/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HWUI_DISPLAY_OPERATION_H
#define ANDROID_HWUI_DISPLAY_OPERATION_H
#ifndef LOG_TAG
#define LOG_TAG "OpenGLRenderer"
#endif
#include <SkColor.h>
#include <SkPath.h>
#include <SkPathOps.h>
#include <SkXfermode.h>
#include <private/hwui/DrawGlInfo.h>
#include "OpenGLRenderer.h"
#include "AssetAtlas.h"
#include "DeferredDisplayList.h"
#include "DisplayListRenderer.h"
#include "UvMapper.h"
#include "utils/LinearAllocator.h"
#define CRASH() do { \
*(int *)(uintptr_t) 0xbbadbeef = 0; \
((void(*)())0)(); /* More reliable, but doesn't say BBADBEEF */ \
} while(false)
// Use OP_LOG for logging with arglist, OP_LOGS if just printing char*
#define OP_LOGS(s) OP_LOG("%s", (s))
#define OP_LOG(s, ...) ALOGD( "%*s" s, level * 2, "", __VA_ARGS__ )
namespace android {
namespace uirenderer {
/**
* Structure for storing canvas operations when they are recorded into a DisplayList, so that they
* may be replayed to an OpenGLRenderer.
*
* To avoid individual memory allocations, DisplayListOps may only be allocated into a
* LinearAllocator's managed memory buffers. Each pointer held by a DisplayListOp is either a
* pointer into memory also allocated in the LinearAllocator (mostly for text and float buffers) or
* references a externally refcounted object (Sk... and Skia... objects). ~DisplayListOp() is
* never called as LinearAllocators are simply discarded, so no memory management should be done in
* this class.
*/
class DisplayListOp {
public:
// These objects should always be allocated with a LinearAllocator, and never destroyed/deleted.
// standard new() intentionally not implemented, and delete/deconstructor should never be used.
virtual ~DisplayListOp() { CRASH(); }
static void operator delete(void* ptr) { CRASH(); }
/** static void* operator new(size_t size); PURPOSELY OMITTED **/
static void* operator new(size_t size, LinearAllocator& allocator) {
return allocator.alloc(size);
}
enum OpLogFlag {
kOpLogFlag_Recurse = 0x1,
kOpLogFlag_JSON = 0x2 // TODO: add?
};
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) = 0;
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
bool useQuickReject) = 0;
virtual void output(int level, uint32_t logFlags = 0) const = 0;
// NOTE: it would be nice to declare constants and overriding the implementation in each op to
// point at the constants, but that seems to require a .cpp file
virtual const char* name() = 0;
};
class StateOp : public DisplayListOp {
public:
StateOp() {};
virtual ~StateOp() {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
// default behavior only affects immediate, deferrable state, issue directly to renderer
applyState(deferStruct.mRenderer, saveCount);
}
/**
* State operations are applied directly to the renderer, but can cause the deferred drawing op
* list to flush
*/
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
bool useQuickReject) {
applyState(replayStruct.mRenderer, saveCount);
}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const = 0;
};
class DrawOp : public DisplayListOp {
friend class MergingDrawBatch;
public:
DrawOp(const SkPaint* paint)
: mPaint(paint), mQuickRejected(false) {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
if (mQuickRejected && CC_LIKELY(useQuickReject)) {
return;
}
deferStruct.mDeferredList.addDrawOp(deferStruct.mRenderer, this);
}
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
bool useQuickReject) {
if (mQuickRejected && CC_LIKELY(useQuickReject)) {
return;
}
replayStruct.mDrawGlStatus |= applyDraw(replayStruct.mRenderer, replayStruct.mDirty);
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) = 0;
/**
* Draw multiple instances of an operation, must be overidden for operations that merge
*
* Currently guarantees certain similarities between ops (see MergingDrawBatch::canMergeWith),
* and pure translation transformations. Other guarantees of similarity should be enforced by
* reducing which operations are tagged as mergeable.
*/
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {
status_t status = DrawGlInfo::kStatusDone;
for (unsigned int i = 0; i < ops.size(); i++) {
renderer.restoreDisplayState(*(ops[i].state), true);
status |= ops[i].op->applyDraw(renderer, dirty);
}
return status;
}
/**
* When this method is invoked the state field is initialized to have the
* final rendering state. We can thus use it to process data as it will be
* used at draw time.
*
* Additionally, this method allows subclasses to provide defer-time preferences for batching
* and merging.
*
* if a subclass can set deferInfo.mergeable to true, it should implement multiDraw()
*/
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {}
/**
* Query the conservative, local bounds (unmapped) bounds of the op.
*
* returns true if bounds exist
*/
virtual bool getLocalBounds(Rect& localBounds) {
return false;
}
// TODO: better refine localbounds usage
void setQuickRejected(bool quickRejected) { mQuickRejected = quickRejected; }
bool getQuickRejected() { return mQuickRejected; }
inline int getPaintAlpha() const {
return OpenGLRenderer::getAlphaDirect(mPaint);
}
virtual bool hasTextShadow() const {
return false;
}
inline float strokeWidthOutset() {
// since anything AA stroke with less than 1.0 pixel width is drawn with an alpha-reduced
// 1.0 stroke, treat 1.0 as minimum.
