/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkColorPriv.h"
#include "SkPaint.h"
#include "SkRandom.h"
#include "SkShader.h"
#include "SkString.h"
#include "SkTArray.h"
enum Flags {
kStroke_Flag = 1 << 0,
kBig_Flag = 1 << 1
};
#define FLAGS00 Flags(0)
#define FLAGS01 Flags(kStroke_Flag)
#define FLAGS10 Flags(kBig_Flag)
#define FLAGS11 Flags(kStroke_Flag | kBig_Flag)
class PathBench : public Benchmark {
SkPaint fPaint;
SkString fName;
Flags fFlags;
public:
PathBench(Flags flags) : fFlags(flags) {
fPaint.setStyle(flags & kStroke_Flag ? SkPaint::kStroke_Style :
SkPaint::kFill_Style);
fPaint.setStrokeWidth(SkIntToScalar(5));
fPaint.setStrokeJoin(SkPaint::kBevel_Join);
}
virtual void appendName(SkString*) = 0;
virtual void makePath(SkPath*) = 0;
virtual int complexity() { return 0; }
protected:
virtual const char* onGetName() SK_OVERRIDE {
fName.printf("path_%s_%s_",
fFlags & kStroke_Flag ? "stroke" : "fill",
fFlags & kBig_Flag ? "big" : "small");
this->appendName(&fName);
return fName.c_str();
}
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
SkPaint paint(fPaint);
this->setupPaint(&paint);
SkPath path;
this->makePath(&path);
if (fFlags & kBig_Flag) {
SkMatrix m;
m.setScale(SkIntToScalar(10), SkIntToScalar(10));
path.transform(m);
}
int count = loops;
if (fFlags & kBig_Flag) {
count >>= 2;
}
count >>= (3 * complexity());
for (int i = 0; i < count; i++) {
canvas->drawPath(path, paint);
}
}
private:
typedef Benchmark INHERITED;
};
class TrianglePathBench : public PathBench {
public:
TrianglePathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("triangle");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
static const int gCoord[] = {
10, 10, 15, 5, 20, 20
};
path->moveTo(SkIntToScalar(gCoord[0]), SkIntToScalar(gCoord[1]));
path->lineTo(SkIntToScalar(gCoord[2]), SkIntToScalar(gCoord[3]));
path->lineTo(SkIntToScalar(gCoord[4]), SkIntToScalar(gCoord[5]));
path->close();
}
private:
typedef PathBench INHERITED;
};
class RectPathBench : public PathBench {
public:
RectPathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("rect");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
SkRect r = { 10, 10, 20, 20 };
path->addRect(r);
}
private:
typedef PathBench INHERITED;
};
class OvalPathBench : public PathBench {
public:
OvalPathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("oval");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
SkRect r = { 10, 10, 23, 20 };
path->addOval(r);
}
private:
typedef PathBench INHERITED;
};
class CirclePathBench: public PathBench {
public:
CirclePathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("circle");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
path->addCircle(SkIntToScalar(20), SkIntToScalar(20),
SkIntToScalar(10));
}
private:
typedef PathBench INHERITED;
};
class SawToothPathBench : public PathBench {
public:
SawToothPathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("sawtooth");
}
virtual void makePath(SkPath* path) {
SkScalar x = SkIntToScalar(20);
SkScalar y = SkIntToScalar(20);
const SkScalar x0 = x;
const SkScalar dx = SK_Scalar1 * 5;
const SkScalar dy = SK_Scalar1 * 10;
path->moveTo(x, y);
for (int i = 0; i < 32; i++) {
x += dx;
path->lineTo(x, y - dy);
x += dx;
path->lineTo(x, y + dy);
}
path->lineTo(x, y + 2 * dy);
path->lineTo(x0, y + 2 * dy);
path->close();
}
virtual int complexity() SK_OVERRIDE { return 1; }
private:
typedef PathBench INHERITED;
};
class LongCurvedPathBench : public PathBench {
public:
LongCurvedPathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("long_curved");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
SkRandom rand (12);
int i;
for (i = 0; i < 100; i++) {
