/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorPriv.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPixelRef.h"
#include "SkErrorInternals.h"
#include "SkBitmapProcShader.h"
#if SK_SUPPORT_GPU
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrBicubicEffect.h"
#endif
bool SkBitmapProcShader::CanDo(const SkBitmap& bm, TileMode tx, TileMode ty) {
switch (bm.colorType()) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kIndex_8_SkColorType:
case kN32_SkColorType:
// if (tx == ty && (kClamp_TileMode == tx || kRepeat_TileMode == tx))
return true;
default:
break;
}
return false;
}
SkBitmapProcShader::SkBitmapProcShader(const SkBitmap& src, TileMode tmx, TileMode tmy,
const SkMatrix* localMatrix)
: INHERITED(localMatrix) {
fRawBitmap = src;
fTileModeX = (uint8_t)tmx;
fTileModeY = (uint8_t)tmy;
}
SkBitmapProcShader::SkBitmapProcShader(SkReadBuffer& buffer)
: INHERITED(buffer) {
buffer.readBitmap(&fRawBitmap);
fRawBitmap.setImmutable();
fTileModeX = buffer.readUInt();
fTileModeY = buffer.readUInt();
}
SkShader::BitmapType SkBitmapProcShader::asABitmap(SkBitmap* texture,
SkMatrix* texM,
TileMode xy[]) const {
if (texture) {
*texture = fRawBitmap;
}
if (texM) {
texM->reset();
}
if (xy) {
xy[0] = (TileMode)fTileModeX;
xy[1] = (TileMode)fTileModeY;
}
return kDefault_BitmapType;
}
void SkBitmapProcShader::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeBitmap(fRawBitmap);
buffer.writeUInt(fTileModeX);
buffer.writeUInt(fTileModeY);
}
static bool only_scale_and_translate(const SkMatrix& matrix) {
unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
return (matrix.getType() & ~mask) == 0;
}
bool SkBitmapProcShader::isOpaque() const {
return fRawBitmap.isOpaque();
}
static bool valid_for_drawing(const SkBitmap& bm) {
if (0 == bm.width() || 0 == bm.height()) {
return false; // nothing to draw
}
if (NULL == bm.pixelRef()) {
return false; // no pixels to read
}
if (kIndex_8_SkColorType == bm.colorType()) {
// ugh, I have to lock-pixels to inspect the colortable
SkAutoLockPixels alp(bm);
if (!bm.getColorTable()) {
return false;
}
}
return true;
}
SkShader::Context* SkBitmapProcShader::onCreateContext(const ContextRec& rec, void* storage) const {
if (!fRawBitmap.getTexture() && !valid_for_drawing(fRawBitmap)) {
return NULL;
}
SkMatrix totalInverse;
// Do this first, so we know the matrix can be inverted.
if (!this->computeTotalInverse(rec, &totalInverse)) {
return NULL;
}
void* stateStorage = (char*)storage + sizeof(BitmapProcShaderContext);
SkBitmapProcState* state = SkNEW_PLACEMENT(stateStorage, SkBitmapProcState);
SkASSERT(state);
state->fTileModeX = fTileModeX;
state->fTileModeY = fTileModeY;
state->fOrigBitmap = fRawBitmap;
if (!state->chooseProcs(totalInverse, *rec.fPaint)) {
state->~SkBitmapProcState();
return NULL;
}
return SkNEW_PLACEMENT_ARGS(storage, BitmapProcShaderContext, (*this, rec, state));
}
size_t SkBitmapProcShader::contextSize() const {
// The SkBitmapProcState is stored outside of the context object, with the context holding
// a pointer to it.
return sizeof(BitmapProcShaderContext) + sizeof(SkBitmapProcState);
}
SkBitmapProcShader::BitmapProcShaderContext::BitmapProcShaderContext(
const SkBitmapProcShader& shader, const ContextRec& rec, SkBitmapProcState* state)
: INHERITED(shader, rec)
, fState(state)
{
const SkBitmap& bitmap = *fState->fBitmap;
bool bitmapIsOpaque = bitmap.isOpaque();
// update fFlags
uint32_t flags = 0;
if (bitmapIsOpaque && (255 == this->getPaintAlpha())) {
flags |= kOpaqueAlpha_Flag;
}
switch (bitmap.colorType()) {
case kRGB_565_SkColorType:
flags |= (kHasSpan16_Flag | kIntrinsicly16_Flag);
break;
case kIndex_8_SkColorType:
case kN32_SkColorType:
if (bitmapIsOpaque) {
flags |= kHasSpan16_Flag;
}
break;
case kAlpha_8_SkColorType:
break; // never set kHasSpan16_Flag
default:
break;
}
if (rec.fPaint->isDither() && bitmap.colorType() != kRGB_565_SkColorType) {
// gradients can auto-dither in their 16bit sampler, but we don't so
// we clear the flag here.
