# Copyright 2013 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import its.image
import its.caps
import its.device
import its.objects
import its.target
import pylab
import os.path
import matplotlib
import matplotlib.pyplot
def main():
"""Test that the android.sensor.sensitivity parameter is applied.
"""
NAME = os.path.basename(__file__).split(".")[0]
NUM_STEPS = 5
sensitivities = None
r_means = []
g_means = []
b_means = []
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
if not its.caps.compute_target_exposure(props):
print "Test skipped"
return
expt,_ = its.target.get_target_exposure_combos(cam)["midSensitivity"]
sens_range = props['android.sensor.info.sensitivityRange']
sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1)
sensitivities = [sens_range[0] + i * sens_step for i in range(NUM_STEPS)]
for s in sensitivities:
req = its.objects.manual_capture_request(s, expt)
cap = cam.do_capture(req)
img = its.image.convert_capture_to_rgb_image(cap)
its.image.write_image(
img, "%s_iso=%04d.jpg" % (NAME, s))
tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
rgb_means = its.image.compute_image_means(tile)
r_means.append(rgb_means[0])
g_means.append(rgb_means[1])
b_means.append(rgb_means[2])
# Draw a plot.
pylab.plot(sensitivities, r_means, 'r')
pylab.plot(sensitivities, g_means, 'g')
pylab.plot(sensitivities, b_means, 'b')
pylab.ylim([0,1])
matplotlib.pyplot.savefig("%s_plot_means.png" % (NAME))
# Test for pass/fail: check that each shot is brighter than the previous.
for means in [r_means, g_means, b_means]:
for i in range(len(means)-1):
assert(means[i+1] > means[i])
if __name__ == '__main__':
main()