path->quadTo(SkScalarMul(rand.nextUScalar1(), SkIntToScalar(640)),
SkScalarMul(rand.nextUScalar1(), SkIntToScalar(480)),
SkScalarMul(rand.nextUScalar1(), SkIntToScalar(640)),
SkScalarMul(rand.nextUScalar1(), SkIntToScalar(480)));
}
path->close();
}
virtual int complexity() SK_OVERRIDE { return 2; }
private:
typedef PathBench INHERITED;
};
class LongLinePathBench : public PathBench {
public:
LongLinePathBench(Flags flags) : INHERITED(flags) {}
virtual void appendName(SkString* name) SK_OVERRIDE {
name->append("long_line");
}
virtual void makePath(SkPath* path) SK_OVERRIDE {
SkRandom rand;
path->moveTo(rand.nextUScalar1() * 640, rand.nextUScalar1() * 480);
for (size_t i = 1; i < 100; i++) {
path->lineTo(rand.nextUScalar1() * 640, rand.nextUScalar1() * 480);
}
}
virtual int complexity() SK_OVERRIDE { return 2; }
private:
typedef PathBench INHERITED;
};
class RandomPathBench : public Benchmark {
public:
virtual bool isSuitableFor(Backend backend) SK_OVERRIDE {
return backend == kNonRendering_Backend;
}
protected:
void createData(int minVerbs,
int maxVerbs,
bool allowMoves = true,
SkRect* bounds = NULL) {
SkRect tempBounds;
if (NULL == bounds) {
tempBounds.setXYWH(0, 0, SK_Scalar1, SK_Scalar1);
bounds = &tempBounds;
}
fVerbCnts.reset(kNumVerbCnts);
for (int i = 0; i < kNumVerbCnts; ++i) {
fVerbCnts[i] = fRandom.nextRangeU(minVerbs, maxVerbs + 1);
}
fVerbs.reset(kNumVerbs);
for (int i = 0; i < kNumVerbs; ++i) {
do {
fVerbs[i] = static_cast<SkPath::Verb>(fRandom.nextULessThan(SkPath::kDone_Verb));
} while (!allowMoves && SkPath::kMove_Verb == fVerbs[i]);
}
fPoints.reset(kNumPoints);
for (int i = 0; i < kNumPoints; ++i) {
fPoints[i].set(fRandom.nextRangeScalar(bounds->fLeft, bounds->fRight),
fRandom.nextRangeScalar(bounds->fTop, bounds->fBottom));
}
this->restartMakingPaths();
}
void restartMakingPaths() {
fCurrPath = 0;
fCurrVerb = 0;
fCurrPoint = 0;
}
void makePath(SkPath* path) {
int vCount = fVerbCnts[(fCurrPath++) & (kNumVerbCnts - 1)];
for (int v = 0; v < vCount; ++v) {
int verb = fVerbs[(fCurrVerb++) & (kNumVerbs - 1)];
switch (verb) {
case SkPath::kMove_Verb:
path->moveTo(fPoints[(fCurrPoint++) & (kNumPoints - 1)]);
break;
case SkPath::kLine_Verb:
path->lineTo(fPoints[(fCurrPoint++) & (kNumPoints - 1)]);
break;
case SkPath::kQuad_Verb:
path->quadTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)],
fPoints[(fCurrPoint + 1) & (kNumPoints - 1)]);
fCurrPoint += 2;
break;
case SkPath::kConic_Verb:
path->conicTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)],
fPoints[(fCurrPoint + 1) & (kNumPoints - 1)],
SK_ScalarHalf);
fCurrPoint += 2;
break;
case SkPath::kCubic_Verb:
path->cubicTo(fPoints[(fCurrPoint + 0) & (kNumPoints - 1)],
fPoints[(fCurrPoint + 1) & (kNumPoints - 1)],
fPoints[(fCurrPoint + 2) & (kNumPoints - 1)]);
fCurrPoint += 3;
break;
case SkPath::kClose_Verb:
path->close();
break;
default:
SkDEBUGFAIL("Unexpected path verb");
break;
}
}
}
void finishedMakingPaths() {
fVerbCnts.reset(0);
fVerbs.reset(0);
fPoints.reset(0);
}
private:
enum {
// these should all be pow 2
kNumVerbCnts = 1 << 5,
kNumVerbs = 1 << 5,
kNumPoints = 1 << 5,
};
SkAutoTArray<int> fVerbCnts;
SkAutoTArray<SkPath::Verb> fVerbs;
SkAutoTArray<SkPoint> fPoints;
int fCurrPath;
int fCurrVerb;
int fCurrPoint;
SkRandom fRandom;
typedef Benchmark INHERITED;
};
class PathCreateBench : public RandomPathBench {
public:
PathCreateBench() {
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "path_create";
}
virtual void onPreDraw() SK_OVERRIDE {
this->createData(10, 100);
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
if (i % 1000 == 0) {
fPath.reset(); // PathRef memory can grow without bound otherwise.
