/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
* Brian Paul
*/
#include "main/imports.h"
#include "main/hash.h"
#include "main/mfeatures.h"
#include "main/mtypes.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/programopt.h"
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "draw/draw_context.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_ureg.h"
#include "st_debug.h"
#include "st_cb_bitmap.h"
#include "st_cb_drawpixels.h"
#include "st_context.h"
#include "st_program.h"
#include "st_mesa_to_tgsi.h"
#include "cso_cache/cso_context.h"
/**
* Delete a vertex program variant. Note the caller must unlink
* the variant from the linked list.
*/
static void
delete_vp_variant(struct st_context *st, struct st_vp_variant *vpv)
{
if (vpv->driver_shader)
cso_delete_vertex_shader(st->cso_context, vpv->driver_shader);
#if FEATURE_feedback || FEATURE_rastpos
if (vpv->draw_shader)
draw_delete_vertex_shader( st->draw, vpv->draw_shader );
#endif
if (vpv->tgsi.tokens)
st_free_tokens(vpv->tgsi.tokens);
FREE( vpv );
}
/**
* Clean out any old compilations:
*/
void
st_release_vp_variants( struct st_context *st,
struct st_vertex_program *stvp )
{
struct st_vp_variant *vpv;
for (vpv = stvp->variants; vpv; ) {
struct st_vp_variant *next = vpv->next;
delete_vp_variant(st, vpv);
vpv = next;
}
stvp->variants = NULL;
}
/**
* Delete a fragment program variant. Note the caller must unlink
* the variant from the linked list.
*/
static void
delete_fp_variant(struct st_context *st, struct st_fp_variant *fpv)
{
if (fpv->driver_shader)
cso_delete_fragment_shader(st->cso_context, fpv->driver_shader);
if (fpv->parameters)
_mesa_free_parameter_list(fpv->parameters);
if (fpv->tgsi.tokens)
st_free_tokens(fpv->tgsi.tokens);
FREE(fpv);
}
/**
* Free all variants of a fragment program.
*/
void
st_release_fp_variants(struct st_context *st, struct st_fragment_program *stfp)
{
struct st_fp_variant *fpv;
for (fpv = stfp->variants; fpv; ) {
struct st_fp_variant *next = fpv->next;
delete_fp_variant(st, fpv);
fpv = next;
}
stfp->variants = NULL;
}
/**
* Delete a geometry program variant. Note the caller must unlink
* the variant from the linked list.
*/
static void
delete_gp_variant(struct st_context *st, struct st_gp_variant *gpv)
{
if (gpv->driver_shader)
cso_delete_geometry_shader(st->cso_context, gpv->driver_shader);
FREE(gpv);
}
/**
* Free all variants of a geometry program.
*/
void
st_release_gp_variants(struct st_context *st, struct st_geometry_program *stgp)
{
struct st_gp_variant *gpv;
for (gpv = stgp->variants; gpv; ) {
struct st_gp_variant *next = gpv->next;
delete_gp_variant(st, gpv);
gpv = next;
}
stgp->variants = NULL;
}
/**
* Translate a Mesa vertex shader into a TGSI shader.
* \param outputMapping to map vertex program output registers (VERT_RESULT_x)
* to TGSI output slots
* \param tokensOut destination for TGSI tokens
* \return pointer to cached pipe_shader object.
*/
void
st_prepare_vertex_program(struct gl_context *ctx,
struct st_vertex_program *stvp)
{
GLuint attr;
stvp->num_inputs = 0;
stvp->num_outputs = 0;
if (stvp->Base.IsPositionInvariant)
_mesa_insert_mvp_code(ctx, &stvp->Base);
if (!stvp->glsl_to_tgsi)
assert(stvp->Base.Base.NumInstructions > 1);
/*
* Determine number of inputs, the mappings between VERT_ATTRIB_x
* and TGSI generic input indexes, plus input attrib semantic info.
*/
for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
if ((stvp->Base.Base.InputsRead & BITFIELD64_BIT(attr)) != 0) {
stvp->input_to_index[attr] = stvp->num_inputs;
stvp->index_to_input[stvp->num_inputs] = attr;
stvp->num_inputs++;
}
}
/* bit of a hack, presetup potentially unused edgeflag input */
stvp->input_to_index[VERT_ATTRIB_EDGEFLAG] = stvp->num_inputs;
stvp->index_to_input[stvp->num_inputs] = VERT_ATTRIB_EDGEFLAG;
/* Compute mapping of vertex program outputs to slots.
