/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "PathOpsCubicIntersectionTestData.h"
#include "PathOpsQuadIntersectionTestData.h"
#include "PathOpsTestCommon.h"
#include "SkGeometry.h"
#include "SkIntersections.h"
#include "SkPathOpsRect.h"
#include "SkReduceOrder.h"
#include "Test.h"
static void test(skiatest::Reporter* reporter, const SkDCubic* cubics, const char* name,
int firstTest, size_t testCount) {
for (size_t index = firstTest; index < testCount; ++index) {
const SkDCubic& cubic = cubics[index];
SkASSERT(ValidCubic(cubic));
double precision = cubic.calcPrecision();
SkTArray<SkDQuad, true> quads;
CubicToQuads(cubic, precision, quads);
if (quads.count() != 1 && quads.count() != 2) {
SkDebugf("%s [%d] cubic to quadratics failed count=%d\n", name, static_cast<int>(index),
quads.count());
}
REPORTER_ASSERT(reporter, quads.count() == 1);
}
}
static void test(skiatest::Reporter* reporter, const SkDQuad* quadTests, const char* name,
int firstTest, size_t testCount) {
for (size_t index = firstTest; index < testCount; ++index) {
const SkDQuad& quad = quadTests[index];
SkASSERT(ValidQuad(quad));
SkDCubic cubic = quad.toCubic();
double precision = cubic.calcPrecision();
SkTArray<SkDQuad, true> quads;
CubicToQuads(cubic, precision, quads);
if (quads.count() != 1 && quads.count() != 2) {
SkDebugf("%s [%d] cubic to quadratics failed count=%d\n", name, static_cast<int>(index),
quads.count());
}
REPORTER_ASSERT(reporter, quads.count() <= 2);
}
}
static void testC(skiatest::Reporter* reporter, const SkDCubic* cubics, const char* name,
int firstTest, size_t testCount) {
// test if computed line end points are valid
for (size_t index = firstTest; index < testCount; ++index) {
const SkDCubic& cubic = cubics[index];
SkASSERT(ValidCubic(cubic));
double precision = cubic.calcPrecision();
SkTArray<SkDQuad, true> quads;
CubicToQuads(cubic, precision, quads);
if (!AlmostEqualUlps(cubic[0].fX, quads[0][0].fX)
|| !AlmostEqualUlps(cubic[0].fY, quads[0][0].fY)) {
SkDebugf("[%d] unmatched start\n", static_cast<int>(index));
REPORTER_ASSERT(reporter, 0);
}
int last = quads.count() - 1;
if (!AlmostEqualUlps(cubic[3].fX, quads[last][2].fX)
|| !AlmostEqualUlps(cubic[3].fY, quads[last][2].fY)) {
SkDebugf("[%d] unmatched end\n", static_cast<int>(index));
REPORTER_ASSERT(reporter, 0);
}
}
}
static void testC(skiatest::Reporter* reporter, const SkDCubic(* cubics)[2], const char* name,
int firstTest, size_t testCount) {
for (size_t index = firstTest; index < testCount; ++index) {
for (int idx2 = 0; idx2 < 2; ++idx2) {
const SkDCubic& cubic = cubics[index][idx2];
SkASSERT(ValidCubic(cubic));
double precision = cubic.calcPrecision();
SkTArray<SkDQuad, true> quads;
CubicToQuads(cubic, precision, quads);
if (!AlmostEqualUlps(cubic[0].fX, quads[0][0].fX)
|| !AlmostEqualUlps(cubic[0].fY, quads[0][0].fY)) {
SkDebugf("[%d][%d] unmatched start\n", static_cast<int>(index), idx2);
REPORTER_ASSERT(reporter, 0);
}
int last = quads.count() - 1;
if (!AlmostEqualUlps(cubic[3].fX, quads[last][2].fX)
|| !AlmostEqualUlps(cubic[3].fY, quads[last][2].fY)) {
SkDebugf("[%d][%d] unmatched end\n", static_cast<int>(index), idx2);
REPORTER_ASSERT(reporter, 0);
}
}
}
}
DEF_TEST(CubicToQuads, reporter) {
enum {
RunAll,
RunPointDegenerates,
RunNotPointDegenerates,
RunLines,
RunNotLines,
RunModEpsilonLines,
RunLessEpsilonLines,
RunNegEpsilonLines,
RunQuadraticLines,
RunQuadraticModLines,
RunComputedLines,
RunComputedTests,
RunNone
} run = RunAll;
int firstTestIndex = 0;
#if 0
run = RunComputedLines;
firstTestIndex = 18;
#endif
int firstPointDegeneratesTest = run == RunAll ? 0 : run == RunPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstNotPointDegeneratesTest = run == RunAll ? 0 : run == RunNotPointDegenerates
