/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsdCore.h"
#include "rsdAllocation.h"
#include "rsAllocation.h"
#if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB)
#include "system/window.h"
#include "ui/Rect.h"
#include "ui/GraphicBufferMapper.h"
#endif
#ifdef RS_COMPATIBILITY_LIB
#include "rsCompatibilityLib.h"
#else
#include "rsdFrameBufferObj.h"
#include "gui/GLConsumer.h"
#include "gui/CpuConsumer.h"
#include "gui/Surface.h"
#include "hardware/gralloc.h"
#include <GLES/gl.h>
#include <GLES2/gl2.h>
#include <GLES/glext.h>
#endif
#ifdef RS_SERVER
// server requires malloc.h for memalign
#include <malloc.h>
#endif
using namespace android;
using namespace android::renderscript;
#ifndef RS_COMPATIBILITY_LIB
const static GLenum gFaceOrder[] = {
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
};
GLenum rsdTypeToGLType(RsDataType t) {
switch (t) {
case RS_TYPE_UNSIGNED_5_6_5: return GL_UNSIGNED_SHORT_5_6_5;
case RS_TYPE_UNSIGNED_5_5_5_1: return GL_UNSIGNED_SHORT_5_5_5_1;
case RS_TYPE_UNSIGNED_4_4_4_4: return GL_UNSIGNED_SHORT_4_4_4_4;
//case RS_TYPE_FLOAT_16: return GL_HALF_FLOAT;
case RS_TYPE_FLOAT_32: return GL_FLOAT;
case RS_TYPE_UNSIGNED_8: return GL_UNSIGNED_BYTE;
case RS_TYPE_UNSIGNED_16: return GL_UNSIGNED_SHORT;
case RS_TYPE_SIGNED_8: return GL_BYTE;
case RS_TYPE_SIGNED_16: return GL_SHORT;
default: break;
}
return 0;
}
GLenum rsdKindToGLFormat(RsDataKind k) {
switch (k) {
case RS_KIND_PIXEL_L: return GL_LUMINANCE;
case RS_KIND_PIXEL_A: return GL_ALPHA;
case RS_KIND_PIXEL_LA: return GL_LUMINANCE_ALPHA;
case RS_KIND_PIXEL_RGB: return GL_RGB;
case RS_KIND_PIXEL_RGBA: return GL_RGBA;
case RS_KIND_PIXEL_DEPTH: return GL_DEPTH_COMPONENT16;
default: break;
}
return 0;
}
#endif
uint8_t *GetOffsetPtr(const android::renderscript::Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff,
uint32_t lod, RsAllocationCubemapFace face) {
uint8_t *ptr = (uint8_t *)alloc->mHal.drvState.lod[lod].mallocPtr;
ptr += face * alloc->mHal.drvState.faceOffset;
ptr += zoff * alloc->mHal.drvState.lod[lod].dimY * alloc->mHal.drvState.lod[lod].stride;
ptr += yoff * alloc->mHal.drvState.lod[lod].stride;
ptr += xoff * alloc->mHal.state.elementSizeBytes;
return ptr;
}
static void Update2DTexture(const Context *rsc, const Allocation *alloc, const void *ptr,
uint32_t xoff, uint32_t yoff, uint32_t lod,
RsAllocationCubemapFace face, uint32_t w, uint32_t h) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
rsAssert(drv->textureID);
RSD_CALL_GL(glBindTexture, drv->glTarget, drv->textureID);
RSD_CALL_GL(glPixelStorei, GL_UNPACK_ALIGNMENT, 1);
GLenum t = GL_TEXTURE_2D;
if (alloc->mHal.state.hasFaces) {
t = gFaceOrder[face];
}
RSD_CALL_GL(glTexSubImage2D, t, lod, xoff, yoff, w, h, drv->glFormat, drv->glType, ptr);
#endif
}
#ifndef RS_COMPATIBILITY_LIB
static void Upload2DTexture(const Context *rsc, const Allocation *alloc, bool isFirstUpload) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
RSD_CALL_GL(glBindTexture, drv->glTarget, drv->textureID);
RSD_CALL_GL(glPixelStorei, GL_UNPACK_ALIGNMENT, 1);
uint32_t faceCount = 1;
if (alloc->mHal.state.hasFaces) {
faceCount = 6;
}
rsdGLCheckError(rsc, "Upload2DTexture 1 ");
for (uint32_t face = 0; face < faceCount; face ++) {
for (uint32_t lod = 0; lod < alloc->mHal.state.type->getLODCount(); lod++) {
const uint8_t *p = GetOffsetPtr(alloc, 0, 0, 0, lod, (RsAllocationCubemapFace)face);
GLenum t = GL_TEXTURE_2D;
if (alloc->mHal.state.hasFaces) {
t = gFaceOrder[face];
}
if (isFirstUpload) {
RSD_CALL_GL(glTexImage2D, t, lod, drv->glFormat,
alloc->mHal.state.type->getLODDimX(lod),
alloc->mHal.state.type->getLODDimY(lod),
0, drv->glFormat, drv->glType, p);
} else {
RSD_CALL_GL(glTexSubImage2D, t, lod, 0, 0,
alloc->mHal.state.type->getLODDimX(lod),
alloc->mHal.state.type->getLODDimY(lod),
drv->glFormat, drv->glType, p);
}
}
}
if (alloc->mHal.state.mipmapControl == RS_ALLOCATION_MIPMAP_ON_SYNC_TO_TEXTURE) {
RSD_CALL_GL(glGenerateMipmap, drv->glTarget);
}
rsdGLCheckError(rsc, "Upload2DTexture");
}
#endif