// TODO: it would be nice if this could take scale into account, but scale isn't stable
// since higher levels of the view hierarchy can change scale out from underneath it.
return fmaxf(mPaint->getStrokeWidth(), 1) * 0.5f;
}
protected:
const SkPaint* getPaint(OpenGLRenderer& renderer) {
return renderer.filterPaint(mPaint);
}
// Helper method for determining op opaqueness. Assumes op fills its bounds in local
// coordinates, and that paint's alpha is used
inline bool isOpaqueOverBounds(const DeferredDisplayState& state) {
// ensure that local bounds cover mapped bounds
if (!state.mMatrix.isSimple()) return false;
if (state.mRoundRectClipState) return false;
// check state/paint for transparency
if (mPaint) {
if (mPaint->getShader() && !mPaint->getShader()->isOpaque()) {
return false;
}
if (mPaint->getAlpha() != 0xFF) {
return false;
}
}
if (state.mAlpha != 1.0f) return false;
SkXfermode::Mode mode = OpenGLRenderer::getXfermodeDirect(mPaint);
return (mode == SkXfermode::kSrcOver_Mode ||
mode == SkXfermode::kSrc_Mode);
}
const SkPaint* mPaint; // should be accessed via getPaint() when applying
bool mQuickRejected;
};
class DrawBoundedOp : public DrawOp {
public:
DrawBoundedOp(float left, float top, float right, float bottom, const SkPaint* paint)
: DrawOp(paint), mLocalBounds(left, top, right, bottom) {}
DrawBoundedOp(const Rect& localBounds, const SkPaint* paint)
: DrawOp(paint), mLocalBounds(localBounds) {}
// Calculates bounds as smallest rect encompassing all points
// NOTE: requires at least 1 vertex, and doesn't account for stroke size (should be handled in
// subclass' constructor)
DrawBoundedOp(const float* points, int count, const SkPaint* paint)
: DrawOp(paint), mLocalBounds(points[0], points[1], points[0], points[1]) {
for (int i = 2; i < count; i += 2) {
mLocalBounds.left = fminf(mLocalBounds.left, points[i]);
mLocalBounds.right = fmaxf(mLocalBounds.right, points[i]);
mLocalBounds.top = fminf(mLocalBounds.top, points[i + 1]);
mLocalBounds.bottom = fmaxf(mLocalBounds.bottom, points[i + 1]);
}
}
// default empty constructor for bounds, to be overridden in child constructor body
DrawBoundedOp(const SkPaint* paint): DrawOp(paint) { }
virtual bool getLocalBounds(Rect& localBounds) {
localBounds.set(mLocalBounds);
OpenGLRenderer::TextShadow textShadow;
if (OpenGLRenderer::getTextShadow(mPaint, &textShadow)) {
Rect shadow(mLocalBounds);
shadow.translate(textShadow.dx, textShadow.dx);
shadow.outset(textShadow.radius);
localBounds.unionWith(shadow);
}
return true;
}
protected:
Rect mLocalBounds; // displayed area in LOCAL coord. doesn't incorporate stroke, so check paint
};
///////////////////////////////////////////////////////////////////////////////
// STATE OPERATIONS - these may affect the state of the canvas/renderer, but do
// not directly draw or alter output
///////////////////////////////////////////////////////////////////////////////
class SaveOp : public StateOp {
public:
SaveOp(int flags)
: mFlags(flags) {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
int newSaveCount = deferStruct.mRenderer.save(mFlags);
deferStruct.mDeferredList.addSave(deferStruct.mRenderer, this, newSaveCount);
}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.save(mFlags);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Save flags %x", mFlags);
}
virtual const char* name() { return "Save"; }
int getFlags() const { return mFlags; }
private:
int mFlags;
};
class RestoreToCountOp : public StateOp {
public:
RestoreToCountOp(int count)
: mCount(count) {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
deferStruct.mDeferredList.addRestoreToCount(deferStruct.mRenderer,
this, saveCount + mCount);
deferStruct.mRenderer.restoreToCount(saveCount + mCount);
}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.restoreToCount(saveCount + mCount);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Restore to count %d", mCount);
}
virtual const char* name() { return "RestoreToCount"; }
private:
int mCount;
};
class SaveLayerOp : public StateOp {
public:
SaveLayerOp(float left, float top, float right, float bottom, int alpha, int flags)
: mArea(left, top, right, bottom)
, mPaint(&mCachedPaint)
, mFlags(flags)
, mConvexMask(NULL) {
mCachedPaint.setAlpha(alpha);
}
SaveLayerOp(float left, float top, float right, float bottom, const SkPaint* paint, int flags)
: mArea(left, top, right, bottom)
, mPaint(paint)
, mFlags(flags)
, mConvexMask(NULL)
{}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
// NOTE: don't bother with actual saveLayer, instead issuing it at flush time
int newSaveCount = deferStruct.mRenderer.getSaveCount();
deferStruct.mDeferredList.addSaveLayer(deferStruct.mRenderer, this, newSaveCount);
// NOTE: don't issue full saveLayer, since that has side effects/is costly. instead just
// setup the snapshot for deferral, and re-issue the op at flush time
deferStruct.mRenderer.saveLayerDeferred(mArea.left, mArea.top, mArea.right, mArea.bottom,
mPaint, mFlags);
}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.saveLayer(mArea.left, mArea.top, mArea.right, mArea.bottom,
mPaint, mFlags, mConvexMask);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("SaveLayer%s of area " RECT_STRING,
(isSaveLayerAlpha() ? "Alpha" : ""),RECT_ARGS(mArea));
}
virtual const char* name() { return isSaveLayerAlpha() ? "SaveLayerAlpha" : "SaveLayer"; }
int getFlags() { return mFlags; }
// Called to make SaveLayerOp clip to the provided mask when drawing back/restored
void setMask(const SkPath* convexMask) {
mConvexMask = convexMask;
}
private:
bool isSaveLayerAlpha() const {
SkXfermode::Mode mode = OpenGLRenderer::getXfermodeDirect(mPaint);
int alpha = OpenGLRenderer::getAlphaDirect(mPaint);
return alpha < 255 && mode == SkXfermode::kSrcOver_Mode;
}
Rect mArea;
const SkPaint* mPaint;
SkPaint mCachedPaint;
int mFlags;
// Convex path, points at data in RenderNode, valid for the duration of the frame only
// Only used for masking the SaveLayer which wraps projected RenderNodes
const SkPath* mConvexMask;
};
class TranslateOp : public StateOp {
public:
TranslateOp(float dx, float dy)
