material = blob.key_material();
if (d2i_PrivateKey(evp_key_type(), &tmp_pkey, &key_material, blob.key_material_length()) ==
NULL) {
return KM_ERROR_INVALID_KEY_BLOB;
}
if (!EvpToInternal(evp_key.get()))
return KM_ERROR_UNKNOWN_ERROR;
return KM_ERROR_OK;
}
keymaster_error_t AsymmetricKey::key_material(UniquePtr<uint8_t[]>* material, size_t* size) const {
if (material == NULL || size == NULL)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
if (pkey.get() == NULL)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
if (!InternalToEvp(pkey.get()))
return KM_ERROR_UNKNOWN_ERROR;
*size = i2d_PrivateKey(pkey.get(), NULL /* key_data*/);
if (*size <= 0)
return KM_ERROR_UNKNOWN_ERROR;
material->reset(new uint8_t[*size]);
uint8_t* tmp = material->get();
i2d_PrivateKey(pkey.get(), &tmp);
return KM_ERROR_OK;
}
keymaster_error_t AsymmetricKey::formatted_key_material(keymaster_key_format_t format,
UniquePtr<uint8_t[]>* material,
size_t* size) const {
if (format != KM_KEY_FORMAT_X509)
return KM_ERROR_UNSUPPORTED_KEY_FORMAT;
if (material == NULL || size == NULL)
return KM_ERROR_OUTPUT_PARAMETER_NULL;
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
if (!InternalToEvp(pkey.get()))
return KM_ERROR_UNKNOWN_ERROR;
int key_data_length = i2d_PUBKEY(pkey.get(), NULL);
if (key_data_length <= 0)
return KM_ERROR_UNKNOWN_ERROR;
material->reset(new uint8_t[key_data_length]);
if (material->get() == NULL)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
uint8_t* tmp = material->get();
if (i2d_PUBKEY(pkey.get(), &tmp) != key_data_length) {
material->reset();
return KM_ERROR_UNKNOWN_ERROR;
}
*size = key_data_length;
return KM_ERROR_OK;
}
Operation* AsymmetricKey::CreateOperation(keymaster_purpose_t purpose, keymaster_error_t* error) {
keymaster_digest_t digest;
if (!authorizations().GetTagValue(TAG_DIGEST, &digest) || digest != KM_DIGEST_NONE) {
*error = KM_ERROR_UNSUPPORTED_DIGEST;
return NULL;
}
keymaster_padding_t padding;
if (!authorizations().GetTagValue(TAG_PADDING, &padding) || padding != KM_PAD_NONE) {
*error = KM_ERROR_UNSUPPORTED_PADDING_MODE;
return NULL;
}
return CreateOperation(purpose, digest, padding, error);
}
/* static */
RsaKey* RsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
keymaster_error_t* error) {
if (!error)
return NULL;
AuthorizationSet authorizations(key_description);
uint64_t public_exponent = RSA_DEFAULT_EXPONENT;
if (!authorizations.GetTagValue(TAG_RSA_PUBLIC_EXPONENT, &public_exponent))
authorizations.push_back(Authorization(TAG_RSA_PUBLIC_EXPONENT, public_exponent));
uint32_t key_size = RSA_DEFAULT_KEY_SIZE;
if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));
UniquePtr<BIGNUM, BIGNUM_Delete> exponent(BN_new());
UniquePtr<RSA, RSA_Delete> rsa_key(RSA_new());
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
if (rsa_key.get() == NULL || pkey.get() == NULL) {
*error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return NULL;
}
if (!BN_set_word(exponent.get(), public_exponent) ||
!RSA_generate_key_ex(rsa_key.get(), key_size, exponent.get(), NULL /* callback */)) {
*error = KM_ERROR_UNKNOWN_ERROR;
return NULL;
}
RsaKey* new_key = new RsaKey(rsa_key.release(), authorizations, logger);
*error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return new_key;
}
/* static */
RsaKey* RsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
const Logger& logger, keymaster_error_t* error) {
if (!error)
return NULL;
*error = KM_ERROR_UNKNOWN_ERROR;
UniquePtr<RSA, RSA_Delete> rsa_key(EVP_PKEY_get1_RSA(pkey));
if (!rsa_key.get())
return NULL;
AuthorizationSet authorizations(key_description);
uint64_t public_exponent;
if (authorizations.GetTagValue(TAG_RSA_PUBLIC_EXPONENT, &public_exponent)) {
// public_exponent specified, make sure it matches the key
UniquePtr<BIGNUM, BIGNUM_Delete> public_exponent_bn(BN_new());
if (!BN_set_word(public_exponent_bn.get(), public_exponent))
return NULL;
if (BN_cmp(public_exponent_bn.get(), rsa_key->e) != 0) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
// public_exponent not specified, use the one from the key.
