/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkUtils.h"
#include "SkLazyFnPtr.h"
#if 0
#define assign_16_longs(dst, value) \
do { \
(dst)[0] = value; (dst)[1] = value; \
(dst)[2] = value; (dst)[3] = value; \
(dst)[4] = value; (dst)[5] = value; \
(dst)[6] = value; (dst)[7] = value; \
(dst)[8] = value; (dst)[9] = value; \
(dst)[10] = value; (dst)[11] = value; \
(dst)[12] = value; (dst)[13] = value; \
(dst)[14] = value; (dst)[15] = value; \
} while (0)
#else
#define assign_16_longs(dst, value) \
do { \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
*(dst)++ = value; *(dst)++ = value; \
} while (0)
#endif
///////////////////////////////////////////////////////////////////////////////
static void sk_memset16_portable(uint16_t dst[], uint16_t value, int count) {
SkASSERT(dst != NULL && count >= 0);
if (count <= 0) {
return;
}
// not sure if this helps to short-circuit on small values of count
if (count < 8) {
do {
*dst++ = (uint16_t)value;
} while (--count != 0);
return;
}
// ensure we're on a long boundary
if ((size_t)dst & 2) {
*dst++ = (uint16_t)value;
count -= 1;
}
uint32_t value32 = ((uint32_t)value << 16) | value;
// handle the bulk with our unrolled macro
{
int sixteenlongs = count >> 5;
if (sixteenlongs) {
uint32_t* dst32 = (uint32_t*)dst;
do {
assign_16_longs(dst32, value32);
} while (--sixteenlongs != 0);
dst = (uint16_t*)dst32;
count &= 31;
}
}
// handle (most) of the rest
{
int longs = count >> 1;
if (longs) {
do {
*(uint32_t*)dst = value32;
dst += 2;
} while (--longs != 0);
}
}
// cleanup a possible trailing short
if (count & 1) {
*dst = (uint16_t)value;
}
}
static void sk_memset32_portable(uint32_t dst[], uint32_t value, int count) {
SkASSERT(dst != NULL && count >= 0);
int sixteenlongs = count >> 4;
if (sixteenlongs) {
do {
assign_16_longs(dst, value);
} while (--sixteenlongs != 0);
count &= 15;
}
if (count) {
do {
*dst++ = value;
} while (--count != 0);
}
}
static void sk_memcpy32_portable(uint32_t dst[], const uint32_t src[], int count) {
memcpy(dst, src, count * sizeof(uint32_t));
}
namespace {
// These three methods technically need external linkage to be passed as template parameters.
// Since they can't be static, we hide them in an anonymous namespace instead.
SkMemset16Proc choose_memset16() {
SkMemset16Proc proc = SkMemset16GetPlatformProc();
return proc ? proc : sk_memset16_portable;
}
SkMemset32Proc choose_memset32() {
SkMemset32Proc proc = SkMemset32GetPlatformProc();
return proc ? proc : sk_memset32_portable;
}
SkMemcpy32Proc choose_memcpy32() {
SkMemcpy32Proc proc = SkMemcpy32GetPlatformProc();
return proc ? proc : sk_memcpy32_portable;
}
} // namespace
void sk_memset16(uint16_t dst[], uint16_t value, int count) {
SK_DECLARE_STATIC_LAZY_FN_PTR(SkMemset16Proc, proc, choose_memset16);
proc.get()(dst, value, count);
}
void sk_memset32(uint32_t dst[], uint32_t value, int count) {
SK_DECLARE_STATIC_LAZY_FN_PTR(SkMemset32Proc, proc, choose_memset32);
proc.get()(dst, value, count);
}
void sk_memcpy32(uint32_t dst[], const uint32_t src[], int count) {
SK_DECLARE_STATIC_LAZY_FN_PTR(SkMemcpy32Proc, proc, choose_memcpy32);
proc.get()(dst, src, count);
}
///////////////////////////////////////////////////////////////////////////////
/* 0xxxxxxx 1 total
10xxxxxx // never a leading byte
110xxxxx 2 total
1110xxxx 3 total
11110xxx 4 total
11 10 01 01 xx xx xx xx 0...