flags &= ~kHasSpan16_Flag;
}
// if we're only 1-pixel high, and we don't rotate, then we can claim this
if (1 == bitmap.height() &&
only_scale_and_translate(this->getTotalInverse())) {
flags |= kConstInY32_Flag;
if (flags & kHasSpan16_Flag) {
flags |= kConstInY16_Flag;
}
}
fFlags = flags;
}
SkBitmapProcShader::BitmapProcShaderContext::~BitmapProcShaderContext() {
// The bitmap proc state has been created outside of the context on memory that will be freed
// elsewhere. Only call the destructor but leave the freeing of the memory to the caller.
fState->~SkBitmapProcState();
}
#define BUF_MAX 128
#define TEST_BUFFER_OVERRITEx
#ifdef TEST_BUFFER_OVERRITE
#define TEST_BUFFER_EXTRA 32
#define TEST_PATTERN 0x88888888
#else
#define TEST_BUFFER_EXTRA 0
#endif
void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan(int x, int y, SkPMColor dstC[],
int count) {
const SkBitmapProcState& state = *fState;
if (state.getShaderProc32()) {
state.getShaderProc32()(state, x, y, dstC, count);
return;
}
uint32_t buffer[BUF_MAX + TEST_BUFFER_EXTRA];
SkBitmapProcState::MatrixProc mproc = state.getMatrixProc();
SkBitmapProcState::SampleProc32 sproc = state.getSampleProc32();
int max = state.maxCountForBufferSize(sizeof(buffer[0]) * BUF_MAX);
SkASSERT(state.fBitmap->getPixels());
SkASSERT(state.fBitmap->pixelRef() == NULL ||
state.fBitmap->pixelRef()->isLocked());
for (;;) {
int n = count;
if (n > max) {
n = max;
}
SkASSERT(n > 0 && n < BUF_MAX*2);
#ifdef TEST_BUFFER_OVERRITE
for (int i = 0; i < TEST_BUFFER_EXTRA; i++) {
buffer[BUF_MAX + i] = TEST_PATTERN;
}
#endif
mproc(state, buffer, n, x, y);
#ifdef TEST_BUFFER_OVERRITE
for (int j = 0; j < TEST_BUFFER_EXTRA; j++) {
SkASSERT(buffer[BUF_MAX + j] == TEST_PATTERN);
}
#endif
sproc(state, buffer, n, dstC);
if ((count -= n) == 0) {
break;
}
SkASSERT(count > 0);
x += n;
dstC += n;
}
}
SkShader::Context::ShadeProc SkBitmapProcShader::BitmapProcShaderContext::asAShadeProc(void** ctx) {
if (fState->getShaderProc32()) {
*ctx = fState;
return (ShadeProc)fState->getShaderProc32();
}
return NULL;
}
void SkBitmapProcShader::BitmapProcShaderContext::shadeSpan16(int x, int y, uint16_t dstC[],
int count) {
const SkBitmapProcState& state = *fState;
if (state.getShaderProc16()) {
state.getShaderProc16()(state, x, y, dstC, count);
return;
}
uint32_t buffer[BUF_MAX];
SkBitmapProcState::MatrixProc mproc = state.getMatrixProc();
SkBitmapProcState::SampleProc16 sproc = state.getSampleProc16();
int max = state.maxCountForBufferSize(sizeof(buffer));
SkASSERT(state.fBitmap->getPixels());
SkASSERT(state.fBitmap->pixelRef() == NULL ||
state.fBitmap->pixelRef()->isLocked());
for (;;) {
int n = count;
if (n > max) {
n = max;
}
mproc(state, buffer, n, x, y);
sproc(state, buffer, n, dstC);
if ((count -= n) == 0) {
break;
}
x += n;
dstC += n;
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkUnPreMultiply.h"
#include "SkColorShader.h"
#include "SkEmptyShader.h"
// returns true and set color if the bitmap can be drawn as a single color
// (for efficiency)
static bool canUseColorShader(const SkBitmap& bm, SkColor* color) {
if (1 != bm.width() || 1 != bm.height()) {
return false;
}
SkAutoLockPixels alp(bm);
if (!bm.readyToDraw()) {
return false;
}
switch (bm.colorType()) {
case kN32_SkColorType:
*color = SkUnPreMultiply::PMColorToColor(*bm.getAddr32(0, 0));
return true;
case kRGB_565_SkColorType:
*color = SkPixel16ToColor(*bm.getAddr16(0, 0));
return true;
case kIndex_8_SkColorType:
*color = SkUnPreMultiply::PMColorToColor(bm.getIndex8Color(0, 0));
return true;
default: // just skip the other configs for now
break;
}
return false;
}
static bool bitmapIsTooBig(const SkBitmap& bm) {
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
// communicates between its matrix-proc and its sampler-proc. Until we can
// widen that, we have to reject bitmaps that are larger.