: mDx(dx), mDy(dy) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.translate(mDx, mDy);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Translate by %f %f", mDx, mDy);
}
virtual const char* name() { return "Translate"; }
private:
float mDx;
float mDy;
};
class RotateOp : public StateOp {
public:
RotateOp(float degrees)
: mDegrees(degrees) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.rotate(mDegrees);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Rotate by %f degrees", mDegrees);
}
virtual const char* name() { return "Rotate"; }
private:
float mDegrees;
};
class ScaleOp : public StateOp {
public:
ScaleOp(float sx, float sy)
: mSx(sx), mSy(sy) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.scale(mSx, mSy);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Scale by %f %f", mSx, mSy);
}
virtual const char* name() { return "Scale"; }
private:
float mSx;
float mSy;
};
class SkewOp : public StateOp {
public:
SkewOp(float sx, float sy)
: mSx(sx), mSy(sy) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.skew(mSx, mSy);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Skew by %f %f", mSx, mSy);
}
virtual const char* name() { return "Skew"; }
private:
float mSx;
float mSy;
};
class SetMatrixOp : public StateOp {
public:
SetMatrixOp(const SkMatrix& matrix)
: mMatrix(matrix) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.setMatrix(mMatrix);
}
virtual void output(int level, uint32_t logFlags) const {
if (mMatrix.isIdentity()) {
OP_LOGS("SetMatrix (reset)");
} else {
OP_LOG("SetMatrix " SK_MATRIX_STRING, SK_MATRIX_ARGS(&mMatrix));
}
}
virtual const char* name() { return "SetMatrix"; }
private:
const SkMatrix mMatrix;
};
class ConcatMatrixOp : public StateOp {
public:
ConcatMatrixOp(const SkMatrix& matrix)
: mMatrix(matrix) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.concatMatrix(mMatrix);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("ConcatMatrix " SK_MATRIX_STRING, SK_MATRIX_ARGS(&mMatrix));
}
virtual const char* name() { return "ConcatMatrix"; }
private:
const SkMatrix mMatrix;
};
class ClipOp : public StateOp {
public:
ClipOp(SkRegion::Op op) : mOp(op) {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
// NOTE: must defer op BEFORE applying state, since it may read clip
deferStruct.mDeferredList.addClip(deferStruct.mRenderer, this);
// TODO: Can we avoid applying complex clips at defer time?
applyState(deferStruct.mRenderer, saveCount);
}
bool canCauseComplexClip() {
return ((mOp != SkRegion::kIntersect_Op) && (mOp != SkRegion::kReplace_Op)) || !isRect();
}
protected:
virtual bool isRect() { return false; }
SkRegion::Op mOp;
};
class ClipRectOp : public ClipOp {
public:
ClipRectOp(float left, float top, float right, float bottom, SkRegion::Op op)
: ClipOp(op), mArea(left, top, right, bottom) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.clipRect(mArea.left, mArea.top, mArea.right, mArea.bottom, mOp);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("ClipRect " RECT_STRING, RECT_ARGS(mArea));
}
virtual const char* name() { return "ClipRect"; }
protected:
virtual bool isRect() { return true; }
private:
Rect mArea;
};
class ClipPathOp : public ClipOp {
public:
ClipPathOp(const SkPath* path, SkRegion::Op op)
: ClipOp(op), mPath(path) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.clipPath(mPath, mOp);
}
virtual void output(int level, uint32_t logFlags) const {
SkRect bounds = mPath->getBounds();
OP_LOG("ClipPath bounds " RECT_STRING,
bounds.left(), bounds.top(), bounds.right(), bounds.bottom());
}
virtual const char* name() { return "ClipPath"; }
private:
const SkPath* mPath;
};
class ClipRegionOp : public ClipOp {
public:
ClipRegionOp(const SkRegion* region, SkRegion::Op op)
: ClipOp(op), mRegion(region) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.clipRegion(mRegion, mOp);
}
virtual void output(int level, uint32_t logFlags) const {
SkIRect bounds = mRegion->getBounds();
OP_LOG("ClipRegion bounds %d %d %d %d",
bounds.left(), bounds.top(), bounds.right(), bounds.bottom());
}
virtual const char* name() { return "ClipRegion"; }
private:
const SkRegion* mRegion;
};
class ResetPaintFilterOp : public StateOp {
public:
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.resetPaintFilter();
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOGS("ResetPaintFilter");
}
virtual const char* name() { return "ResetPaintFilter"; }
};
class SetupPaintFilterOp : public StateOp {
public:
SetupPaintFilterOp(int clearBits, int setBits)
: mClearBits(clearBits), mSetBits(setBits) {}
virtual void applyState(OpenGLRenderer& renderer, int saveCount) const {
renderer.setupPaintFilter(mClearBits, mSetBits);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("SetupPaintFilter, clear %#x, set %#x", mClearBits, mSetBits);
}
virtual const char* name() { return "SetupPaintFilter"; }
private:
int mClearBits;
int mSetBits;
};
///////////////////////////////////////////////////////////////////////////////
// DRAW OPERATIONS - these are operations that can draw to the canvas's device
///////////////////////////////////////////////////////////////////////////////
class DrawBitmapOp : public DrawBoundedOp {
public:
DrawBitmapOp(const SkBitmap* bitmap, const SkPaint* paint)
: DrawBoundedOp(0, 0, bitmap->width(), bitmap->height(), paint)
, mBitmap(bitmap)
, mAtlas(Caches::getInstance().assetAtlas) {
mEntry = mAtlas.getEntry(bitmap);
if (mEntry) {
mEntryGenerationId = mAtlas.getGenerationId();
mUvMapper = mEntry->uvMapper;
}
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawBitmap(mBitmap, getPaint(renderer));
}
AssetAtlas::Entry* getAtlasEntry() {
// The atlas entry is stale, let's get a new one
if (mEntry && mEntryGenerationId != mAtlas.getGenerationId()) {
mEntryGenerationId = mAtlas.getGenerationId();
mEntry = mAtlas.getEntry(mBitmap);
mUvMapper = mEntry->uvMapper;
}
return mEntry;
}
#define SET_TEXTURE(ptr, posRect, offsetRect, texCoordsRect, xDim, yDim) \
TextureVertex::set(ptr++, posRect.xDim - offsetRect.left, posRect.yDim - offsetRect.top, \
texCoordsRect.xDim, texCoordsRect.yDim)
/**
* This multi-draw operation builds a mesh on the stack by generating a quad
* for each bitmap in the batch. This method is also responsible for dirtying
* the current layer, if any.