static void UploadToTexture(const Context *rsc, const Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) {
if (!drv->textureID) {
RSD_CALL_GL(glGenTextures, 1, &drv->textureID);
}
return;
}
if (!drv->glType || !drv->glFormat) {
return;
}
if (!alloc->mHal.drvState.lod[0].mallocPtr) {
return;
}
bool isFirstUpload = false;
if (!drv->textureID) {
RSD_CALL_GL(glGenTextures, 1, &drv->textureID);
isFirstUpload = true;
}
Upload2DTexture(rsc, alloc, isFirstUpload);
if (!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT)) {
if (alloc->mHal.drvState.lod[0].mallocPtr) {
free(alloc->mHal.drvState.lod[0].mallocPtr);
alloc->mHal.drvState.lod[0].mallocPtr = NULL;
}
}
rsdGLCheckError(rsc, "UploadToTexture");
#endif
}
static void AllocateRenderTarget(const Context *rsc, const Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (!drv->glFormat) {
return;
}
if (!drv->renderTargetID) {
RSD_CALL_GL(glGenRenderbuffers, 1, &drv->renderTargetID);
if (!drv->renderTargetID) {
// This should generally not happen
ALOGE("allocateRenderTarget failed to gen mRenderTargetID");
rsc->dumpDebug();
return;
}
RSD_CALL_GL(glBindRenderbuffer, GL_RENDERBUFFER, drv->renderTargetID);
RSD_CALL_GL(glRenderbufferStorage, GL_RENDERBUFFER, drv->glFormat,
alloc->mHal.drvState.lod[0].dimX, alloc->mHal.drvState.lod[0].dimY);
}
rsdGLCheckError(rsc, "AllocateRenderTarget");
#endif
}
static void UploadToBufferObject(const Context *rsc, const Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
rsAssert(!alloc->mHal.state.type->getDimY());
rsAssert(!alloc->mHal.state.type->getDimZ());
//alloc->mHal.state.usageFlags |= RS_ALLOCATION_USAGE_GRAPHICS_VERTEX;
if (!drv->bufferID) {
RSD_CALL_GL(glGenBuffers, 1, &drv->bufferID);
}
if (!drv->bufferID) {
ALOGE("Upload to buffer object failed");
drv->uploadDeferred = true;
return;
}
RSD_CALL_GL(glBindBuffer, drv->glTarget, drv->bufferID);
RSD_CALL_GL(glBufferData, drv->glTarget,
alloc->mHal.state.type->getPackedSizeBytes(),
alloc->mHal.drvState.lod[0].mallocPtr, GL_DYNAMIC_DRAW);
RSD_CALL_GL(glBindBuffer, drv->glTarget, 0);
rsdGLCheckError(rsc, "UploadToBufferObject");
#endif
}
static size_t DeriveYUVLayout(int yuv, Allocation::Hal::DrvState *state) {
// YUV only supports basic 2d
// so we can stash the plane pointers in the mipmap levels.
size_t uvSize = 0;
state->lod[1].dimX = state->lod[0].dimX / 2;
state->lod[1].dimY = state->lod[0].dimY / 2;
state->lod[2].dimX = state->lod[0].dimX / 2;
state->lod[2].dimY = state->lod[0].dimY / 2;
state->yuv.shift = 1;
state->yuv.step = 1;
state->lodCount = 3;
#ifndef RS_SERVER
switch(yuv) {
case HAL_PIXEL_FORMAT_YV12:
state->lod[2].stride = rsRound(state->lod[0].stride >> 1, 16);
state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) +
(state->lod[0].stride * state->lod[0].dimY);
uvSize += state->lod[2].stride * state->lod[2].dimY;
state->lod[1].stride = state->lod[2].stride;
state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) +
(state->lod[2].stride * state->lod[2].dimY);
uvSize += state->lod[1].stride * state->lod[2].dimY;
break;
case HAL_PIXEL_FORMAT_YCrCb_420_SP: // NV21
//state->lod[1].dimX = state->lod[0].dimX;
state->lod[1].stride = state->lod[0].stride;
state->lod[2].stride = state->lod[0].stride;
state->lod[2].mallocPtr = ((uint8_t *)state->lod[0].mallocPtr) +
(state->lod[0].stride * state->lod[0].dimY);
state->lod[1].mallocPtr = ((uint8_t *)state->lod[2].mallocPtr) + 1;
uvSize += state->lod[1].stride * state->lod[1].dimY;
state->yuv.step = 2;
break;
#ifndef RS_COMPATIBILITY_LIB
case HAL_PIXEL_FORMAT_YCbCr_420_888:
// This will be filled in by ioReceive()
break;
#endif
default:
rsAssert(0);
}
#endif
return uvSize;
}
static size_t AllocationBuildPointerTable(const Context *rsc, const Allocation *alloc,
const Type *type, uint8_t *ptr) {
alloc->mHal.drvState.lod[0].dimX = type->getDimX();
alloc->mHal.drvState.lod[0].dimY = type->getDimY();
alloc->mHal.drvState.lod[0].dimZ = type->getDimZ();
alloc->mHal.drvState.lod[0].mallocPtr = 0;
// Stride needs to be 16-byte aligned too!