*/
for (attr = 0; attr < VERT_RESULT_MAX; attr++) {
if ((stvp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) == 0) {
stvp->result_to_output[attr] = ~0;
}
else {
unsigned slot = stvp->num_outputs++;
stvp->result_to_output[attr] = slot;
switch (attr) {
case VERT_RESULT_HPOS:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_COL0:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_COL1:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
stvp->output_semantic_index[slot] = 1;
break;
case VERT_RESULT_BFC0:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_BFC1:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
stvp->output_semantic_index[slot] = 1;
break;
case VERT_RESULT_FOGC:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_PSIZ:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_CLIP_DIST0:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_CLIP_DIST1:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
stvp->output_semantic_index[slot] = 1;
break;
case VERT_RESULT_EDGE:
assert(0);
break;
case VERT_RESULT_CLIP_VERTEX:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_CLIPVERTEX;
stvp->output_semantic_index[slot] = 0;
break;
case VERT_RESULT_TEX0:
case VERT_RESULT_TEX1:
case VERT_RESULT_TEX2:
case VERT_RESULT_TEX3:
case VERT_RESULT_TEX4:
case VERT_RESULT_TEX5:
case VERT_RESULT_TEX6:
case VERT_RESULT_TEX7:
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
stvp->output_semantic_index[slot] = attr - VERT_RESULT_TEX0;
break;
case VERT_RESULT_VAR0:
default:
assert(attr < VERT_RESULT_MAX);
stvp->output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
stvp->output_semantic_index[slot] = (FRAG_ATTRIB_VAR0 -
FRAG_ATTRIB_TEX0 +
attr -
VERT_RESULT_VAR0);
break;
}
}
}
/* similar hack to above, presetup potentially unused edgeflag output */
stvp->result_to_output[VERT_RESULT_EDGE] = stvp->num_outputs;
stvp->output_semantic_name[stvp->num_outputs] = TGSI_SEMANTIC_EDGEFLAG;
stvp->output_semantic_index[stvp->num_outputs] = 0;
}
/**
* Translate a vertex program to create a new variant.
*/
static struct st_vp_variant *
st_translate_vertex_program(struct st_context *st,
struct st_vertex_program *stvp,
const struct st_vp_variant_key *key)
{
struct st_vp_variant *vpv = CALLOC_STRUCT(st_vp_variant);
struct pipe_context *pipe = st->pipe;
struct ureg_program *ureg;
enum pipe_error error;
unsigned num_outputs;
st_prepare_vertex_program(st->ctx, stvp);
if (!stvp->glsl_to_tgsi)
{
_mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_OUTPUT);
_mesa_remove_output_reads(&stvp->Base.Base, PROGRAM_VARYING);
}
ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
if (ureg == NULL) {
FREE(vpv);
return NULL;
}
vpv->key = *key;
vpv->num_inputs = stvp->num_inputs;
num_outputs = stvp->num_outputs;
if (key->passthrough_edgeflags) {
vpv->num_inputs++;
num_outputs++;
}
if (ST_DEBUG & DEBUG_MESA) {
_mesa_print_program(&stvp->Base.Base);
_mesa_print_program_parameters(st->ctx, &stvp->Base.Base);
debug_printf("\n");
}
if (stvp->glsl_to_tgsi)
error = st_translate_program(st->ctx,
TGSI_PROCESSOR_VERTEX,
ureg,
stvp->glsl_to_tgsi,
&stvp->Base.Base,
/* inputs */
stvp->num_inputs,
stvp->input_to_index,
NULL, /* input semantic name */
NULL, /* input semantic index */
NULL, /* interp mode */
NULL, /* is centroid */
/* outputs */
stvp->num_outputs,
stvp->result_to_output,
stvp->output_semantic_name,
stvp->output_semantic_index,
key->passthrough_edgeflags,
key->clamp_color);
else
error = st_translate_mesa_program(st->ctx,
TGSI_PROCESSOR_VERTEX,
ureg,
&stvp->Base.Base,
/* inputs */
vpv->num_inputs,
stvp->input_to_index,
NULL, /* input semantic name */
NULL, /* input semantic index */
NULL,
/* outputs */
num_outputs,
stvp->result_to_output,
stvp->output_semantic_name,
stvp->output_semantic_index,
key->passthrough_edgeflags,
key->clamp_color);
if (error)
goto fail;
vpv->tgsi.tokens = ureg_get_tokens( ureg, NULL );
if (!vpv->tgsi.tokens)
goto fail;
ureg_destroy( ureg );
if (stvp->glsl_to_tgsi) {
st_translate_stream_output_info(stvp->glsl_to_tgsi,
stvp->result_to_output,
&vpv->tgsi.stream_output);
}
vpv->driver_shader = pipe->create_vs_state(pipe, &vpv->tgsi);
if (ST_DEBUG & DEBUG_TGSI) {
tgsi_dump( vpv->tgsi.tokens, 0 );
debug_printf("\n");
}
return vpv;
fail:
debug_printf("%s: failed to translate Mesa program:\n", __FUNCTION__);
_mesa_print_program(&stvp->Base.Base);
debug_assert(0);
ureg_destroy( ureg );
return NULL;
}
/**
* Find/create a vertex program variant.