*/
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {
const DeferredDisplayState& firstState = *(ops[0].state);
renderer.restoreDisplayState(firstState, true); // restore all but the clip
TextureVertex vertices[6 * ops.size()];
TextureVertex* vertex = &vertices[0];
const bool hasLayer = renderer.hasLayer();
bool pureTranslate = true;
// TODO: manually handle rect clip for bitmaps by adjusting texCoords per op,
// and allowing them to be merged in getBatchId()
for (unsigned int i = 0; i < ops.size(); i++) {
const DeferredDisplayState& state = *(ops[i].state);
const Rect& opBounds = state.mBounds;
// When we reach multiDraw(), the matrix can be either
// pureTranslate or simple (translate and/or scale).
// If the matrix is not pureTranslate, then we have a scale
pureTranslate &= state.mMatrix.isPureTranslate();
Rect texCoords(0, 0, 1, 1);
((DrawBitmapOp*) ops[i].op)->mUvMapper.map(texCoords);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, top);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top);
SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, bottom);
if (hasLayer) {
renderer.dirtyLayer(opBounds.left, opBounds.top, opBounds.right, opBounds.bottom);
}
}
return renderer.drawBitmaps(mBitmap, mEntry, ops.size(), &vertices[0],
pureTranslate, bounds, mPaint);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw bitmap %p at %f %f", mBitmap, mLocalBounds.left, mLocalBounds.top);
}
virtual const char* name() { return "DrawBitmap"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
deferInfo.mergeId = getAtlasEntry() ?
(mergeid_t) mEntry->getMergeId() : (mergeid_t) mBitmap;
// Don't merge non-simply transformed or neg scale ops, SET_TEXTURE doesn't handle rotation
// Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in
// MergingDrawBatch::canMergeWith()
// TODO: support clipped bitmaps by handling them in SET_TEXTURE
deferInfo.mergeable = state.mMatrix.isSimple() && state.mMatrix.positiveScale() &&
!state.mClipSideFlags &&
OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode &&
(mBitmap->colorType() != kAlpha_8_SkColorType);
}
const SkBitmap* bitmap() { return mBitmap; }
protected:
const SkBitmap* mBitmap;
const AssetAtlas& mAtlas;
uint32_t mEntryGenerationId;
AssetAtlas::Entry* mEntry;
UvMapper mUvMapper;
};
class DrawBitmapRectOp : public DrawBoundedOp {
public:
DrawBitmapRectOp(const SkBitmap* bitmap,
float srcLeft, float srcTop, float srcRight, float srcBottom,
float dstLeft, float dstTop, float dstRight, float dstBottom, const SkPaint* paint)
: DrawBoundedOp(dstLeft, dstTop, dstRight, dstBottom, paint),
mBitmap(bitmap), mSrc(srcLeft, srcTop, srcRight, srcBottom) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawBitmap(mBitmap, mSrc.left, mSrc.top, mSrc.right, mSrc.bottom,
mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom,
getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw bitmap %p src=" RECT_STRING ", dst=" RECT_STRING,
mBitmap, RECT_ARGS(mSrc), RECT_ARGS(mLocalBounds));
}
virtual const char* name() { return "DrawBitmapRect"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
}
private:
const SkBitmap* mBitmap;
Rect mSrc;
};
class DrawBitmapDataOp : public DrawBitmapOp {
public:
DrawBitmapDataOp(const SkBitmap* bitmap, const SkPaint* paint)
: DrawBitmapOp(bitmap, paint) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawBitmapData(mBitmap, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw bitmap %p", mBitmap);
}
virtual const char* name() { return "DrawBitmapData"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
}
};
class DrawBitmapMeshOp : public DrawBoundedOp {
public:
DrawBitmapMeshOp(const SkBitmap* bitmap, int meshWidth, int meshHeight,
const float* vertices, const int* colors, const SkPaint* paint)
: DrawBoundedOp(vertices, 2 * (meshWidth + 1) * (meshHeight + 1), paint),
mBitmap(bitmap), mMeshWidth(meshWidth), mMeshHeight(meshHeight),
mVertices(vertices), mColors(colors) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawBitmapMesh(mBitmap, mMeshWidth, mMeshHeight,
mVertices, mColors, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw bitmap %p mesh %d x %d", mBitmap, mMeshWidth, mMeshHeight);
}
virtual const char* name() { return "DrawBitmapMesh"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap;
}
private:
const SkBitmap* mBitmap;
int mMeshWidth;
int mMeshHeight;
const float* mVertices;
const int* mColors;
};
class DrawPatchOp : public DrawBoundedOp {
public:
DrawPatchOp(const SkBitmap* bitmap, const Res_png_9patch* patch,
float left, float top, float right, float bottom, const SkPaint* paint)
: DrawBoundedOp(left, top, right, bottom, paint),
mBitmap(bitmap), mPatch(patch), mGenerationId(0), mMesh(NULL),
mAtlas(Caches::getInstance().assetAtlas) {
mEntry = mAtlas.getEntry(bitmap);
if (mEntry) {
mEntryGenerationId = mAtlas.getGenerationId();
}
};
AssetAtlas::Entry* getAtlasEntry() {
// The atlas entry is stale, let's get a new one
if (mEntry && mEntryGenerationId != mAtlas.getGenerationId()) {
mEntryGenerationId = mAtlas.getGenerationId();
mEntry = mAtlas.getEntry(mBitmap);
}
return mEntry;
}
const Patch* getMesh(OpenGLRenderer& renderer) {
if (!mMesh || renderer.getCaches().patchCache.getGenerationId() != mGenerationId) {
PatchCache& cache = renderer.getCaches().patchCache;
mMesh = cache.get(getAtlasEntry(), mBitmap->width(), mBitmap->height(),
mLocalBounds.getWidth(), mLocalBounds.getHeight(), mPatch);
mGenerationId = cache.getGenerationId();
}
return mMesh;
}
/**
* This multi-draw operation builds an indexed mesh on the stack by copying
* and transforming the vertices of each 9-patch in the batch. This method
* is also responsible for dirtying the current layer, if any.