size_t stride = alloc->mHal.drvState.lod[0].dimX * type->getElementSizeBytes();
alloc->mHal.drvState.lod[0].stride = rsRound(stride, 16);
alloc->mHal.drvState.lodCount = type->getLODCount();
alloc->mHal.drvState.faceCount = type->getDimFaces();
size_t offsets[Allocation::MAX_LOD];
memset(offsets, 0, sizeof(offsets));
size_t o = alloc->mHal.drvState.lod[0].stride * rsMax(alloc->mHal.drvState.lod[0].dimY, 1u) *
rsMax(alloc->mHal.drvState.lod[0].dimZ, 1u);
if (alloc->mHal.state.yuv) {
o += DeriveYUVLayout(alloc->mHal.state.yuv, &alloc->mHal.drvState);
for (uint32_t ct = 1; ct < alloc->mHal.drvState.lodCount; ct++) {
offsets[ct] = (size_t)alloc->mHal.drvState.lod[ct].mallocPtr;
}
} else if(alloc->mHal.drvState.lodCount > 1) {
uint32_t tx = alloc->mHal.drvState.lod[0].dimX;
uint32_t ty = alloc->mHal.drvState.lod[0].dimY;
uint32_t tz = alloc->mHal.drvState.lod[0].dimZ;
for (uint32_t lod=1; lod < alloc->mHal.drvState.lodCount; lod++) {
alloc->mHal.drvState.lod[lod].dimX = tx;
alloc->mHal.drvState.lod[lod].dimY = ty;
alloc->mHal.drvState.lod[lod].dimZ = tz;
alloc->mHal.drvState.lod[lod].stride =
rsRound(tx * type->getElementSizeBytes(), 16);
offsets[lod] = o;
o += alloc->mHal.drvState.lod[lod].stride * rsMax(ty, 1u) * rsMax(tz, 1u);
if (tx > 1) tx >>= 1;
if (ty > 1) ty >>= 1;
if (tz > 1) tz >>= 1;
}
}
alloc->mHal.drvState.faceOffset = o;
alloc->mHal.drvState.lod[0].mallocPtr = ptr;
for (uint32_t lod=1; lod < alloc->mHal.drvState.lodCount; lod++) {
alloc->mHal.drvState.lod[lod].mallocPtr = ptr + offsets[lod];
}
size_t allocSize = alloc->mHal.drvState.faceOffset;
if(alloc->mHal.drvState.faceCount) {
allocSize *= 6;
}
return allocSize;
}
static uint8_t* allocAlignedMemory(size_t allocSize, bool forceZero) {
// We align all allocations to a 16-byte boundary.
uint8_t* ptr = (uint8_t *)memalign(16, allocSize);
if (!ptr) {
return NULL;
}
if (forceZero) {
memset(ptr, 0, allocSize);
}
return ptr;
}
bool rsdAllocationInit(const Context *rsc, Allocation *alloc, bool forceZero) {
DrvAllocation *drv = (DrvAllocation *)calloc(1, sizeof(DrvAllocation));
if (!drv) {
return false;
}
alloc->mHal.drv = drv;
// Calculate the object size.