public_exponent = BN_get_word(rsa_key->e);
if (public_exponent == 0xffffffffL) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
authorizations.push_back(TAG_RSA_PUBLIC_EXPONENT, public_exponent);
}
uint32_t key_size;
if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size)) {
// key_size specified, make sure it matches the key.
if (RSA_size(rsa_key.get()) != (int)key_size) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
key_size = RSA_size(rsa_key.get()) * 8;
authorizations.push_back(TAG_KEY_SIZE, key_size);
}
keymaster_algorithm_t algorithm;
if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
if (algorithm != KM_ALGORITHM_RSA) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA);
}
// Don't bother with the other parameters. If the necessary padding, digest, purpose, etc. are
// missing, the error will be diagnosed when the key is used (when auth checking is
// implemented).
*error = KM_ERROR_OK;
return new RsaKey(rsa_key.release(), authorizations, logger);
}
RsaKey::RsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
: AsymmetricKey(blob, logger) {
if (error)
*error = LoadKey(blob);
}
Operation* RsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
keymaster_padding_t padding, keymaster_error_t* error) {
Operation* op;
switch (purpose) {
case KM_PURPOSE_SIGN:
op = new RsaSignOperation(purpose, logger_, digest, padding, rsa_key_.release());
break;
case KM_PURPOSE_VERIFY:
op = new RsaVerifyOperation(purpose, logger_, digest, padding, rsa_key_.release());
break;
default:
*error = KM_ERROR_UNIMPLEMENTED;
return NULL;
}
*error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return op;
}
bool RsaKey::EvpToInternal(const EVP_PKEY* pkey) {
rsa_key_.reset(EVP_PKEY_get1_RSA(const_cast<EVP_PKEY*>(pkey)));
return rsa_key_.get() != NULL;
}
bool RsaKey::InternalToEvp(EVP_PKEY* pkey) const {
return EVP_PKEY_set1_RSA(pkey, rsa_key_.get()) == 1;
}
template <keymaster_tag_t Tag>
static void GetDsaParamData(const AuthorizationSet& auths, TypedTag<KM_BIGNUM, Tag> tag,
keymaster_blob_t* blob) {
if (!auths.GetTagValue(tag, blob))
blob->data = NULL;
}
// Store the specified DSA param in auths
template <keymaster_tag_t Tag>
static void SetDsaParamData(AuthorizationSet* auths, TypedTag<KM_BIGNUM, Tag> tag, BIGNUM* number) {
keymaster_blob_t blob;
convert_bn_to_blob(number, &blob);
auths->push_back(Authorization(tag, blob));
delete[] blob.data;
}
DsaKey* DsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
keymaster_error_t* error) {
if (!error)
return NULL;
AuthorizationSet authorizations(key_description);
keymaster_blob_t g_blob;
GetDsaParamData(authorizations, TAG_DSA_GENERATOR, &g_blob);
keymaster_blob_t p_blob;
GetDsaParamData(authorizations, TAG_DSA_P, &p_blob);
keymaster_blob_t q_blob;
GetDsaParamData(authorizations, TAG_DSA_Q, &q_blob);
uint32_t key_size = DSA_DEFAULT_KEY_SIZE;
if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));
UniquePtr<DSA, DSA_Delete> dsa_key(DSA_new());
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
if (dsa_key.get() == NULL || pkey.get() == NULL) {
*error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return NULL;
}
// If anything goes wrong in the next section, it's a param problem.