*/
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {
const DeferredDisplayState& firstState = *(ops[0].state);
renderer.restoreDisplayState(firstState, true); // restore all but the clip
// Batches will usually contain a small number of items so it's
// worth performing a first iteration to count the exact number
// of vertices we need in the new mesh
uint32_t totalVertices = 0;
for (unsigned int i = 0; i < ops.size(); i++) {
totalVertices += ((DrawPatchOp*) ops[i].op)->getMesh(renderer)->verticesCount;
}
const bool hasLayer = renderer.hasLayer();
uint32_t indexCount = 0;
TextureVertex vertices[totalVertices];
TextureVertex* vertex = &vertices[0];
// Create a mesh that contains the transformed vertices for all the
// 9-patch objects that are part of the batch. Note that onDefer()
// enforces ops drawn by this function to have a pure translate or
// identity matrix
for (unsigned int i = 0; i < ops.size(); i++) {
DrawPatchOp* patchOp = (DrawPatchOp*) ops[i].op;
const DeferredDisplayState* state = ops[i].state;
const Patch* opMesh = patchOp->getMesh(renderer);
uint32_t vertexCount = opMesh->verticesCount;
if (vertexCount == 0) continue;
// We use the bounds to know where to translate our vertices
// Using patchOp->state.mBounds wouldn't work because these
// bounds are clipped
const float tx = (int) floorf(state->mMatrix.getTranslateX() +
patchOp->mLocalBounds.left + 0.5f);
const float ty = (int) floorf(state->mMatrix.getTranslateY() +
patchOp->mLocalBounds.top + 0.5f);
// Copy & transform all the vertices for the current operation
TextureVertex* opVertices = opMesh->vertices;
for (uint32_t j = 0; j < vertexCount; j++, opVertices++) {
TextureVertex::set(vertex++,
opVertices->x + tx, opVertices->y + ty,
opVertices->u, opVertices->v);
}
// Dirty the current layer if possible. When the 9-patch does not
// contain empty quads we can take a shortcut and simply set the
// dirty rect to the object's bounds.
if (hasLayer) {
if (!opMesh->hasEmptyQuads) {
renderer.dirtyLayer(tx, ty,
tx + patchOp->mLocalBounds.getWidth(),
ty + patchOp->mLocalBounds.getHeight());
} else {
const size_t count = opMesh->quads.size();
for (size_t i = 0; i < count; i++) {
const Rect& quadBounds = opMesh->quads[i];
const float x = tx + quadBounds.left;
const float y = ty + quadBounds.top;
renderer.dirtyLayer(x, y,
x + quadBounds.getWidth(), y + quadBounds.getHeight());
}
}
}
indexCount += opMesh->indexCount;
}
return renderer.drawPatches(mBitmap, getAtlasEntry(),
&vertices[0], indexCount, getPaint(renderer));
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
// We're not calling the public variant of drawPatch() here
// This method won't perform the quickReject() since we've already done it at this point
return renderer.drawPatch(mBitmap, getMesh(renderer), getAtlasEntry(),
mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom,
getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw patch " RECT_STRING, RECT_ARGS(mLocalBounds));
}
virtual const char* name() { return "DrawPatch"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Patch;
deferInfo.mergeId = getAtlasEntry() ? (mergeid_t) mEntry->getMergeId() : (mergeid_t) mBitmap;
deferInfo.mergeable = state.mMatrix.isPureTranslate() &&
OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode;
deferInfo.opaqueOverBounds = isOpaqueOverBounds(state) && mBitmap->isOpaque();
}
private:
const SkBitmap* mBitmap;
const Res_png_9patch* mPatch;
uint32_t mGenerationId;
const Patch* mMesh;
const AssetAtlas& mAtlas;
uint32_t mEntryGenerationId;
AssetAtlas::Entry* mEntry;
};
class DrawColorOp : public DrawOp {
public:
DrawColorOp(int color, SkXfermode::Mode mode)
: DrawOp(NULL), mColor(color), mMode(mode) {};
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawColor(mColor, mMode);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw color %#x, mode %d", mColor, mMode);
}
virtual const char* name() { return "DrawColor"; }
private:
int mColor;
SkXfermode::Mode mMode;
};
class DrawStrokableOp : public DrawBoundedOp {
public:
DrawStrokableOp(float left, float top, float right, float bottom, const SkPaint* paint)
: DrawBoundedOp(left, top, right, bottom, paint) {};
DrawStrokableOp(const Rect& localBounds, const SkPaint* paint)
: DrawBoundedOp(localBounds, paint) {};
virtual bool getLocalBounds(Rect& localBounds) {
localBounds.set(mLocalBounds);
if (mPaint && mPaint->getStyle() != SkPaint::kFill_Style) {
localBounds.outset(strokeWidthOutset());
}
return true;
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
if (mPaint->getPathEffect()) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture;
} else {
deferInfo.batchId = mPaint->isAntiAlias() ?