size_t allocSize = AllocationBuildPointerTable(rsc, alloc, alloc->getType(), NULL);
uint8_t * ptr = NULL;
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT) {
} else if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) {
// Allocation is allocated when the surface is created
// in getSurface
} else if (alloc->mHal.state.userProvidedPtr != NULL) {
// user-provided allocation
// limitations: no faces, no LOD, USAGE_SCRIPT or SCRIPT+TEXTURE only
if (!(alloc->mHal.state.usageFlags == (RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_SHARED) ||
alloc->mHal.state.usageFlags == (RS_ALLOCATION_USAGE_SCRIPT | RS_ALLOCATION_USAGE_SHARED | RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE))) {
ALOGE("Can't use user-allocated buffers if usage is not USAGE_SCRIPT | USAGE_SHARED or USAGE_SCRIPT | USAGE_SHARED | USAGE_GRAPHICS_TEXTURE");
return false;
}
if (alloc->getType()->getDimLOD() || alloc->getType()->getDimFaces()) {
ALOGE("User-allocated buffers must not have multiple faces or LODs");
return false;
}
// rows must be 16-byte aligned
// validate that here, otherwise fall back to not use the user-backed allocation
if (((alloc->getType()->getDimX() * alloc->getType()->getElement()->getSizeBytes()) % 16) != 0) {
ALOGV("User-backed allocation failed stride requirement, falling back to separate allocation");
drv->useUserProvidedPtr = false;
ptr = allocAlignedMemory(allocSize, forceZero);
if (!ptr) {
alloc->mHal.drv = NULL;
free(drv);
return false;
}
} else {
drv->useUserProvidedPtr = true;
ptr = (uint8_t*)alloc->mHal.state.userProvidedPtr;
}
} else {
ptr = allocAlignedMemory(allocSize, forceZero);
if (!ptr) {
alloc->mHal.drv = NULL;
free(drv);
return false;
}
}
// Build the pointer tables
size_t verifySize = AllocationBuildPointerTable(rsc, alloc, alloc->getType(), ptr);
if(allocSize != verifySize) {
rsAssert(!"Size mismatch");
}
#ifndef RS_SERVER
drv->glTarget = GL_NONE;
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE) {
if (alloc->mHal.state.hasFaces) {
drv->glTarget = GL_TEXTURE_CUBE_MAP;
} else {
drv->glTarget = GL_TEXTURE_2D;
}
} else {
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_VERTEX) {
drv->glTarget = GL_ARRAY_BUFFER;
}
}
#endif
#ifndef RS_COMPATIBILITY_LIB
drv->glType = rsdTypeToGLType(alloc->mHal.state.type->getElement()->getComponent().getType());
drv->glFormat = rsdKindToGLFormat(alloc->mHal.state.type->getElement()->getComponent().getKind());
#else
drv->glType = 0;
drv->glFormat = 0;
#endif
if (alloc->mHal.state.usageFlags & ~RS_ALLOCATION_USAGE_SCRIPT) {
drv->uploadDeferred = true;
}
drv->readBackFBO = NULL;
// fill out the initial state of the buffer if we couldn't use the user-provided ptr and USAGE_SHARED was accepted
if ((alloc->mHal.state.userProvidedPtr != 0) && (drv->useUserProvidedPtr == false)) {
rsdAllocationData2D(rsc, alloc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, alloc->getType()->getDimX(), alloc->getType()->getDimY(), alloc->mHal.state.userProvidedPtr, allocSize, 0);
}
#ifdef RS_FIND_OFFSETS
ALOGE("pointer for allocation: %p", alloc);
ALOGE("pointer for allocation.drv: %p", &alloc->mHal.drv);
#endif
return true;
}
void rsdAllocationDestroy(const Context *rsc, Allocation *alloc) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
#ifndef RS_COMPATIBILITY_LIB
if (drv->bufferID) {
// Causes a SW crash....
//ALOGV(" mBufferID %i", mBufferID);
//glDeleteBuffers(1, &mBufferID);
//mBufferID = 0;
}
if (drv->textureID) {
RSD_CALL_GL(glDeleteTextures, 1, &drv->textureID);
drv->textureID = 0;
}
if (drv->renderTargetID) {
RSD_CALL_GL(glDeleteRenderbuffers, 1, &drv->renderTargetID);
drv->renderTargetID = 0;
}
#endif
if (alloc->mHal.drvState.lod[0].mallocPtr) {
// don't free user-allocated ptrs or IO_OUTPUT buffers
if (!(drv->useUserProvidedPtr) &&
!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_INPUT) &&
!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT)) {
free(alloc->mHal.drvState.lod[0].mallocPtr);
}
alloc->mHal.drvState.lod[0].mallocPtr = NULL;
}
#ifndef RS_COMPATIBILITY_LIB
if (drv->readBackFBO != NULL) {
delete drv->readBackFBO;
drv->readBackFBO = NULL;
}
if ((alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT) &&
(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT)) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
ANativeWindow *nw = drv->wndSurface;
if (nw) {
GraphicBufferMapper &mapper = GraphicBufferMapper::get();
mapper.unlock(drv->wndBuffer->handle);
int32_t r = nw->queueBuffer(nw, drv->wndBuffer, -1);
drv->wndSurface = NULL;
native_window_api_disconnect(nw, NATIVE_WINDOW_API_CPU);
nw->decStrong(NULL);
}
}
#endif
free(drv);
alloc->mHal.drv = NULL;
}
void rsdAllocationResize(const Context *rsc, const Allocation *alloc,
const Type *newType, bool zeroNew) {
const uint32_t oldDimX = alloc->mHal.drvState.lod[0].dimX;
const uint32_t dimX = newType->getDimX();
// can't resize Allocations with user-allocated buffers
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SHARED) {
ALOGE("Resize cannot be called on a USAGE_SHARED allocation");
return;
}
void * oldPtr = alloc->mHal.drvState.lod[0].mallocPtr;
// Calculate the object size
size_t s = AllocationBuildPointerTable(rsc, alloc, newType, NULL);
uint8_t *ptr = (uint8_t *)realloc(oldPtr, s);
// Build the relative pointer tables.
