/*
* Copyright (c) 2012, The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google, Inc. nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define MAX_BUF_SIZE 64
struct freq_info {
unsigned freq;
long unsigned time;
};
struct cpu_info {
long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime;
struct freq_info *freqs;
int freq_count;
};
#define die(...) { fprintf(stderr, __VA_ARGS__); exit(EXIT_FAILURE); }
static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus;
static int cpu_count, delay, iterations;
static char minimal, aggregate_freq_stats;
static int get_cpu_count();
static int get_cpu_count_from_file(char *filename);
static long unsigned get_cpu_total_time(struct cpu_info *cpu);
static int get_freq_scales_count(int cpu);
static void print_stats();
static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
char print_freq);
static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu);
static void read_stats();
static void read_freq_stats(int cpu);
static char should_aggregate_freq_stats();
static char should_print_freq_stats();
static void usage(char *cmd);
int main(int argc, char *argv[]) {
struct cpu_info *tmp_cpus, tmp_total_cpu;
int i, freq_count;
delay = 3;
iterations = -1;
minimal = 0;
aggregate_freq_stats = 0;
for (i = 0; i < argc; i++) {
if (!strcmp(argv[i], "-n")) {
if (i + 1 >= argc) {
fprintf(stderr, "Option -n expects an argument.\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
iterations = atoi(argv[++i]);
continue;
}
if (!strcmp(argv[i], "-d")) {
if (i + 1 >= argc) {
fprintf(stderr, "Option -d expects an argument.\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
delay = atoi(argv[++i]);
continue;
}
if (!strcmp(argv[i], "-m")) {
minimal = 1;
}
if (!strcmp(argv[i], "-h")) {
usage(argv[0]);
exit(EXIT_SUCCESS);
}
}
cpu_count = get_cpu_count();
old_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
if (!old_cpus) die("Could not allocate struct cpu_info\n");
new_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
if (!new_cpus) die("Could not allocate struct cpu_info\n");
for (i = 0; i < cpu_count; i++) {
old_cpus[i].freq_count = new_cpus[i].freq_count = get_freq_scales_count(i);
new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count);
if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n");
old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count);
if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n");
}
// Read stats without aggregating freq stats in the total cpu
read_stats();
aggregate_freq_stats = should_aggregate_freq_stats();
if (aggregate_freq_stats) {
old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count;
new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count);
if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n");
old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count);
if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n");
// Read stats again with aggregating freq stats in the total cpu
read_stats();
}
while ((iterations == -1) || (iterations-- > 0)) {
// Swap new and old cpu buffers;
tmp_total_cpu = old_total_cpu;
old_total_cpu = new_total_cpu;
new_total_cpu = tmp_total_cpu;
tmp_cpus = old_cpus;
old_cpus = new_cpus;
new_cpus = tmp_cpus;
sleep(delay);
read_stats();
print_stats();
}
// Clean up
if (aggregate_freq_stats) {
free(new_total_cpu.freqs);
free(old_total_cpu.freqs);
}
for (i = 0; i < cpu_count; i++) {
free(new_cpus[i].freqs);
free(old_cpus[i].freqs);
}
free(new_cpus);
free(old_cpus);
return 0;
}
/*
* Get the number of CPUs of the system.
*
* Uses the two files /sys/devices/system/cpu/present and
* /sys/devices/system/cpu/online to determine the number of CPUs. Expects the
* format of both files to be either 0 or 0-N where N+1 is the number of CPUs.
*
* Exits if the present CPUs is not equal to the online CPUs
*/
static int get_cpu_count() {
int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present");
if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) {
die("present cpus != online cpus\n");
}
return cpu_count;
}
/*
* Get the number of CPUs from a given filename.
*/
static int get_cpu_count_from_file(char *filename) {
FILE *file;
char line[MAX_BUF_SIZE];
int cpu_count;
file = fopen(filename, "r");
if (!file) die("Could not open %s\n", filename);
if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename);
fclose(file);
if (strcmp(line, "0\n") == 0) {
return 1;
}
if (1 == sscanf(line, "0-%d\n", &cpu_count)) {
return cpu_count + 1;
}
die("Unexpected input in file %s (%s).\n", filename, line);
return -1;
}
/*
* Get the number of frequency states a given CPU can be scaled to.
*/
static int get_freq_scales_count(int cpu) {
FILE *file;
char filename[MAX_BUF_SIZE];
long unsigned freq;
int count = 0;
sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
file = fopen(filename, "r");
if (!file) die("Could not open %s\n", filename);
do {
freq = 0;
fscanf(file, "%lu %*d\n", &freq);
if (freq) count++;
} while(freq);
fclose(file);
return count;
}
/*
* Read the CPU and frequency stats for all cpus.