0xE5XX0000
0xE5 << 24
*/
#ifdef SK_DEBUG
static void assert_utf8_leadingbyte(unsigned c) {
SkASSERT(c <= 0xF7); // otherwise leading byte is too big (more than 4 bytes)
SkASSERT((c & 0xC0) != 0x80); // can't begin with a middle char
}
int SkUTF8_LeadByteToCount(unsigned c) {
assert_utf8_leadingbyte(c);
return (((0xE5 << 24) >> (c >> 4 << 1)) & 3) + 1;
}
#else
#define assert_utf8_leadingbyte(c)
#endif
int SkUTF8_CountUnichars(const char utf8[]) {
SkASSERT(utf8);
int count = 0;
for (;;) {
int c = *(const uint8_t*)utf8;
if (c == 0) {
break;
}
utf8 += SkUTF8_LeadByteToCount(c);
count += 1;
}
return count;
}
int SkUTF8_CountUnichars(const char utf8[], size_t byteLength) {
SkASSERT(NULL != utf8 || 0 == byteLength);
int count = 0;
const char* stop = utf8 + byteLength;
while (utf8 < stop) {
utf8 += SkUTF8_LeadByteToCount(*(const uint8_t*)utf8);
count += 1;
}
return count;
}
SkUnichar SkUTF8_ToUnichar(const char utf8[]) {
SkASSERT(NULL != utf8);
const uint8_t* p = (const uint8_t*)utf8;
int c = *p;
int hic = c << 24;
assert_utf8_leadingbyte(c);
if (hic < 0) {
uint32_t mask = (uint32_t)~0x3F;
hic <<= 1;
do {
c = (c << 6) | (*++p & 0x3F);
mask <<= 5;
} while ((hic <<= 1) < 0);
c &= ~mask;
}
return c;
}
SkUnichar SkUTF8_NextUnichar(const char** ptr) {
SkASSERT(NULL != ptr && NULL != *ptr);
const uint8_t* p = (const uint8_t*)*ptr;
int c = *p;
int hic = c << 24;
assert_utf8_leadingbyte(c);
if (hic < 0) {
uint32_t mask = (uint32_t)~0x3F;
hic <<= 1;
do {
c = (c << 6) | (*++p & 0x3F);
mask <<= 5;
} while ((hic <<= 1) < 0);
c &= ~mask;
}
*ptr = (char*)p + 1;
return c;
}
SkUnichar SkUTF8_PrevUnichar(const char** ptr) {
SkASSERT(NULL != ptr && NULL != *ptr);
const char* p = *ptr;
if (*--p & 0x80) {
while (*--p & 0x40) {
;
}
}
*ptr = (char*)p;
return SkUTF8_NextUnichar(&p);
}
size_t SkUTF8_FromUnichar(SkUnichar uni, char utf8[]) {
if ((uint32_t)uni > 0x10FFFF) {
SkDEBUGFAIL("bad unichar");
return 0;
}
if (uni <= 127) {
if (utf8) {
*utf8 = (char)uni;
}
return 1;
}
char tmp[4];
char* p = tmp;
size_t count = 1;
SkDEBUGCODE(SkUnichar orig = uni;)
while (uni > 0x7F >> count) {
*p++ = (char)(0x80 | (uni & 0x3F));
uni >>= 6;
count += 1;
}
if (utf8) {
p = tmp;
utf8 += count;
while (p < tmp + count - 1) {
*--utf8 = *p++;
}
*--utf8 = (char)(~(0xFF >> count) | uni);
}
SkASSERT(utf8 == NULL || orig == SkUTF8_ToUnichar(utf8));
return count;
}
///////////////////////////////////////////////////////////////////////////////
int SkUTF16_CountUnichars(const uint16_t src[]) {
SkASSERT(src);
int count = 0;