size_t verifySize = AllocationBuildPointerTable(rsc, alloc, newType, ptr);
if(s != verifySize) {
rsAssert(!"Size mismatch");
}
if (dimX > oldDimX) {
size_t stride = alloc->mHal.state.elementSizeBytes;
memset(((uint8_t *)alloc->mHal.drvState.lod[0].mallocPtr) + stride * oldDimX,
0, stride * (dimX - oldDimX));
}
}
static void rsdAllocationSyncFromFBO(const Context *rsc, const Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
if (!alloc->getIsScript()) {
return; // nothing to sync
}
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
RsdFrameBufferObj *lastFbo = dc->gl.currentFrameBuffer;
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (!drv->textureID && !drv->renderTargetID) {
return; // nothing was rendered here yet, so nothing to sync
}
if (drv->readBackFBO == NULL) {
drv->readBackFBO = new RsdFrameBufferObj();
drv->readBackFBO->setColorTarget(drv, 0);
drv->readBackFBO->setDimensions(alloc->getType()->getDimX(),
alloc->getType()->getDimY());
}
// Bind the framebuffer object so we can read back from it
drv->readBackFBO->setActive(rsc);
// Do the readback
RSD_CALL_GL(glReadPixels, 0, 0, alloc->mHal.drvState.lod[0].dimX,
alloc->mHal.drvState.lod[0].dimY,
drv->glFormat, drv->glType, alloc->mHal.drvState.lod[0].mallocPtr);
// Revert framebuffer to its original
lastFbo->setActive(rsc);
#endif
}
void rsdAllocationSyncAll(const Context *rsc, const Allocation *alloc,
RsAllocationUsageType src) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (src == RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) {
if(!alloc->getIsRenderTarget()) {
rsc->setError(RS_ERROR_FATAL_DRIVER,
"Attempting to sync allocation from render target, "
"for non-render target allocation");
} else if (alloc->getType()->getElement()->getKind() != RS_KIND_PIXEL_RGBA) {
rsc->setError(RS_ERROR_FATAL_DRIVER, "Cannot only sync from RGBA"
"render target");
} else {
rsdAllocationSyncFromFBO(rsc, alloc);
}
return;
}
rsAssert(src == RS_ALLOCATION_USAGE_SCRIPT || src == RS_ALLOCATION_USAGE_SHARED);
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_TEXTURE) {
UploadToTexture(rsc, alloc);
} else {
if ((alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) &&
!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_IO_OUTPUT)) {
AllocateRenderTarget(rsc, alloc);
}
}
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_VERTEX) {
UploadToBufferObject(rsc, alloc);
}
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SHARED) {
if (src == RS_ALLOCATION_USAGE_SHARED) {
// just a memory fence for the CPU driver
// vendor drivers probably want to flush any dirty cachelines for
// this particular Allocation
__sync_synchronize();
}
}
drv->uploadDeferred = false;
}
void rsdAllocationMarkDirty(const Context *rsc, const Allocation *alloc) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
drv->uploadDeferred = true;
}
#ifndef RS_COMPATIBILITY_LIB
static bool IoGetBuffer(const Context *rsc, Allocation *alloc, ANativeWindow *nw) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
int32_t r = native_window_dequeue_buffer_and_wait(nw, &drv->wndBuffer);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error getting next IO output buffer.");
return false;
}
// Must lock the whole surface
GraphicBufferMapper &mapper = GraphicBufferMapper::get();
Rect bounds(drv->wndBuffer->width, drv->wndBuffer->height);
void *dst = NULL;
mapper.lock(drv->wndBuffer->handle,
GRALLOC_USAGE_SW_READ_NEVER | GRALLOC_USAGE_SW_WRITE_OFTEN,
bounds, &dst);
alloc->mHal.drvState.lod[0].mallocPtr = dst;
alloc->mHal.drvState.lod[0].stride = drv->wndBuffer->stride * alloc->mHal.state.elementSizeBytes;
rsAssert((alloc->mHal.drvState.lod[0].stride & 0xf) == 0);
return true;
}
#endif
void rsdAllocationSetSurface(const Context *rsc, Allocation *alloc, ANativeWindow *nw) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
ANativeWindow *old = drv->wndSurface;
if (nw) {
nw->incStrong(NULL);
}
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) {
//TODO finish support for render target + script
drv->wnd = nw;
return;
}
// Cleanup old surface if there is one.