*/
static void read_stats() {
FILE *file;
char scanline[MAX_BUF_SIZE];
int i;
file = fopen("/proc/stat", "r");
if (!file) die("Could not open /proc/stat.\n");
fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n",
&new_total_cpu.utime, &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime,
&new_total_cpu.iowtime, &new_total_cpu.irqtime, &new_total_cpu.sirqtime);
if (aggregate_freq_stats) {
for (i = 0; i < new_total_cpu.freq_count; i++) {
new_total_cpu.freqs[i].time = 0;
}
}
for (i = 0; i < cpu_count; i++) {
sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i);
fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime,
&new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime,
&new_cpus[i].sirqtime);
read_freq_stats(i);
}
fclose(file);
}
/*
* Read the frequency stats for a given cpu.
*/
static void read_freq_stats(int cpu) {
FILE *file;
char filename[MAX_BUF_SIZE];
int i;
sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
file = fopen(filename, "r");
if (!file) die("Could not open %s\n", filename);
for (i = 0; i < new_cpus[cpu].freq_count; i++) {
fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq,
&new_cpus[cpu].freqs[i].time);
if (aggregate_freq_stats) {
new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq;
new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time;
}
}
fclose(file);
}
/*
* Get the sum of the cpu time from all categories.
*/
static long unsigned get_cpu_total_time(struct cpu_info *cpu) {
return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime +
cpu->sirqtime);
}
/*
* Print the stats for all CPUs.
*/
static void print_stats() {
char label[8];
int i, j;
char print_freq;
print_freq = should_print_freq_stats();
print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1);
for (i = 0; i < cpu_count; i++) {
sprintf(label, "cpu%d", i);
print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq);
}
printf("\n");
}
/*
* Print the stats for a single CPU.
*/
static void print_cpu_stats(char *label, struct cpu_info *new_cpu, struct cpu_info *old_cpu,
char print_freq) {
long int total_delta_time;
if (!minimal) {
total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu);
printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = "
"%ld\n", label,
new_cpu->utime - old_cpu->utime,
new_cpu->ntime - old_cpu->ntime,
new_cpu->stime - old_cpu->stime,
new_cpu->itime - old_cpu->itime,
new_cpu->iowtime - old_cpu->iowtime,
new_cpu->irqtime - old_cpu->irqtime,
new_cpu->sirqtime - old_cpu->sirqtime,
total_delta_time);
if (print_freq) {
print_freq_stats(new_cpu, old_cpu);
}
} else {
printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label,
new_cpu->utime - old_cpu->utime,
new_cpu->ntime - old_cpu->ntime,
new_cpu->stime - old_cpu->stime,
new_cpu->itime - old_cpu->itime,
new_cpu->iowtime - old_cpu->iowtime,
new_cpu->irqtime - old_cpu->irqtime,
new_cpu->sirqtime - old_cpu->sirqtime);
print_freq_stats(new_cpu, old_cpu);
printf("\n");
}
}
/*
* Print the CPU stats for a single CPU.
*/
static void print_freq_stats(struct cpu_info *new_cpu, struct cpu_info *old_cpu) {
long int delta_time, total_delta_time;
int i;
if (new_cpu->freq_count > 0) {
if (!minimal) {
total_delta_time = 0;
printf(" ");
for (i = 0; i < new_cpu->freq_count; i++) {
delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time;
total_delta_time += delta_time;
printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time);
if (i + 1 != new_cpu->freq_count) {
printf(" + \n ");
} else {
printf(" = ");
}
}
printf("%ld\n", total_delta_time);
} else {
for (i = 0; i < new_cpu->freq_count; i++) {
printf(",%u,%ld", new_cpu->freqs[i].freq,
new_cpu->freqs[i].time - old_cpu->freqs[i].time);
}
}
}
}
/*
* Determine if frequency stats should be printed.
*
* If the frequency stats are different between CPUs, the stats should be
* printed for each CPU, else only the aggregate frequency stats should be
* printed.
*/
static char should_print_freq_stats() {
int i, j;
for (i = 1; i < cpu_count; i++) {
for (j = 0; j < new_cpus[i].freq_count; j++) {
if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time !=
new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) {
return 1;
}
}
}
return 0;
}
/*
* Determine if the frequency stats should be aggregated.
*
* Only aggregate the frequency stats in the total cpu stats if the frequencies
* reported by all CPUs are identical. Must be called after read_stats() has
* been called once.
*/
static char should_aggregate_freq_stats() {
int i, j;
for (i = 1; i < cpu_count; i++) {
if (new_cpus[i].freq_count != new_cpus[0].freq_count) {
return 0;
}
for (j = 0; j < new_cpus[i].freq_count; j++) {
if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) {
return 0;
}
}
}
return 1;
}
/*
* Print the usage message.
*/
static void usage(char *cmd) {
fprintf(stderr, "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n"
" -n num Updates to show before exiting.\n"
" -d num Seconds to wait between updates.\n"
" -m Display minimal output.\n"
" -h Display this help screen.\n",
cmd);
}