*error = KM_ERROR_INVALID_DSA_PARAMS;
if (g_blob.data == NULL && p_blob.data == NULL && q_blob.data == NULL) {
logger.info("DSA parameters unspecified, generating them for key size %d", key_size);
if (!DSA_generate_parameters_ex(dsa_key.get(), key_size, NULL /* seed */, 0 /* seed_len */,
NULL /* counter_ret */, NULL /* h_ret */,
NULL /* callback */)) {
logger.severe("DSA parameter generation failed.");
return NULL;
}
SetDsaParamData(&authorizations, TAG_DSA_GENERATOR, dsa_key->g);
SetDsaParamData(&authorizations, TAG_DSA_P, dsa_key->p);
SetDsaParamData(&authorizations, TAG_DSA_Q, dsa_key->q);
} else if (g_blob.data == NULL || p_blob.data == NULL || q_blob.data == NULL) {
logger.severe("Some DSA parameters provided. Provide all or none");
return NULL;
} else {
// All params provided. Use them.
dsa_key->g = BN_bin2bn(g_blob.data, g_blob.data_length, NULL);
dsa_key->p = BN_bin2bn(p_blob.data, p_blob.data_length, NULL);
dsa_key->q = BN_bin2bn(q_blob.data, q_blob.data_length, NULL);
if (dsa_key->g == NULL || dsa_key->p == NULL || dsa_key->q == NULL) {
return NULL;
}
}
if (!DSA_generate_key(dsa_key.get())) {
*error = KM_ERROR_UNKNOWN_ERROR;
return NULL;
}
DsaKey* new_key = new DsaKey(dsa_key.release(), authorizations, logger);
*error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return new_key;
}
template <keymaster_tag_t T>
keymaster_error_t GetOrCheckDsaParam(TypedTag<KM_BIGNUM, T> tag, BIGNUM* bn,
AuthorizationSet* auths) {
keymaster_blob_t blob;
if (auths->GetTagValue(tag, &blob)) {
// value specified, make sure it matches
UniquePtr<BIGNUM, BIGNUM_Delete> extracted_bn(BN_bin2bn(blob.data, blob.data_length, NULL));
if (extracted_bn.get() == NULL)
return KM_ERROR_MEMORY_ALLOCATION_FAILED;
if (BN_cmp(extracted_bn.get(), bn) != 0)
return KM_ERROR_IMPORT_PARAMETER_MISMATCH;
} else {
// value not specified, add it
UniquePtr<uint8_t[]> data(new uint8_t[BN_num_bytes(bn)]);
BN_bn2bin(bn, data.get());
auths->push_back(tag, data.get(), BN_num_bytes(bn));
}
return KM_ERROR_OK;
}
/* static */
size_t DsaKey::key_size_bits(DSA* dsa_key) {
// Openssl provides no convenient way to get a DSA key size, but dsa_key->p is L bits long.
// There may be some leading zeros that mess up this calculation, but DSA key sizes are also
// constrained to be multiples of 64 bits. So the key size is the bit length of p rounded up to
// the nearest 64.
return ((BN_num_bytes(dsa_key->p) * 8) + 63) / 64 * 64;
}
/* static */
DsaKey* DsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
const Logger& logger, keymaster_error_t* error) {
if (!error)
return NULL;
*error = KM_ERROR_UNKNOWN_ERROR;
UniquePtr<DSA, DSA_Delete> dsa_key(EVP_PKEY_get1_DSA(pkey));
if (!dsa_key.get())
return NULL;
AuthorizationSet authorizations(key_description);
*error = GetOrCheckDsaParam(TAG_DSA_GENERATOR, dsa_key->g, &authorizations);
if (*error != KM_ERROR_OK)
return NULL;
*error = GetOrCheckDsaParam(TAG_DSA_P, dsa_key->p, &authorizations);
if (*error != KM_ERROR_OK)
return NULL;
*error = GetOrCheckDsaParam(TAG_DSA_Q, dsa_key->q, &authorizations);
if (*error != KM_ERROR_OK)
return NULL;
// There's no convenient way to get a DSA key size, but dsa_key->p is L bits long. There may be
// some leading zeros that mess up this calculation, but DSA key sizes are also constrained to
// be multiples of 64 bits. So the bit length of p, rounded up to the nearest 64 bits, is the
// key size.