unsigned c;
while ((c = *src++) != 0) {
SkASSERT(!SkUTF16_IsLowSurrogate(c));
if (SkUTF16_IsHighSurrogate(c)) {
c = *src++;
SkASSERT(SkUTF16_IsLowSurrogate(c));
}
count += 1;
}
return count;
}
int SkUTF16_CountUnichars(const uint16_t src[], int numberOf16BitValues) {
SkASSERT(src);
const uint16_t* stop = src + numberOf16BitValues;
int count = 0;
while (src < stop) {
unsigned c = *src++;
SkASSERT(!SkUTF16_IsLowSurrogate(c));
if (SkUTF16_IsHighSurrogate(c)) {
SkASSERT(src < stop);
c = *src++;
SkASSERT(SkUTF16_IsLowSurrogate(c));
}
count += 1;
}
return count;
}
SkUnichar SkUTF16_NextUnichar(const uint16_t** srcPtr) {
SkASSERT(srcPtr && *srcPtr);
const uint16_t* src = *srcPtr;
SkUnichar c = *src++;
SkASSERT(!SkUTF16_IsLowSurrogate(c));
if (SkUTF16_IsHighSurrogate(c)) {
unsigned c2 = *src++;
SkASSERT(SkUTF16_IsLowSurrogate(c2));
// c = ((c & 0x3FF) << 10) + (c2 & 0x3FF) + 0x10000
// c = (((c & 0x3FF) + 64) << 10) + (c2 & 0x3FF)
c = (c << 10) + c2 + (0x10000 - (0xD800 << 10) - 0xDC00);
}
*srcPtr = src;
return c;
}
SkUnichar SkUTF16_PrevUnichar(const uint16_t** srcPtr) {
SkASSERT(srcPtr && *srcPtr);
const uint16_t* src = *srcPtr;
SkUnichar c = *--src;
SkASSERT(!SkUTF16_IsHighSurrogate(c));
if (SkUTF16_IsLowSurrogate(c)) {
unsigned c2 = *--src;
SkASSERT(SkUTF16_IsHighSurrogate(c2));
c = (c2 << 10) + c + (0x10000 - (0xD800 << 10) - 0xDC00);
}
*srcPtr = src;
return c;
}
size_t SkUTF16_FromUnichar(SkUnichar uni, uint16_t dst[]) {
SkASSERT((unsigned)uni <= 0x10FFFF);
int extra = (uni > 0xFFFF);
if (dst) {
if (extra) {
// dst[0] = SkToU16(0xD800 | ((uni - 0x10000) >> 10));
// dst[0] = SkToU16(0xD800 | ((uni >> 10) - 64));
dst[0] = SkToU16((0xD800 - 64) + (uni >> 10));
dst[1] = SkToU16(0xDC00 | (uni & 0x3FF));
SkASSERT(SkUTF16_IsHighSurrogate(dst[0]));
SkASSERT(SkUTF16_IsLowSurrogate(dst[1]));
} else {
dst[0] = SkToU16(uni);
SkASSERT(!SkUTF16_IsHighSurrogate(dst[0]));
SkASSERT(!SkUTF16_IsLowSurrogate(dst[0]));
}
}
return 1 + extra;
}
size_t SkUTF16_ToUTF8(const uint16_t utf16[], int numberOf16BitValues,
char utf8[]) {
SkASSERT(numberOf16BitValues >= 0);
if (numberOf16BitValues <= 0) {
return 0;
}
SkASSERT(utf16 != NULL);
const uint16_t* stop = utf16 + numberOf16BitValues;
size_t size = 0;
if (utf8 == NULL) { // just count
while (utf16 < stop) {
size += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), NULL);
}
} else {
char* start = utf8;
while (utf16 < stop) {
utf8 += SkUTF8_FromUnichar(SkUTF16_NextUnichar(&utf16), utf8);
}
size = utf8 - start;
}
return size;
}