}
this->makePath(&fPath);
}
this->restartMakingPaths();
}
private:
SkPath fPath;
typedef RandomPathBench INHERITED;
};
class PathCopyBench : public RandomPathBench {
public:
PathCopyBench() {
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "path_copy";
}
virtual void onPreDraw() SK_OVERRIDE {
this->createData(10, 100);
fPaths.reset(kPathCnt);
fCopies.reset(kPathCnt);
for (int i = 0; i < kPathCnt; ++i) {
this->makePath(&fPaths[i]);
}
this->finishedMakingPaths();
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
fCopies[idx] = fPaths[idx];
}
}
private:
enum {
// must be a pow 2
kPathCnt = 1 << 5,
};
SkAutoTArray<SkPath> fPaths;
SkAutoTArray<SkPath> fCopies;
typedef RandomPathBench INHERITED;
};
class PathTransformBench : public RandomPathBench {
public:
PathTransformBench(bool inPlace) : fInPlace(inPlace) {}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return fInPlace ? "path_transform_in_place" : "path_transform_copy";
}
virtual void onPreDraw() SK_OVERRIDE {
fMatrix.setScale(5 * SK_Scalar1, 6 * SK_Scalar1);
this->createData(10, 100);
fPaths.reset(kPathCnt);
for (int i = 0; i < kPathCnt; ++i) {
this->makePath(&fPaths[i]);
}
this->finishedMakingPaths();
if (!fInPlace) {
fTransformed.reset(kPathCnt);
}
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
if (fInPlace) {
for (int i = 0; i < loops; ++i) {
fPaths[i & (kPathCnt - 1)].transform(fMatrix);
}
} else {
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
fPaths[idx].transform(fMatrix, &fTransformed[idx]);
}
}
}
private:
enum {
// must be a pow 2
kPathCnt = 1 << 5,
};
SkAutoTArray<SkPath> fPaths;
SkAutoTArray<SkPath> fTransformed;
SkMatrix fMatrix;
bool fInPlace;
typedef RandomPathBench INHERITED;
};
class PathEqualityBench : public RandomPathBench {
public:
PathEqualityBench() { }
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "path_equality_50%";
}
virtual void onPreDraw() SK_OVERRIDE {
fParity = 0;
this->createData(10, 100);
fPaths.reset(kPathCnt);
fCopies.reset(kPathCnt);
for (int i = 0; i < kPathCnt; ++i) {
this->makePath(&fPaths[i]);
fCopies[i] = fPaths[i];
}
this->finishedMakingPaths();
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
fParity ^= (fPaths[idx] == fCopies[idx & ~0x1]);
}
}
private:
bool fParity; // attempt to keep compiler from optimizing out the ==
enum {
// must be a pow 2
kPathCnt = 1 << 5,
};
SkAutoTArray<SkPath> fPaths;
SkAutoTArray<SkPath> fCopies;
typedef RandomPathBench INHERITED;
};
class SkBench_AddPathTest : public RandomPathBench {
public:
enum AddType {
kAdd_AddType,
kAddTrans_AddType,
kAddMatrix_AddType,
kReverseAdd_AddType,
kReversePathTo_AddType,
};
SkBench_AddPathTest(AddType type) : fType(type) {
fMatrix.setRotate(60 * SK_Scalar1);
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
switch (fType) {
case kAdd_AddType:
return "path_add_path";
case kAddTrans_AddType:
return "path_add_path_trans";
case kAddMatrix_AddType:
return "path_add_path_matrix";
case kReverseAdd_AddType:
return "path_reverse_add_path";
case kReversePathTo_AddType:
return "path_reverse_path_to";
default:
SkDEBUGFAIL("Bad add type");
return "";
}
}
virtual void onPreDraw() SK_OVERRIDE {
// reversePathTo assumes a single contour path.
