/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkRandom.h"
#include "SkQuadTree.h"
#include "SkRTree.h"
#include "SkTSort.h"
static const size_t RTREE_MIN_CHILDREN = 6;
static const size_t RTREE_MAX_CHILDREN = 11;
static const size_t QUADTREE_MIN_CHILDREN = 0;
static const size_t QUADTREE_MAX_CHILDREN = 0; // No hard limit for quadtree
static const int NUM_RECTS = 200;
static const size_t NUM_ITERATIONS = 100;
static const size_t NUM_QUERIES = 50;
static const int MAX_SIZE = 1000;
struct DataRect {
SkIRect rect;
void* data;
};
static SkIRect random_rect(SkRandom& rand) {
SkIRect rect = {0,0,0,0};
while (rect.isEmpty()) {
rect.fLeft = rand.nextS() % MAX_SIZE;
rect.fRight = rand.nextS() % MAX_SIZE;
rect.fTop = rand.nextS() % MAX_SIZE;
rect.fBottom = rand.nextS() % MAX_SIZE;
rect.sort();
}
return rect;
}
static void random_data_rects(SkRandom& rand, DataRect out[], int n) {
for (int i = 0; i < n; ++i) {
out[i].rect = random_rect(rand);
out[i].data = reinterpret_cast<void*>(i);
}
}
static bool verify_query(SkIRect query, DataRect rects[],
SkTDArray<void*>& found) {
SkTDArray<void*> expected;
// manually intersect with every rectangle
for (int i = 0; i < NUM_RECTS; ++i) {
if (SkIRect::IntersectsNoEmptyCheck(query, rects[i].rect)) {
expected.push(rects[i].data);
}
}
if (expected.count() != found.count()) {
return false;
}
if (0 == expected.count()) {
return true;
}
// Just cast to long since sorting by the value of the void*'s was being problematic...
SkTQSort(reinterpret_cast<long*>(expected.begin()),
reinterpret_cast<long*>(expected.end() - 1));
SkTQSort(reinterpret_cast<long*>(found.begin()),
reinterpret_cast<long*>(found.end() - 1));
return found == expected;
}
static void run_queries(skiatest::Reporter* reporter, SkRandom& rand, DataRect rects[],
SkBBoxHierarchy& tree) {
for (size_t i = 0; i < NUM_QUERIES; ++i) {
SkTDArray<void*> hits;
SkIRect query = random_rect(rand);
tree.search(query, &hits);
REPORTER_ASSERT(reporter, verify_query(query, rects, hits));
}
}
static void tree_test_main(SkBBoxHierarchy* tree, int minChildren, int maxChildren,
skiatest::Reporter* reporter) {
DataRect rects[NUM_RECTS];
SkRandom rand;
REPORTER_ASSERT(reporter, NULL != tree);
int expectedDepthMin = -1;
int expectedDepthMax = -1;
int tmp = NUM_RECTS;
if (maxChildren > 0) {
while (tmp > 0) {
tmp -= static_cast<int>(pow(static_cast<double>(maxChildren),
static_cast<double>(expectedDepthMin + 1)));
++expectedDepthMin;
}
}
tmp = NUM_RECTS;
if (minChildren > 0) {
while (tmp > 0) {
tmp -= static_cast<int>(pow(static_cast<double>(minChildren),
static_cast<double>(expectedDepthMax + 1)));
++expectedDepthMax;
}
}
for (size_t i = 0; i < NUM_ITERATIONS; ++i) {
random_data_rects(rand, rects, NUM_RECTS);
// First try bulk-loaded inserts
for (int i = 0; i < NUM_RECTS; ++i) {
tree->insert(rects[i].data, rects[i].rect, true);
}
tree->flushDeferredInserts();
run_queries(reporter, rand, rects, *tree);
REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount());
REPORTER_ASSERT(reporter,
((expectedDepthMin <= 0) || (expectedDepthMin <= tree->getDepth())) &&
((expectedDepthMax <= 0) || (expectedDepthMax >= tree->getDepth())));
tree->clear();
REPORTER_ASSERT(reporter, 0 == tree->getCount());
// Then try immediate inserts
tree->insert(rects[0].data, rects[0].rect);
tree->flushDeferredInserts();
for (int i = 1; i < NUM_RECTS; ++i) {
tree->insert(rects[i].data, rects[i].rect);
}
run_queries(reporter, rand, rects, *tree);
REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount());
REPORTER_ASSERT(reporter,
((expectedDepthMin <= 0) || (expectedDepthMin <= tree->getDepth())) &&
((expectedDepthMax <= 0) || (expectedDepthMax >= tree->getDepth())));
tree->clear();
REPORTER_ASSERT(reporter, 0 == tree->getCount());
// And for good measure try immediate inserts, but in reversed order
tree->insert(rects[NUM_RECTS - 1].data, rects[NUM_RECTS - 1].rect);
tree->flushDeferredInserts();
for (int i = NUM_RECTS - 2; i >= 0; --i) {
tree->insert(rects[i].data, rects[i].rect);
}
run_queries(reporter, rand, rects, *tree);
REPORTER_ASSERT(reporter, NUM_RECTS == tree->getCount());
REPORTER_ASSERT(reporter,
((expectedDepthMin < 0) || (expectedDepthMin <= tree->getDepth())) &&
((expectedDepthMax < 0) || (expectedDepthMax >= tree->getDepth())));
tree->clear();
REPORTER_ASSERT(reporter, 0 == tree->getCount());
}
}
DEF_TEST(BBoxHierarchy, reporter) {
// RTree
{
SkRTree* rtree = SkRTree::Create(RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN);
SkAutoUnref au(rtree);
tree_test_main(rtree, RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, reporter);
// Rtree that orders input rectangles on deferred insert.
SkRTree* unsortedRtree = SkRTree::Create(RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, 1, false);
SkAutoUnref auo(unsortedRtree);
tree_test_main(unsortedRtree, RTREE_MIN_CHILDREN, RTREE_MAX_CHILDREN, reporter);
}
// QuadTree
{
SkQuadTree* quadtree = SkNEW_ARGS(SkQuadTree, (
SkIRect::MakeLTRB(-MAX_SIZE, -MAX_SIZE, MAX_SIZE, MAX_SIZE)));
SkAutoUnref au(quadtree);
tree_test_main(quadtree, QUADTREE_MIN_CHILDREN, QUADTREE_MAX_CHILDREN, reporter);
// QuadTree that orders input rectangles on deferred insert.
SkQuadTree* unsortedQuadTree = SkNEW_ARGS(SkQuadTree, (
SkIRect::MakeLTRB(-MAX_SIZE, -MAX_SIZE, MAX_SIZE, MAX_SIZE)));
SkAutoUnref auo(unsortedQuadTree);
tree_test_main(unsortedQuadTree, QUADTREE_MIN_CHILDREN, QUADTREE_MAX_CHILDREN, reporter);
}
}