//
const int maxSize = 65535;
return bm.width() > maxSize || bm.height() > maxSize;
}
SkShader* CreateBitmapShader(const SkBitmap& src, SkShader::TileMode tmx,
SkShader::TileMode tmy, const SkMatrix* localMatrix, SkTBlitterAllocator* allocator) {
SkShader* shader;
SkColor color;
if (src.isNull() || bitmapIsTooBig(src)) {
if (NULL == allocator) {
shader = SkNEW(SkEmptyShader);
} else {
shader = allocator->createT<SkEmptyShader>();
}
}
else if (canUseColorShader(src, &color)) {
if (NULL == allocator) {
shader = SkNEW_ARGS(SkColorShader, (color));
} else {
shader = allocator->createT<SkColorShader>(color);
}
} else {
if (NULL == allocator) {
shader = SkNEW_ARGS(SkBitmapProcShader, (src, tmx, tmy, localMatrix));
} else {
shader = allocator->createT<SkBitmapProcShader>(src, tmx, tmy, localMatrix);
}
}
return shader;
}
///////////////////////////////////////////////////////////////////////////////
#ifndef SK_IGNORE_TO_STRING
void SkBitmapProcShader::toString(SkString* str) const {
static const char* gTileModeName[SkShader::kTileModeCount] = {
"clamp", "repeat", "mirror"
};
str->append("BitmapShader: (");
str->appendf("(%s, %s)",
gTileModeName[fTileModeX],
gTileModeName[fTileModeY]);
str->append(" ");
fRawBitmap.toString(str);
this->INHERITED::toString(str);
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrTextureAccess.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkGr.h"
bool SkBitmapProcShader::asNewEffect(GrContext* context, const SkPaint& paint,
const SkMatrix* localMatrix, GrColor* grColor,
GrEffectRef** grEffect) const {
SkMatrix matrix;
matrix.setIDiv(fRawBitmap.width(), fRawBitmap.height());
SkMatrix lmInverse;
if (!this->getLocalMatrix().invert(&lmInverse)) {
return false;
}
if (localMatrix) {
SkMatrix inv;
if (!localMatrix->invert(&inv)) {
return false;
}
lmInverse.postConcat(inv);
}
matrix.preConcat(lmInverse);
SkShader::TileMode tm[] = {
(TileMode)fTileModeX,
(TileMode)fTileModeY,
};
// Must set wrap and filter on the sampler before requesting a texture. In two places below
// we check the matrix scale factors to determine how to interpret the filter quality setting.
// This completely ignores the complexity of the drawVertices case where explicit local coords
// are provided by the caller.
bool useBicubic = false;
GrTextureParams::FilterMode textureFilterMode;
switch(paint.getFilterLevel()) {
case SkPaint::kNone_FilterLevel:
textureFilterMode = GrTextureParams::kNone_FilterMode;
break;
case SkPaint::kLow_FilterLevel:
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
break;
case SkPaint::kMedium_FilterLevel: {
SkMatrix matrix;
matrix.setConcat(context->getMatrix(), this->getLocalMatrix());
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
}
break;
}
case SkPaint::kHigh_FilterLevel: {
SkMatrix matrix;
matrix.setConcat(context->getMatrix(), this->getLocalMatrix());
useBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
break;
}
default:
SkErrorInternals::SetError( kInvalidPaint_SkError,
"Sorry, I don't understand the filtering "
"mode you asked for. Falling back to "
"MIPMaps.");
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
break;
}
GrTextureParams params(tm, textureFilterMode);
GrTexture* texture = GrLockAndRefCachedBitmapTexture(context, fRawBitmap, ¶ms);
if (NULL == texture) {
SkErrorInternals::SetError( kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return false;
}
*grColor = (kAlpha_8_SkColorType == fRawBitmap.colorType()) ? SkColor2GrColor(paint.getColor())
: SkColor2GrColorJustAlpha(paint.getColor());
if (useBicubic) {
*grEffect = GrBicubicEffect::Create(texture, matrix, tm);
} else {
*grEffect = GrSimpleTextureEffect::Create(texture, matrix, params);
}
GrUnlockAndUnrefCachedBitmapTexture(texture);
return true;
}
#else
bool SkBitmapProcShader::asNewEffect(GrContext* context, const SkPaint& paint,
const SkMatrix* localMatrix, GrColor* grColor,
GrEffectRef** grEffect) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return false;
}
#endif