bool allowMoves = kReversePathTo_AddType != fType;
this->createData(10, 100, allowMoves);
fPaths0.reset(kPathCnt);
fPaths1.reset(kPathCnt);
for (int i = 0; i < kPathCnt; ++i) {
this->makePath(&fPaths0[i]);
this->makePath(&fPaths1[i]);
}
this->finishedMakingPaths();
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
switch (fType) {
case kAdd_AddType:
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
SkPath result = fPaths0[idx];
result.addPath(fPaths1[idx]);
}
break;
case kAddTrans_AddType:
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
SkPath result = fPaths0[idx];
result.addPath(fPaths1[idx], 2 * SK_Scalar1, 5 * SK_Scalar1);
}
break;
case kAddMatrix_AddType:
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
SkPath result = fPaths0[idx];
result.addPath(fPaths1[idx], fMatrix);
}
break;
case kReverseAdd_AddType:
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
SkPath result = fPaths0[idx];
result.reverseAddPath(fPaths1[idx]);
}
break;
case kReversePathTo_AddType:
for (int i = 0; i < loops; ++i) {
int idx = i & (kPathCnt - 1);
SkPath result = fPaths0[idx];
result.reversePathTo(fPaths1[idx]);
}
break;
}
}
private:
AddType fType; // or reverseAddPath
enum {
// must be a pow 2
kPathCnt = 1 << 5,
};
SkAutoTArray<SkPath> fPaths0;
SkAutoTArray<SkPath> fPaths1;
SkMatrix fMatrix;
typedef RandomPathBench INHERITED;
};
class CirclesBench : public Benchmark {
protected:
SkString fName;
Flags fFlags;
public:
CirclesBench(Flags flags) : fFlags(flags) {
fName.printf("circles_%s", fFlags & kStroke_Flag ? "stroke" : "fill");
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
SkPaint paint;
paint.setColor(SK_ColorBLACK);
paint.setAntiAlias(true);
if (fFlags & kStroke_Flag) {
paint.setStyle(SkPaint::kStroke_Style);
}
SkRandom rand;
SkRect r;
for (int i = 0; i < loops; ++i) {
SkScalar radius = rand.nextUScalar1() * 3;
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * radius;
r.fBottom = r.fTop + 2 * radius;
if (fFlags & kStroke_Flag) {
paint.setStrokeWidth(rand.nextUScalar1() * 5.0f);
}
SkPath temp;
// mimic how Chrome does circles
temp.arcTo(r, 0, 0, false);
temp.addOval(r, SkPath::kCCW_Direction);
temp.arcTo(r, 360, 0, true);
temp.close();
canvas->drawPath(temp, paint);
}
}
private:
typedef Benchmark INHERITED;
};
// Chrome creates its own round rects with each corner possibly being different.
// In its "zero radius" incarnation it creates degenerate round rects.
// Note: PathTest::test_arb_round_rect_is_convex and
// test_arb_zero_rad_round_rect_is_rect perform almost exactly
// the same test (but with no drawing)
class ArbRoundRectBench : public Benchmark {
protected:
SkString fName;
public:
ArbRoundRectBench(bool zeroRad) : fZeroRad(zeroRad) {
if (zeroRad) {
fName.printf("zeroradroundrect");
} else {
fName.printf("arbroundrect");
}
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
static void add_corner_arc(SkPath* path, const SkRect& rect,
SkScalar xIn, SkScalar yIn,
int startAngle)
{
SkScalar rx = SkMinScalar(rect.width(), xIn);
SkScalar ry = SkMinScalar(rect.height(), yIn);
SkRect arcRect;
arcRect.set(-rx, -ry, rx, ry);
switch (startAngle) {
case 0:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
break;
case 90:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
break;
case 180:
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
break;
case 270:
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
break;
default:
break;
}
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}
static void make_arb_round_rect(SkPath* path, const SkRect& r,
SkScalar xCorner, SkScalar yCorner) {
// we are lazy here and use the same x & y for each corner
add_corner_arc(path, r, xCorner, yCorner, 270);
add_corner_arc(path, r, xCorner, yCorner, 0);
add_corner_arc(path, r, xCorner, yCorner, 90);
add_corner_arc(path, r, xCorner, yCorner, 180);
path->close();
SkASSERT(path->isConvex());
}
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
SkRandom rand;
SkRect r;
for (int i = 0; i < loops; ++i) {
SkPaint paint;
paint.setColor(0xff000000 | rand.nextU());
paint.setAntiAlias(true);
SkScalar size = rand.nextUScalar1() * 30;
if (size < SK_Scalar1) {
continue;
}
r.fLeft = rand.nextUScalar1() * 300;
r.fTop = rand.nextUScalar1() * 300;
r.fRight = r.fLeft + 2 * size;
r.fBottom = r.fTop + 2 * size;
SkPath temp;
if (fZeroRad) {
make_arb_round_rect(&temp, r, 0, 0);
SkASSERT(temp.isRect(NULL));
} else {
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);
}
canvas->drawPath(temp, paint);
}
}
private:
bool fZeroRad; // should 0 radius rounds rects be tested?