if (drv->wndSurface) {
ANativeWindow *old = drv->wndSurface;
GraphicBufferMapper &mapper = GraphicBufferMapper::get();
mapper.unlock(drv->wndBuffer->handle);
old->cancelBuffer(old, drv->wndBuffer, -1);
drv->wndSurface = NULL;
native_window_api_disconnect(old, NATIVE_WINDOW_API_CPU);
old->decStrong(NULL);
}
if (nw != NULL) {
int32_t r;
uint32_t flags = 0;
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) {
flags |= GRALLOC_USAGE_SW_READ_RARELY | GRALLOC_USAGE_SW_WRITE_OFTEN;
}
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) {
flags |= GRALLOC_USAGE_HW_RENDER;
}
r = native_window_api_connect(nw, NATIVE_WINDOW_API_CPU);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer usage.");
goto error;
}
r = native_window_set_usage(nw, flags);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer usage.");
goto error;
}
r = native_window_set_buffers_dimensions(nw, alloc->mHal.drvState.lod[0].dimX,
alloc->mHal.drvState.lod[0].dimY);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer dimensions.");
goto error;
}
int format = 0;
const Element *e = alloc->mHal.state.type->getElement();
rsAssert(e->getType() == RS_TYPE_UNSIGNED_8);
rsAssert(e->getVectorSize() == 4);
rsAssert(e->getKind() == RS_KIND_PIXEL_RGBA);
format = PIXEL_FORMAT_RGBA_8888;
r = native_window_set_buffers_format(nw, format);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error setting IO output buffer format.");
goto error;
}
IoGetBuffer(rsc, alloc, nw);
drv->wndSurface = nw;
}
return;
error:
if (nw) {
nw->decStrong(NULL);
}
#endif
}
void rsdAllocationIoSend(const Context *rsc, Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
ANativeWindow *nw = drv->wndSurface;
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_GRAPHICS_RENDER_TARGET) {
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
RSD_CALL_GL(eglSwapBuffers, dc->gl.egl.display, dc->gl.egl.surface);
return;
}
if (nw) {
if (alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) {
GraphicBufferMapper &mapper = GraphicBufferMapper::get();
mapper.unlock(drv->wndBuffer->handle);
int32_t r = nw->queueBuffer(nw, drv->wndBuffer, -1);
if (r) {
rsc->setError(RS_ERROR_DRIVER, "Error sending IO output buffer.");
return;
}
IoGetBuffer(rsc, alloc, nw);
}
} else {
rsc->setError(RS_ERROR_DRIVER, "Sent IO buffer with no attached surface.");
return;
}
#endif
}
void rsdAllocationIoReceive(const Context *rsc, Allocation *alloc) {
#ifndef RS_COMPATIBILITY_LIB
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
if (!(alloc->mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT)) {
drv->surfaceTexture->updateTexImage();
}
#endif
}
void rsdAllocationData1D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count,
const void *data, size_t sizeBytes) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
const size_t eSize = alloc->mHal.state.type->getElementSizeBytes();
uint8_t * ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
size_t size = count * eSize;
if (ptr != data) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(data, count);
alloc->decRefs(ptr, count);
}
memcpy(ptr, data, size);
}
drv->uploadDeferred = true;
}
void rsdAllocationData2D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face,
uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
size_t eSize = alloc->mHal.state.elementSizeBytes;
size_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
const uint8_t *src = static_cast<const uint8_t *>(data);
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
drv->uploadDeferred = true;
return;
}
for (uint32_t line=yoff; line < (yoff+h); line++) {
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(src, w);
alloc->decRefs(dst, w);
}
memcpy(dst, src, lineSize);
src += stride;
dst += alloc->mHal.drvState.lod[lod].stride;
}
if (alloc->mHal.state.yuv) {
size_t clineSize = lineSize;
int lod = 1;
int maxLod = 2;
if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YV12) {
maxLod = 3;
clineSize >>= 1;
} else if (alloc->mHal.state.yuv == HAL_PIXEL_FORMAT_YCrCb_420_SP) {
lod = 2;
maxLod = 3;
}
while (lod < maxLod) {
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
for (uint32_t line=(yoff >> 1); line < ((yoff+h)>>1); line++) {
memcpy(dst, src, clineSize);
src += alloc->mHal.drvState.lod[lod].stride;
dst += alloc->mHal.drvState.lod[lod].stride;
}
lod++;
}
}
drv->uploadDeferred = true;
} else {
Update2DTexture(rsc, alloc, data, xoff, yoff, lod, face, w, h);
}
}
void rsdAllocationData3D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff,
uint32_t lod,
uint32_t w, uint32_t h, uint32_t d, const void *data,
size_t sizeBytes, size_t stride) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
uint32_t eSize = alloc->mHal.state.elementSizeBytes;
uint32_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