uint32_t extracted_key_size_bits = ((BN_num_bytes(dsa_key->p) * 8) + 63) / 64 * 64;
uint32_t key_size_bits;
if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size_bits)) {
// key_size_bits specified, make sure it matches the key.
if (key_size_bits != extracted_key_size_bits) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
// key_size_bits not specified, add it.
authorizations.push_back(TAG_KEY_SIZE, extracted_key_size_bits);
}
keymaster_algorithm_t algorithm;
if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
if (algorithm != KM_ALGORITHM_DSA) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_DSA);
}
// Don't bother with the other parameters. If the necessary padding, digest, purpose, etc. are
// missing, the error will be diagnosed when the key is used (when auth checking is
// implemented).
*error = KM_ERROR_OK;
return new DsaKey(dsa_key.release(), authorizations, logger);
}
DsaKey::DsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
: AsymmetricKey(blob, logger) {
if (error)
*error = LoadKey(blob);
}
Operation* DsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
keymaster_padding_t padding, keymaster_error_t* error) {
Operation* op;
switch (purpose) {
case KM_PURPOSE_SIGN:
op = new DsaSignOperation(purpose, logger_, digest, padding, dsa_key_.release());
break;
case KM_PURPOSE_VERIFY:
op = new DsaVerifyOperation(purpose, logger_, digest, padding, dsa_key_.release());
break;
default:
*error = KM_ERROR_UNIMPLEMENTED;
return NULL;
}
*error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return op;
}
bool DsaKey::EvpToInternal(const EVP_PKEY* pkey) {
dsa_key_.reset(EVP_PKEY_get1_DSA(const_cast<EVP_PKEY*>(pkey)));
return dsa_key_.get() != NULL;
}
bool DsaKey::InternalToEvp(EVP_PKEY* pkey) const {
return EVP_PKEY_set1_DSA(pkey, dsa_key_.get()) == 1;
}
/* static */
EcdsaKey* EcdsaKey::GenerateKey(const AuthorizationSet& key_description, const Logger& logger,
keymaster_error_t* error) {
if (!error)
return NULL;
AuthorizationSet authorizations(key_description);
uint32_t key_size = ECDSA_DEFAULT_KEY_SIZE;
if (!authorizations.GetTagValue(TAG_KEY_SIZE, &key_size))
authorizations.push_back(Authorization(TAG_KEY_SIZE, key_size));
UniquePtr<EC_KEY, ECDSA_Delete> ecdsa_key(EC_KEY_new());
UniquePtr<EVP_PKEY, EVP_PKEY_Delete> pkey(EVP_PKEY_new());
if (ecdsa_key.get() == NULL || pkey.get() == NULL) {
*error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return NULL;
}
UniquePtr<EC_GROUP, EC_GROUP_Delete> group(choose_group(key_size));
if (group.get() == NULL) {
// Technically, could also have been a memory allocation problem.
*error = KM_ERROR_UNSUPPORTED_KEY_SIZE;
return NULL;
}
EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED);
EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE);
if (EC_KEY_set_group(ecdsa_key.get(), group.get()) != 1 ||
EC_KEY_generate_key(ecdsa_key.get()) != 1 || EC_KEY_check_key(ecdsa_key.get()) < 0) {
*error = KM_ERROR_UNKNOWN_ERROR;
return NULL;
}
EcdsaKey* new_key = new EcdsaKey(ecdsa_key.release(), authorizations, logger);
*error = new_key ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return new_key;
}
/* static */
EcdsaKey* EcdsaKey::ImportKey(const AuthorizationSet& key_description, EVP_PKEY* pkey,
const Logger& logger, keymaster_error_t* error) {
if (!error)
return NULL;
*error = KM_ERROR_UNKNOWN_ERROR;
UniquePtr<EC_KEY, ECDSA_Delete> ecdsa_key(EVP_PKEY_get1_EC_KEY(pkey));
if (!ecdsa_key.get())
return NULL;
AuthorizationSet authorizations(key_description);
size_t extracted_key_size_bits;
*error = get_group_size(*EC_KEY_get0_group(ecdsa_key.get()), &extracted_key_size_bits);
if (*error != KM_ERROR_OK)
return NULL;
uint32_t key_size_bits;
if (authorizations.GetTagValue(TAG_KEY_SIZE, &key_size_bits)) {
// key_size_bits specified, make sure it matches the key.