? firstTestIndex : SK_MaxS32;
int firstLinesTest = run == RunAll ? 0 : run == RunLines ? firstTestIndex : SK_MaxS32;
int firstNotLinesTest = run == RunAll ? 0 : run == RunNotLines ? firstTestIndex : SK_MaxS32;
int firstModEpsilonTest = run == RunAll ? 0 : run == RunModEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstLessEpsilonTest = run == RunAll ? 0 : run == RunLessEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstNegEpsilonTest = run == RunAll ? 0 : run == RunNegEpsilonLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticLineTest = run == RunAll ? 0 : run == RunQuadraticLines
? firstTestIndex : SK_MaxS32;
int firstQuadraticModLineTest = run == RunAll ? 0 : run == RunQuadraticModLines
? firstTestIndex : SK_MaxS32;
int firstComputedLinesTest = run == RunAll ? 0 : run == RunComputedLines
? firstTestIndex : SK_MaxS32;
int firstComputedCubicsTest = run == RunAll ? 0 : run == RunComputedTests
? firstTestIndex : SK_MaxS32;
test(reporter, pointDegenerates, "pointDegenerates", firstPointDegeneratesTest,
pointDegenerates_count);
testC(reporter, notPointDegenerates, "notPointDegenerates", firstNotPointDegeneratesTest,
notPointDegenerates_count);
test(reporter, lines, "lines", firstLinesTest, lines_count);
testC(reporter, notLines, "notLines", firstNotLinesTest, notLines_count);
testC(reporter, modEpsilonLines, "modEpsilonLines", firstModEpsilonTest, modEpsilonLines_count);
test(reporter, lessEpsilonLines, "lessEpsilonLines", firstLessEpsilonTest,
lessEpsilonLines_count);
test(reporter, negEpsilonLines, "negEpsilonLines", firstNegEpsilonTest, negEpsilonLines_count);
test(reporter, quadraticLines, "quadraticLines", firstQuadraticLineTest, quadraticLines_count);
test(reporter, quadraticModEpsilonLines, "quadraticModEpsilonLines", firstQuadraticModLineTest,
quadraticModEpsilonLines_count);
testC(reporter, lines, "computed lines", firstComputedLinesTest, lines_count);
testC(reporter, tests, "computed tests", firstComputedCubicsTest, tests_count);
}
static SkDCubic locals[] = {
{{{0, 1}, {1.9274705288631189e-19, 1.0000000000000002},
{0.0017190297609673323, 0.99828097023903239},
{0.0053709083094631276, 0.99505672974365911}}},
{{{14.5975863, 41.632436}, {16.3518929, 26.2639684}, {18.5165519, 7.68775139},
{8.03767257, 89.1628526}}},
{{{69.7292014, 38.6877352}, {24.7648688, 23.1501713}, {84.9283191, 90.2588441},
{80.392774, 61.3533852}}},
{{{60.776536520932126, 71.249307306133829}, {87.107894191103014, 22.377669868235323},
{1.4974754310666936, 68.069569937917208}, {45.261946574441133, 17.536076632112298}}},
};
static size_t localsCount = SK_ARRAY_COUNT(locals);
#define DEBUG_CRASH 0
#define TEST_AVERAGE_END_POINTS 0 // must take const off to test
extern const bool AVERAGE_END_POINTS;
static void oneOff(skiatest::Reporter* reporter, size_t x) {
const SkDCubic& cubic = locals[x];
SkASSERT(ValidCubic(cubic));
const SkPoint skcubic[4] = {
{static_cast<float>(cubic[0].fX), static_cast<float>(cubic[0].fY)},
{static_cast<float>(cubic[1].fX), static_cast<float>(cubic[1].fY)},
{static_cast<float>(cubic[2].fX), static_cast<float>(cubic[2].fY)},
{static_cast<float>(cubic[3].fX), static_cast<float>(cubic[3].fY)}};
SkScalar skinflect[2];
int skin = SkFindCubicInflections(skcubic, skinflect);
if (false) SkDebugf("%s %d %1.9g\n", __FUNCTION__, skin, skinflect[0]);
SkTArray<SkDQuad, true> quads;
double precision = cubic.calcPrecision();
CubicToQuads(cubic, precision, quads);
if (false) SkDebugf("%s quads=%d\n", __FUNCTION__, quads.count());
}
DEF_TEST(CubicsToQuadratics_OneOff_Loop, reporter) {
for (size_t x = 0; x < localsCount; ++x) {
oneOff(reporter, x);
}
}
DEF_TEST(CubicsToQuadratics_OneOff_Single, reporter) {
oneOff(reporter, 0);
}