const uint8_t *src = static_cast<const uint8_t *>(data);
for (uint32_t z = zoff; z < d; z++) {
uint8_t *dst = GetOffsetPtr(alloc, xoff, yoff, z, lod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
drv->uploadDeferred = true;
return;
}
for (uint32_t line=yoff; line < (yoff+h); line++) {
if (alloc->mHal.state.hasReferences) {
alloc->incRefs(src, w);
alloc->decRefs(dst, w);
}
memcpy(dst, src, lineSize);
src += stride;
dst += alloc->mHal.drvState.lod[lod].stride;
}
}
drv->uploadDeferred = true;
}
}
void rsdAllocationRead1D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t lod, size_t count,
void *data, size_t sizeBytes) {
const size_t eSize = alloc->mHal.state.type->getElementSizeBytes();
const uint8_t * ptr = GetOffsetPtr(alloc, xoff, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
if (data != ptr) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
memcpy(data, ptr, count * eSize);
}
}
void rsdAllocationRead2D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face,
uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) {
size_t eSize = alloc->mHal.state.elementSizeBytes;
size_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
uint8_t *dst = static_cast<uint8_t *>(data);
const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, 0, lod, face);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
return;
}
for (uint32_t line=yoff; line < (yoff+h); line++) {
memcpy(dst, src, lineSize);
dst += stride;
src += alloc->mHal.drvState.lod[lod].stride;
}
} else {
ALOGE("Add code to readback from non-script memory");
}
}
void rsdAllocationRead3D(const Context *rsc, const Allocation *alloc,
uint32_t xoff, uint32_t yoff, uint32_t zoff,
uint32_t lod,
uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) {
uint32_t eSize = alloc->mHal.state.elementSizeBytes;
uint32_t lineSize = eSize * w;
if (!stride) {
stride = lineSize;
}
if (alloc->mHal.drvState.lod[0].mallocPtr) {
uint8_t *dst = static_cast<uint8_t *>(data);
for (uint32_t z = zoff; z < d; z++) {
const uint8_t *src = GetOffsetPtr(alloc, xoff, yoff, z, lod,
RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
if (dst == src) {
// Skip the copy if we are the same allocation. This can arise from
// our Bitmap optimization, where we share the same storage.
return;
}
for (uint32_t line=yoff; line < (yoff+h); line++) {
memcpy(dst, src, lineSize);
dst += stride;
src += alloc->mHal.drvState.lod[lod].stride;
}
}
}
}
void * rsdAllocationLock1D(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *alloc) {
return alloc->mHal.drvState.lod[0].mallocPtr;
}
void rsdAllocationUnlock1D(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *alloc) {
}
void rsdAllocationData1D_alloc(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstLod, size_t count,
const android::renderscript::Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcLod) {
}
void rsdAllocationData2D_alloc_script(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod,
RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h,
const android::renderscript::Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod,
RsAllocationCubemapFace srcFace) {
size_t elementSize = dstAlloc->getType()->getElementSizeBytes();
for (uint32_t i = 0; i < h; i ++) {
uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, 0, dstLod, dstFace);
uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, 0, srcLod, srcFace);
memcpy(dstPtr, srcPtr, w * elementSize);
//ALOGE("COPIED dstXoff(%u), dstYoff(%u), dstLod(%u), dstFace(%u), w(%u), h(%u), srcXoff(%u), srcYoff(%u), srcLod(%u), srcFace(%u)",
// dstXoff, dstYoff, dstLod, dstFace, w, h, srcXoff, srcYoff, srcLod, srcFace);
}
}
void rsdAllocationData3D_alloc_script(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, uint32_t dstLod,
uint32_t w, uint32_t h, uint32_t d,
const android::renderscript::Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, uint32_t srcLod) {
uint32_t elementSize = dstAlloc->getType()->getElementSizeBytes();
for (uint32_t j = 0; j < d; j++) {
for (uint32_t i = 0; i < h; i ++) {
uint8_t *dstPtr = GetOffsetPtr(dstAlloc, dstXoff, dstYoff + i, dstZoff + j,
dstLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
uint8_t *srcPtr = GetOffsetPtr(srcAlloc, srcXoff, srcYoff + i, srcZoff + j,
srcLod, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
memcpy(dstPtr, srcPtr, w * elementSize);
//ALOGE("COPIED dstXoff(%u), dstYoff(%u), dstLod(%u), dstFace(%u), w(%u), h(%u), srcXoff(%u), srcYoff(%u), srcLod(%u), srcFace(%u)",
// dstXoff, dstYoff, dstLod, dstFace, w, h, srcXoff, srcYoff, srcLod, srcFace);
}
}
}
void rsdAllocationData2D_alloc(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstLod,
RsAllocationCubemapFace dstFace, uint32_t w, uint32_t h,
const android::renderscript::Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcLod,