if (key_size_bits != extracted_key_size_bits) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
// key_size_bits not specified, add it.
authorizations.push_back(TAG_KEY_SIZE, extracted_key_size_bits);
}
keymaster_algorithm_t algorithm;
if (authorizations.GetTagValue(TAG_ALGORITHM, &algorithm)) {
if (algorithm != KM_ALGORITHM_ECDSA) {
*error = KM_ERROR_IMPORT_PARAMETER_MISMATCH;
return NULL;
}
} else {
authorizations.push_back(TAG_ALGORITHM, KM_ALGORITHM_ECDSA);
}
// Don't bother with the other parameters. If the necessary padding, digest, purpose, etc. are
// missing, the error will be diagnosed when the key is used (when auth checking is
// implemented).
*error = KM_ERROR_OK;
return new EcdsaKey(ecdsa_key.release(), authorizations, logger);
}
/* static */
EC_GROUP* EcdsaKey::choose_group(size_t key_size_bits) {
switch (key_size_bits) {
case 192:
return EC_GROUP_new_by_curve_name(NID_X9_62_prime192v1);
break;
case 224:
return EC_GROUP_new_by_curve_name(NID_secp224r1);
break;
case 256:
return EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
break;
case 384:
return EC_GROUP_new_by_curve_name(NID_secp384r1);
break;
case 521:
return EC_GROUP_new_by_curve_name(NID_secp521r1);
break;
default:
return NULL;
break;
}
}
/* static */
keymaster_error_t EcdsaKey::get_group_size(const EC_GROUP& group, size_t* key_size_bits) {
switch (EC_GROUP_get_curve_name(&group)) {
case NID_X9_62_prime192v1:
*key_size_bits = 192;
break;
case NID_secp224r1:
*key_size_bits = 224;
break;
case NID_X9_62_prime256v1:
*key_size_bits = 256;
break;
case NID_secp384r1:
*key_size_bits = 384;
break;
case NID_secp521r1:
*key_size_bits = 521;
break;
default:
return KM_ERROR_UNSUPPORTED_EC_FIELD;
}
return KM_ERROR_OK;
}
EcdsaKey::EcdsaKey(const KeyBlob& blob, const Logger& logger, keymaster_error_t* error)
: AsymmetricKey(blob, logger) {
if (error)
*error = LoadKey(blob);
}
Operation* EcdsaKey::CreateOperation(keymaster_purpose_t purpose, keymaster_digest_t digest,
keymaster_padding_t padding, keymaster_error_t* error) {
Operation* op;
switch (purpose) {
case KM_PURPOSE_SIGN:
op = new EcdsaSignOperation(purpose, logger_, digest, padding, ecdsa_key_.release());
break;
case KM_PURPOSE_VERIFY:
op = new EcdsaVerifyOperation(purpose, logger_, digest, padding, ecdsa_key_.release());
break;
default:
*error = KM_ERROR_UNIMPLEMENTED;
return NULL;
}
*error = op ? KM_ERROR_OK : KM_ERROR_MEMORY_ALLOCATION_FAILED;
return op;
}
bool EcdsaKey::EvpToInternal(const EVP_PKEY* pkey) {
ecdsa_key_.reset(EVP_PKEY_get1_EC_KEY(const_cast<EVP_PKEY*>(pkey)));
return ecdsa_key_.get() != NULL;
}
bool EcdsaKey::InternalToEvp(EVP_PKEY* pkey) const {
return EVP_PKEY_set1_EC_KEY(pkey, ecdsa_key_.get()) == 1;
}
} // namespace keymaster