typedef Benchmark INHERITED;
};
class ConservativelyContainsBench : public Benchmark {
public:
enum Type {
kRect_Type,
kRoundRect_Type,
kOval_Type,
};
ConservativelyContainsBench(Type type) {
fParity = false;
fName = "conservatively_contains_";
switch (type) {
case kRect_Type:
fName.append("rect");
fPath.addRect(kBaseRect);
break;
case kRoundRect_Type:
fName.append("round_rect");
fPath.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1]);
break;
case kOval_Type:
fName.append("oval");
fPath.addOval(kBaseRect);
break;
}
}
virtual bool isSuitableFor(Backend backend) SK_OVERRIDE {
return backend == kNonRendering_Backend;
}
private:
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
const SkRect& rect = fQueryRects[i % kQueryRectCnt];
fParity = fParity != fPath.conservativelyContainsRect(rect);
}
}
virtual void onPreDraw() SK_OVERRIDE {
fQueryRects.setCount(kQueryRectCnt);
SkRandom rand;
for (int i = 0; i < kQueryRectCnt; ++i) {
SkSize size;
SkPoint xy;
size.fWidth = rand.nextRangeScalar(kQueryMin.fWidth, kQueryMax.fWidth);
size.fHeight = rand.nextRangeScalar(kQueryMin.fHeight, kQueryMax.fHeight);
xy.fX = rand.nextRangeScalar(kBounds.fLeft, kBounds.fRight - size.fWidth);
xy.fY = rand.nextRangeScalar(kBounds.fTop, kBounds.fBottom - size.fHeight);
fQueryRects[i] = SkRect::MakeXYWH(xy.fX, xy.fY, size.fWidth, size.fHeight);
}
}
enum {
kQueryRectCnt = 400,
};
static const SkRect kBounds; // bounds for all random query rects
static const SkSize kQueryMin; // minimum query rect size, should be <= kQueryMax
static const SkSize kQueryMax; // max query rect size, should < kBounds
static const SkRect kBaseRect; // rect that is used to construct the path
static const SkScalar kRRRadii[2]; // x and y radii for round rect
SkString fName;
SkPath fPath;
bool fParity;
SkTDArray<SkRect> fQueryRects;
typedef Benchmark INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
#include "SkGeometry.h"
class ConicBench_Chop5 : public Benchmark {
SkConic fRQ;
public:
ConicBench_Chop5() {
fRQ.fPts[0].set(0, 0);
fRQ.fPts[1].set(100, 0);
fRQ.fPts[2].set(100, 100);
fRQ.fW = SkScalarCos(SK_ScalarPI/4);
}
private:
virtual const char* onGetName() SK_OVERRIDE {
return "ratquad-chop-0.5";
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
SkConic dst[2];
for (int i = 0; i < loops; ++i) {
fRQ.chopAt(0.5f, dst);
}
}
typedef Benchmark INHERITED;
};
class ConicBench_ChopHalf : public Benchmark {
SkConic fRQ;
public:
ConicBench_ChopHalf() {
fRQ.fPts[0].set(0, 0);
fRQ.fPts[1].set(100, 0);
fRQ.fPts[2].set(100, 100);
fRQ.fW = SkScalarCos(SK_ScalarPI/4);
}
private:
virtual const char* onGetName() SK_OVERRIDE {
return "ratquad-chop-half";
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
SkConic dst[2];
for (int i = 0; i < loops; ++i) {
fRQ.chop(dst);
}
}
typedef Benchmark INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
static void rand_conic(SkConic* conic, SkRandom& rand) {
for (int i = 0; i < 3; ++i) {
conic->fPts[i].set(rand.nextUScalar1() * 100, rand.nextUScalar1() * 100);
}
if (rand.nextUScalar1() > 0.5f) {
conic->fW = rand.nextUScalar1();
} else {
conic->fW = 1 + rand.nextUScalar1() * 4;
}
}
class ConicBench : public Benchmark {
public:
ConicBench() {
SkRandom rand;
for (int i = 0; i < CONICS; ++i) {
rand_conic(&fConics[i], rand);
}
}
virtual bool isSuitableFor(Backend backend) SK_OVERRIDE {
return backend == kNonRendering_Backend;
}
protected:
enum {
CONICS = 100
};
SkConic fConics[CONICS];
private:
typedef Benchmark INHERITED;
};
class ConicBench_ComputeError : public ConicBench {
public:
ConicBench_ComputeError() {}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "conic-compute-error";
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
SkVector err;