DeferredDisplayList::kOpBatch_AlphaVertices :
DeferredDisplayList::kOpBatch_Vertices;
}
}
};
class DrawRectOp : public DrawStrokableOp {
public:
DrawRectOp(float left, float top, float right, float bottom, const SkPaint* paint)
: DrawStrokableOp(left, top, right, bottom, paint) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawRect(mLocalBounds.left, mLocalBounds.top,
mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Rect " RECT_STRING, RECT_ARGS(mLocalBounds));
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
DrawStrokableOp::onDefer(renderer, deferInfo, state);
deferInfo.opaqueOverBounds = isOpaqueOverBounds(state) &&
mPaint->getStyle() == SkPaint::kFill_Style;
}
virtual const char* name() { return "DrawRect"; }
};
class DrawRectsOp : public DrawBoundedOp {
public:
DrawRectsOp(const float* rects, int count, const SkPaint* paint)
: DrawBoundedOp(rects, count, paint),
mRects(rects), mCount(count) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawRects(mRects, mCount, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Rects count %d", mCount);
}
virtual const char* name() { return "DrawRects"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = DeferredDisplayList::kOpBatch_Vertices;
}
private:
const float* mRects;
int mCount;
};
class DrawRoundRectOp : public DrawStrokableOp {
public:
DrawRoundRectOp(float left, float top, float right, float bottom,
float rx, float ry, const SkPaint* paint)
: DrawStrokableOp(left, top, right, bottom, paint), mRx(rx), mRy(ry) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawRoundRect(mLocalBounds.left, mLocalBounds.top,
mLocalBounds.right, mLocalBounds.bottom, mRx, mRy, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw RoundRect " RECT_STRING ", rx %f, ry %f", RECT_ARGS(mLocalBounds), mRx, mRy);
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
DrawStrokableOp::onDefer(renderer, deferInfo, state);
if (!mPaint->getPathEffect()) {
renderer.getCaches().tessellationCache.precacheRoundRect(state.mMatrix, *mPaint,
mLocalBounds.getWidth(), mLocalBounds.getHeight(), mRx, mRy);
}
}
virtual const char* name() { return "DrawRoundRect"; }
private:
float mRx;
float mRy;
};
class DrawRoundRectPropsOp : public DrawOp {
public:
DrawRoundRectPropsOp(float* left, float* top, float* right, float* bottom,
float *rx, float *ry, const SkPaint* paint)
: DrawOp(paint), mLeft(left), mTop(top), mRight(right), mBottom(bottom),
mRx(rx), mRy(ry) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawRoundRect(*mLeft, *mTop, *mRight, *mBottom,
*mRx, *mRy, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw RoundRect Props " RECT_STRING ", rx %f, ry %f",
*mLeft, *mTop, *mRight, *mBottom, *mRx, *mRy);
}
virtual const char* name() { return "DrawRoundRectProps"; }
private:
float* mLeft;
float* mTop;
float* mRight;
float* mBottom;
float* mRx;
float* mRy;
};
class DrawCircleOp : public DrawStrokableOp {
public:
DrawCircleOp(float x, float y, float radius, const SkPaint* paint)
: DrawStrokableOp(x - radius, y - radius, x + radius, y + radius, paint),
mX(x), mY(y), mRadius(radius) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawCircle(mX, mY, mRadius, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Circle x %f, y %f, r %f", mX, mY, mRadius);
}
virtual const char* name() { return "DrawCircle"; }
private:
float mX;
float mY;
float mRadius;
};
class DrawCirclePropsOp : public DrawOp {
public:
DrawCirclePropsOp(float* x, float* y, float* radius, const SkPaint* paint)
: DrawOp(paint), mX(x), mY(y), mRadius(radius) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawCircle(*mX, *mY, *mRadius, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Circle Props x %p, y %p, r %p", mX, mY, mRadius);
}
virtual const char* name() { return "DrawCircleProps"; }
private:
float* mX;
float* mY;
float* mRadius;
};
class DrawOvalOp : public DrawStrokableOp {
public:
DrawOvalOp(float left, float top, float right, float bottom, const SkPaint* paint)
: DrawStrokableOp(left, top, right, bottom, paint) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawOval(mLocalBounds.left, mLocalBounds.top,
mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Oval " RECT_STRING, RECT_ARGS(mLocalBounds));
}
virtual const char* name() { return "DrawOval"; }
};
class DrawArcOp : public DrawStrokableOp {
public:
DrawArcOp(float left, float top, float right, float bottom,
float startAngle, float sweepAngle, bool useCenter, const SkPaint* paint)
: DrawStrokableOp(left, top, right, bottom, paint),
mStartAngle(startAngle), mSweepAngle(sweepAngle), mUseCenter(useCenter) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawArc(mLocalBounds.left, mLocalBounds.top,
mLocalBounds.right, mLocalBounds.bottom,
mStartAngle, mSweepAngle, mUseCenter, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Arc " RECT_STRING ", start %f, sweep %f, useCenter %d",
RECT_ARGS(mLocalBounds), mStartAngle, mSweepAngle, mUseCenter);
}
virtual const char* name() { return "DrawArc"; }
private:
float mStartAngle;
float mSweepAngle;
bool mUseCenter;
};
class DrawPathOp : public DrawBoundedOp {
public:
DrawPathOp(const SkPath* path, const SkPaint* paint)
: DrawBoundedOp(paint), mPath(path) {
float left, top, offset;
uint32_t width, height;
PathCache::computePathBounds(path, paint, left, top, offset, width, height);
left -= offset;
top -= offset;
mLocalBounds.set(left, top, left + width, top + height);
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawPath(mPath, getPaint(renderer));
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
const SkPaint* paint = getPaint(renderer);
renderer.getCaches().pathCache.precache(mPath, paint);
deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture;
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Path %p in " RECT_STRING, mPath, RECT_ARGS(mLocalBounds));
}
virtual const char* name() { return "DrawPath"; }
private:
const SkPath* mPath;
};
class DrawLinesOp : public DrawBoundedOp {
public:
DrawLinesOp(const float* points, int count, const SkPaint* paint)
: DrawBoundedOp(points, count, paint),
mPoints(points), mCount(count) {
mLocalBounds.outset(strokeWidthOutset());
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawLines(mPoints, mCount, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Lines count %d", mCount);
}
virtual const char* name() { return "DrawLines"; }
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
deferInfo.batchId = mPaint->isAntiAlias() ?