RsAllocationCubemapFace srcFace) {
if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) {
rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not "
"yet implemented.");
return;
}
rsdAllocationData2D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff,
dstLod, dstFace, w, h, srcAlloc,
srcXoff, srcYoff, srcLod, srcFace);
}
void rsdAllocationData3D_alloc(const android::renderscript::Context *rsc,
const android::renderscript::Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff,
uint32_t dstLod,
uint32_t w, uint32_t h, uint32_t d,
const android::renderscript::Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff,
uint32_t srcLod) {
if (!dstAlloc->getIsScript() && !srcAlloc->getIsScript()) {
rsc->setError(RS_ERROR_FATAL_DRIVER, "Non-script allocation copies not "
"yet implemented.");
return;
}
rsdAllocationData3D_alloc_script(rsc, dstAlloc, dstXoff, dstYoff, dstZoff,
dstLod, w, h, d, srcAlloc,
srcXoff, srcYoff, srcZoff, srcLod);
}
void rsdAllocationElementData1D(const Context *rsc, const Allocation *alloc,
uint32_t x,
const void *data, uint32_t cIdx, size_t sizeBytes) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
size_t eSize = alloc->mHal.state.elementSizeBytes;
uint8_t * ptr = GetOffsetPtr(alloc, x, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
const Element * e = alloc->mHal.state.type->getElement()->getField(cIdx);
ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx);
if (alloc->mHal.state.hasReferences) {
e->incRefs(data);
e->decRefs(ptr);
}
memcpy(ptr, data, sizeBytes);
drv->uploadDeferred = true;
}
void rsdAllocationElementData2D(const Context *rsc, const Allocation *alloc,
uint32_t x, uint32_t y,
const void *data, uint32_t cIdx, size_t sizeBytes) {
DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv;
size_t eSize = alloc->mHal.state.elementSizeBytes;
uint8_t * ptr = GetOffsetPtr(alloc, x, y, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X);
const Element * e = alloc->mHal.state.type->getElement()->getField(cIdx);
ptr += alloc->mHal.state.type->getElement()->getFieldOffsetBytes(cIdx);
if (alloc->mHal.state.hasReferences) {
e->incRefs(data);
e->decRefs(ptr);
}
memcpy(ptr, data, sizeBytes);
drv->uploadDeferred = true;
}
static void mip565(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y=0; y < h; y++) {
uint16_t *oPtr = (uint16_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint16_t *i1 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y*2, lod, face);
const uint16_t *i2 = (uint16_t *)GetOffsetPtr(alloc, 0, 0, y*2+1, lod, face);
for (uint32_t x=0; x < w; x++) {
*oPtr = rsBoxFilter565(i1[0], i1[1], i2[0], i2[1]);
oPtr ++;
i1 += 2;
i2 += 2;
}
}
}
static void mip8888(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y=0; y < h; y++) {
uint32_t *oPtr = (uint32_t *)GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint32_t *i1 = (uint32_t *)GetOffsetPtr(alloc, 0, y*2, 0, lod, face);
const uint32_t *i2 = (uint32_t *)GetOffsetPtr(alloc, 0, y*2+1, 0, lod, face);
for (uint32_t x=0; x < w; x++) {
*oPtr = rsBoxFilter8888(i1[0], i1[1], i2[0], i2[1]);
oPtr ++;
i1 += 2;
i2 += 2;
}
}
}
static void mip8(const Allocation *alloc, int lod, RsAllocationCubemapFace face) {
uint32_t w = alloc->mHal.drvState.lod[lod + 1].dimX;
uint32_t h = alloc->mHal.drvState.lod[lod + 1].dimY;
for (uint32_t y=0; y < h; y++) {
uint8_t *oPtr = GetOffsetPtr(alloc, 0, y, 0, lod + 1, face);
const uint8_t *i1 = GetOffsetPtr(alloc, 0, y*2, 0, lod, face);
const uint8_t *i2 = GetOffsetPtr(alloc, 0, y*2+1, 0, lod, face);
for (uint32_t x=0; x < w; x++) {
*oPtr = (uint8_t)(((uint32_t)i1[0] + i1[1] + i2[0] + i2[1]) * 0.25f);
oPtr ++;
i1 += 2;
i2 += 2;
}
}
}
void rsdAllocationGenerateMipmaps(const Context *rsc, const Allocation *alloc) {
if(!alloc->mHal.drvState.lod[0].mallocPtr) {
return;
}
uint32_t numFaces = alloc->getType()->getDimFaces() ? 6 : 1;
for (uint32_t face = 0; face < numFaces; face ++) {
for (uint32_t lod=0; lod < (alloc->getType()->getLODCount() -1); lod++) {
switch (alloc->getType()->getElement()->getSizeBits()) {
case 32:
mip8888(alloc, lod, (RsAllocationCubemapFace)face);
break;
case 16:
mip565(alloc, lod, (RsAllocationCubemapFace)face);
break;
case 8:
mip8(alloc, lod, (RsAllocationCubemapFace)face);
break;
}
}
}
}
uint32_t rsdAllocationGrallocBits(const android::renderscript::Context *rsc,
android::renderscript::Allocation *alloc)
{
return 0;
}
void rsdAllocationUpdateCachedObject(const Context *rsc,
const Allocation *alloc,
rs_allocation *obj)
{
obj->p = alloc;
#ifdef __LP64__
if (alloc != NULL) {
obj->r = alloc->mHal.drvState.lod[0].mallocPtr;
obj->v1 = alloc->mHal.drv;
obj->v2 = (void *)alloc->mHal.drvState.lod[0].stride;
} else {
obj->r = NULL;
obj->v1 = NULL;
obj->v2 = NULL;
}
#endif
}