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < CONICS; ++j) {
fConics[j].computeAsQuadError(&err);
}
}
}
private:
typedef ConicBench INHERITED;
};
class ConicBench_asQuadTol : public ConicBench {
public:
ConicBench_asQuadTol() {}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "conic-asQuadTol";
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < CONICS; ++j) {
fConics[j].asQuadTol(SK_ScalarHalf);
}
}
}
private:
typedef ConicBench INHERITED;
};
class ConicBench_quadPow2 : public ConicBench {
public:
ConicBench_quadPow2() {}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return "conic-quadPow2";
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < CONICS; ++j) {
fConics[j].computeQuadPOW2(SK_ScalarHalf);
}
}
}
private:
typedef ConicBench INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
const SkRect ConservativelyContainsBench::kBounds = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
const SkSize ConservativelyContainsBench::kQueryMin = SkSize::Make(SkIntToScalar(1), SkIntToScalar(1));
const SkSize ConservativelyContainsBench::kQueryMax = SkSize::Make(SkIntToScalar(40), SkIntToScalar(40));
const SkRect ConservativelyContainsBench::kBaseRect = SkRect::MakeXYWH(SkIntToScalar(25), SkIntToScalar(25), SkIntToScalar(50), SkIntToScalar(50));
const SkScalar ConservativelyContainsBench::kRRRadii[2] = {SkIntToScalar(5), SkIntToScalar(10)};
DEF_BENCH( return new TrianglePathBench(FLAGS00); )
DEF_BENCH( return new TrianglePathBench(FLAGS01); )
DEF_BENCH( return new TrianglePathBench(FLAGS10); )
DEF_BENCH( return new TrianglePathBench(FLAGS11); )
DEF_BENCH( return new RectPathBench(FLAGS00); )
DEF_BENCH( return new RectPathBench(FLAGS01); )
DEF_BENCH( return new RectPathBench(FLAGS10); )
DEF_BENCH( return new RectPathBench(FLAGS11); )
DEF_BENCH( return new OvalPathBench(FLAGS00); )
DEF_BENCH( return new OvalPathBench(FLAGS01); )
DEF_BENCH( return new OvalPathBench(FLAGS10); )
DEF_BENCH( return new OvalPathBench(FLAGS11); )
DEF_BENCH( return new CirclePathBench(FLAGS00); )
DEF_BENCH( return new CirclePathBench(FLAGS01); )
DEF_BENCH( return new CirclePathBench(FLAGS10); )
DEF_BENCH( return new CirclePathBench(FLAGS11); )
DEF_BENCH( return new SawToothPathBench(FLAGS00); )
DEF_BENCH( return new SawToothPathBench(FLAGS01); )
DEF_BENCH( return new LongCurvedPathBench(FLAGS00); )
DEF_BENCH( return new LongCurvedPathBench(FLAGS01); )
DEF_BENCH( return new LongLinePathBench(FLAGS00); )
DEF_BENCH( return new LongLinePathBench(FLAGS01); )
DEF_BENCH( return new PathCreateBench(); )
DEF_BENCH( return new PathCopyBench(); )
DEF_BENCH( return new PathTransformBench(true); )
DEF_BENCH( return new PathTransformBench(false); )
DEF_BENCH( return new PathEqualityBench(); )
DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAdd_AddType); )
DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAddTrans_AddType); )
DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kAddMatrix_AddType); )
DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kReverseAdd_AddType); )
DEF_BENCH( return new SkBench_AddPathTest(SkBench_AddPathTest::kReversePathTo_AddType); )
DEF_BENCH( return new CirclesBench(FLAGS00); )
DEF_BENCH( return new CirclesBench(FLAGS01); )
DEF_BENCH( return new ArbRoundRectBench(false); )
DEF_BENCH( return new ArbRoundRectBench(true); )
DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kRect_Type); )
DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kRoundRect_Type); )
DEF_BENCH( return new ConservativelyContainsBench(ConservativelyContainsBench::kOval_Type); )
DEF_BENCH( return new ConicBench_Chop5() )
DEF_BENCH( return new ConicBench_ChopHalf() )
DEF_BENCH( return new ConicBench_ComputeError() )
DEF_BENCH( return new ConicBench_asQuadTol() )
DEF_BENCH( return new ConicBench_quadPow2() )