DeferredDisplayList::kOpBatch_AlphaVertices :
DeferredDisplayList::kOpBatch_Vertices;
}
protected:
const float* mPoints;
int mCount;
};
class DrawPointsOp : public DrawLinesOp {
public:
DrawPointsOp(const float* points, int count, const SkPaint* paint)
: DrawLinesOp(points, count, paint) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawPoints(mPoints, mCount, getPaint(renderer));
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Points count %d", mCount);
}
virtual const char* name() { return "DrawPoints"; }
};
class DrawSomeTextOp : public DrawOp {
public:
DrawSomeTextOp(const char* text, int bytesCount, int count, const SkPaint* paint)
: DrawOp(paint), mText(text), mBytesCount(bytesCount), mCount(count) {};
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw some text, %d bytes", mBytesCount);
}
virtual bool hasTextShadow() const {
return OpenGLRenderer::hasTextShadow(mPaint);
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
const SkPaint* paint = getPaint(renderer);
FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint);
fontRenderer.precache(paint, mText, mCount, SkMatrix::I());
deferInfo.batchId = mPaint->getColor() == SK_ColorBLACK ?
DeferredDisplayList::kOpBatch_Text :
DeferredDisplayList::kOpBatch_ColorText;
}
protected:
const char* mText;
int mBytesCount;
int mCount;
};
class DrawTextOnPathOp : public DrawSomeTextOp {
public:
DrawTextOnPathOp(const char* text, int bytesCount, int count,
const SkPath* path, float hOffset, float vOffset, const SkPaint* paint)
: DrawSomeTextOp(text, bytesCount, count, paint),
mPath(path), mHOffset(hOffset), mVOffset(vOffset) {
/* TODO: inherit from DrawBounded and init mLocalBounds */
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawTextOnPath(mText, mBytesCount, mCount, mPath,
mHOffset, mVOffset, getPaint(renderer));
}
virtual const char* name() { return "DrawTextOnPath"; }
private:
const SkPath* mPath;
float mHOffset;
float mVOffset;
};
class DrawPosTextOp : public DrawSomeTextOp {
public:
DrawPosTextOp(const char* text, int bytesCount, int count,
const float* positions, const SkPaint* paint)
: DrawSomeTextOp(text, bytesCount, count, paint), mPositions(positions) {
/* TODO: inherit from DrawBounded and init mLocalBounds */
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawPosText(mText, mBytesCount, mCount, mPositions, getPaint(renderer));
}
virtual const char* name() { return "DrawPosText"; }
private:
const float* mPositions;
};
class DrawTextOp : public DrawStrokableOp {
public:
DrawTextOp(const char* text, int bytesCount, int count, float x, float y,
const float* positions, const SkPaint* paint, float totalAdvance, const Rect& bounds)
: DrawStrokableOp(bounds, paint), mText(text), mBytesCount(bytesCount), mCount(count),
mX(x), mY(y), mPositions(positions), mTotalAdvance(totalAdvance) {
mPrecacheTransform = SkMatrix::InvalidMatrix();
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
const SkPaint* paint = getPaint(renderer);
FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint);
SkMatrix transform;
renderer.findBestFontTransform(state.mMatrix, &transform);
if (mPrecacheTransform != transform) {
fontRenderer.precache(paint, mText, mCount, transform);
mPrecacheTransform = transform;
}
deferInfo.batchId = mPaint->getColor() == SK_ColorBLACK ?
