/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkRandom.h"
#include "SkTemplates.h"
#include "SkUtils.h"
template <typename Memcpy32>
class Memcpy32Bench : public Benchmark {
public:
explicit Memcpy32Bench(int count, Memcpy32 memcpy32, const char* name)
: fCount(count)
, fMemcpy32(memcpy32)
, fName(SkStringPrintf("%s_%d", name, count)) {}
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
virtual bool isSuitableFor(Backend backend) SK_OVERRIDE {
return backend == kNonRendering_Backend;
}
virtual void onPreDraw() SK_OVERRIDE {
fDst.reset(fCount);
fSrc.reset(fCount);
SkRandom rand;
for (int i = 0; i < fCount; i++) {
fSrc[i] = rand.nextU();
}
}
virtual void onDraw(const int loops, SkCanvas*) SK_OVERRIDE {
for (int i = 0; i < loops; i++) {
fMemcpy32(fDst, fSrc, fCount);
}
}
private:
SkAutoTMalloc<uint32_t> fDst, fSrc;
int fCount;
Memcpy32 fMemcpy32;
const SkString fName;
};
template <typename Memcpy32>
static Memcpy32Bench<Memcpy32>* Bench(int count, Memcpy32 memcpy32, const char* name) {
return new Memcpy32Bench<Memcpy32>(count, memcpy32, name);
}
#define BENCH(memcpy32, count) DEF_BENCH(return Bench(count, memcpy32, #memcpy32); )
// Let the libc developers do what they think is best.
static void memcpy32_memcpy(uint32_t* dst, const uint32_t* src, int count) {
memcpy(dst, src, sizeof(uint32_t) * count);
}
BENCH(memcpy32_memcpy, 10)
BENCH(memcpy32_memcpy, 100)
BENCH(memcpy32_memcpy, 1000)
BENCH(memcpy32_memcpy, 10000)
BENCH(memcpy32_memcpy, 100000)
// Let the compiler's autovectorizer do what it thinks is best.
static void memcpy32_autovectorize(uint32_t* dst, const uint32_t* src, int count) {
while (count --> 0) {
*dst++ = *src++;
}
}
BENCH(memcpy32_autovectorize, 10)
BENCH(memcpy32_autovectorize, 100)
BENCH(memcpy32_autovectorize, 1000)
BENCH(memcpy32_autovectorize, 10000)
BENCH(memcpy32_autovectorize, 100000)
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
// Align dst to 16 bytes, then use aligned stores. src isn't algined, so use unaligned loads.
static void memcpy32_sse2_align(uint32_t* dst, const uint32_t* src, int count) {
if (count >= 16) {
while (uintptr_t(dst) & 0xF) {
*dst++ = *src++;
count--;
}
__m128i* dst128 = reinterpret_cast<__m128i*>(dst);
const __m128i* src128 = reinterpret_cast<const __m128i*>(src);
dst += 16 * (count / 16);
src += 16 * (count / 16);
while (count >= 16) {
__m128i a = _mm_loadu_si128(src128++);
__m128i b = _mm_loadu_si128(src128++);
__m128i c = _mm_loadu_si128(src128++);
__m128i d = _mm_loadu_si128(src128++);
_mm_store_si128(dst128++, a);
_mm_store_si128(dst128++, b);
_mm_store_si128(dst128++, c);
_mm_store_si128(dst128++, d);
count -= 16;
}
}
while (count --> 0) {
*dst++ = *src++;
}
}
BENCH(memcpy32_sse2_align, 10)
BENCH(memcpy32_sse2_align, 100)
BENCH(memcpy32_sse2_align, 1000)
BENCH(memcpy32_sse2_align, 10000)
BENCH(memcpy32_sse2_align, 100000)
// Leave both dst and src unaliged, and so use unaligned stores for dst and unaligned loads for src.
static void memcpy32_sse2_unalign(uint32_t* dst, const uint32_t* src, int count) {
__m128i* dst128 = reinterpret_cast<__m128i*>(dst);
const __m128i* src128 = reinterpret_cast<const __m128i*>(src);
dst += 16 * (count / 16);
src += 16 * (count / 16);
while (count >= 16) {
__m128i a = _mm_loadu_si128(src128++);
__m128i b = _mm_loadu_si128(src128++);
__m128i c = _mm_loadu_si128(src128++);
__m128i d = _mm_loadu_si128(src128++);
_mm_storeu_si128(dst128++, a);
_mm_storeu_si128(dst128++, b);
_mm_storeu_si128(dst128++, c);
_mm_storeu_si128(dst128++, d);
count -= 16;
}
while (count --> 0) {
*dst++ = *src++;
}
}
BENCH(memcpy32_sse2_unalign, 10)
BENCH(memcpy32_sse2_unalign, 100)
BENCH(memcpy32_sse2_unalign, 1000)
BENCH(memcpy32_sse2_unalign, 10000)
BENCH(memcpy32_sse2_unalign, 100000)
// Test our chosen best, from SkUtils.h
BENCH(sk_memcpy32, 10)
BENCH(sk_memcpy32, 100)
BENCH(sk_memcpy32, 1000)
BENCH(sk_memcpy32, 10000)
BENCH(sk_memcpy32, 100000)
#endif // SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#undef BENCH