DeferredDisplayList::kOpBatch_Text :
DeferredDisplayList::kOpBatch_ColorText;
deferInfo.mergeId = reinterpret_cast<mergeid_t>(mPaint->getColor());
// don't merge decorated text - the decorations won't draw in order
bool hasDecorations = mPaint->getFlags()
& (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag);
deferInfo.mergeable = state.mMatrix.isPureTranslate()
&& !hasDecorations
&& OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode;
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
Rect bounds;
getLocalBounds(bounds);
return renderer.drawText(mText, mBytesCount, mCount, mX, mY,
mPositions, getPaint(renderer), mTotalAdvance, bounds);
}
virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty,
const Vector<OpStatePair>& ops, const Rect& bounds) {
status_t status = DrawGlInfo::kStatusDone;
for (unsigned int i = 0; i < ops.size(); i++) {
const DeferredDisplayState& state = *(ops[i].state);
DrawOpMode drawOpMode = (i == ops.size() - 1) ? kDrawOpMode_Flush : kDrawOpMode_Defer;
renderer.restoreDisplayState(state, true); // restore all but the clip
DrawTextOp& op = *((DrawTextOp*)ops[i].op);
// quickReject() will not occure in drawText() so we can use mLocalBounds
// directly, we do not need to account for shadow by calling getLocalBounds()
status |= renderer.drawText(op.mText, op.mBytesCount, op.mCount, op.mX, op.mY,
op.mPositions, op.getPaint(renderer), op.mTotalAdvance, op.mLocalBounds,
drawOpMode);
}
return status;
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Text of count %d, bytes %d", mCount, mBytesCount);
}
virtual const char* name() { return "DrawText"; }
private:
const char* mText;
int mBytesCount;
int mCount;
float mX;
float mY;
const float* mPositions;
float mTotalAdvance;
SkMatrix mPrecacheTransform;
};
///////////////////////////////////////////////////////////////////////////////
// SPECIAL DRAW OPERATIONS
///////////////////////////////////////////////////////////////////////////////
class DrawFunctorOp : public DrawOp {
public:
DrawFunctorOp(Functor* functor)
: DrawOp(NULL), mFunctor(functor) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
renderer.startMark("GL functor");
status_t ret = renderer.callDrawGLFunction(mFunctor, dirty);
renderer.endMark();
return ret;
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Functor %p", mFunctor);
}
virtual const char* name() { return "DrawFunctor"; }
private:
Functor* mFunctor;
};
class DrawRenderNodeOp : public DrawBoundedOp {
friend class RenderNode; // grant RenderNode access to info of child
friend class DisplayListData; // grant DisplayListData access to info of child
public:
DrawRenderNodeOp(RenderNode* renderNode, int flags, const mat4& transformFromParent)
: DrawBoundedOp(0, 0, renderNode->getWidth(), renderNode->getHeight(), 0),
mRenderNode(renderNode), mFlags(flags), mTransformFromParent(transformFromParent) {}
virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level,
bool useQuickReject) {
if (mRenderNode->isRenderable() && !mSkipInOrderDraw) {
mRenderNode->defer(deferStruct, level + 1);
}
}
virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level,
bool useQuickReject) {
if (mRenderNode->isRenderable() && !mSkipInOrderDraw) {
mRenderNode->replay(replayStruct, level + 1);
}
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
LOG_ALWAYS_FATAL("should not be called, because replay() is overridden");
return 0;
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw RenderNode %p %s, flags %#x", mRenderNode, mRenderNode->getName(), mFlags);
if (mRenderNode && (logFlags & kOpLogFlag_Recurse)) {
mRenderNode->output(level + 1);
}
}
virtual const char* name() { return "DrawRenderNode"; }
RenderNode* renderNode() { return mRenderNode; }
private:
RenderNode* mRenderNode;
const int mFlags;
///////////////////////////
// Properties below are used by RenderNode::computeOrderingImpl() and issueOperations()
///////////////////////////
/**
* Records transform vs parent, used for computing total transform without rerunning DL contents
*/
const mat4 mTransformFromParent;
/**
* Holds the transformation between the projection surface ViewGroup and this RenderNode
* drawing instance. Represents any translations / transformations done within the drawing of
* the compositing ancestor ViewGroup's draw, before the draw of the View represented by this
* DisplayList draw instance.
*
* Note: doesn't include transformation within the RenderNode, or its properties.
*/
mat4 mTransformFromCompositingAncestor;
bool mSkipInOrderDraw;
};
/**
* Not a canvas operation, used only by 3d / z ordering logic in RenderNode::iterate()
*/
class DrawShadowOp : public DrawOp {
public:
DrawShadowOp(const mat4& transformXY, const mat4& transformZ,
float casterAlpha, const SkPath* casterOutline)
: DrawOp(NULL)
, mTransformXY(transformXY)
, mTransformZ(transformZ)
, mCasterAlpha(casterAlpha)
, mCasterOutline(casterOutline) {
}
virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo,
const DeferredDisplayState& state) {
renderer.getCaches().tessellationCache.precacheShadows(&state.mMatrix,
renderer.getLocalClipBounds(), isCasterOpaque(), mCasterOutline,
&mTransformXY, &mTransformZ, renderer.getLightCenter(), renderer.getLightRadius());
}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
TessellationCache::vertexBuffer_pair_t buffers;
Matrix4 drawTransform(*(renderer.currentTransform()));
renderer.getCaches().tessellationCache.getShadowBuffers(&drawTransform,
renderer.getLocalClipBounds(), isCasterOpaque(), mCasterOutline,
&mTransformXY, &mTransformZ, renderer.getLightCenter(), renderer.getLightRadius(),
buffers);
return renderer.drawShadow(mCasterAlpha, buffers.first, buffers.second);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOGS("DrawShadow");
}
virtual const char* name() { return "DrawShadow"; }
private:
bool isCasterOpaque() { return mCasterAlpha >= 1.0f; }
const mat4 mTransformXY;
const mat4 mTransformZ;
const float mCasterAlpha;
const SkPath* mCasterOutline;
};
class DrawLayerOp : public DrawOp {
public:
DrawLayerOp(Layer* layer, float x, float y)
: DrawOp(NULL), mLayer(layer), mX(x), mY(y) {}
virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) {
return renderer.drawLayer(mLayer, mX, mY);
}
virtual void output(int level, uint32_t logFlags) const {
OP_LOG("Draw Layer %p at %f %f", mLayer, mX, mY);
}
virtual const char* name() { return "DrawLayer"; }
private:
Layer* mLayer;
float mX;
float mY;
};
}; // namespace uirenderer
}; // namespace android
#endif // ANDROID_HWUI_DISPLAY_OPERATION_H