*/
struct st_vp_variant *
st_get_vp_variant(struct st_context *st,
struct st_vertex_program *stvp,
const struct st_vp_variant_key *key)
{
struct st_vp_variant *vpv;
/* Search for existing variant */
for (vpv = stvp->variants; vpv; vpv = vpv->next) {
if (memcmp(&vpv->key, key, sizeof(*key)) == 0) {
break;
}
}
if (!vpv) {
/* create now */
vpv = st_translate_vertex_program(st, stvp, key);
if (vpv) {
/* insert into list */
vpv->next = stvp->variants;
stvp->variants = vpv;
}
}
return vpv;
}
static unsigned
st_translate_interp(enum glsl_interp_qualifier glsl_qual, bool is_color)
{
switch (glsl_qual) {
case INTERP_QUALIFIER_NONE:
if (is_color)
return TGSI_INTERPOLATE_COLOR;
return TGSI_INTERPOLATE_PERSPECTIVE;
case INTERP_QUALIFIER_SMOOTH:
return TGSI_INTERPOLATE_PERSPECTIVE;
case INTERP_QUALIFIER_FLAT:
return TGSI_INTERPOLATE_CONSTANT;
case INTERP_QUALIFIER_NOPERSPECTIVE:
return TGSI_INTERPOLATE_LINEAR;
default:
assert(0 && "unexpected interp mode in st_translate_interp()");
return TGSI_INTERPOLATE_PERSPECTIVE;
}
}
/**
* Translate a Mesa fragment shader into a TGSI shader using extra info in
* the key.
* \return new fragment program variant
*/
static struct st_fp_variant *
st_translate_fragment_program(struct st_context *st,
struct st_fragment_program *stfp,
const struct st_fp_variant_key *key)
{
struct pipe_context *pipe = st->pipe;
struct st_fp_variant *variant = CALLOC_STRUCT(st_fp_variant);
GLboolean deleteFP = GL_FALSE;
GLuint outputMapping[FRAG_RESULT_MAX];
GLuint inputMapping[FRAG_ATTRIB_MAX];
GLuint interpMode[PIPE_MAX_SHADER_INPUTS]; /* XXX size? */
GLuint attr;
GLbitfield64 inputsRead;
struct ureg_program *ureg;
GLboolean write_all = GL_FALSE;
ubyte input_semantic_name[PIPE_MAX_SHADER_INPUTS];
ubyte input_semantic_index[PIPE_MAX_SHADER_INPUTS];
GLboolean is_centroid[PIPE_MAX_SHADER_INPUTS];
uint fs_num_inputs = 0;
ubyte fs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
ubyte fs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
uint fs_num_outputs = 0;
if (!variant)
return NULL;
assert(!(key->bitmap && key->drawpixels));
#if FEATURE_drawpix
if (key->bitmap) {
/* glBitmap drawing */
struct gl_fragment_program *fp; /* we free this temp program below */
st_make_bitmap_fragment_program(st, &stfp->Base,
&fp, &variant->bitmap_sampler);
variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
stfp = st_fragment_program(fp);
deleteFP = GL_TRUE;
}
else if (key->drawpixels) {
/* glDrawPixels drawing */
struct gl_fragment_program *fp; /* we free this temp program below */
if (key->drawpixels_z || key->drawpixels_stencil) {
fp = st_make_drawpix_z_stencil_program(st, key->drawpixels_z,
key->drawpixels_stencil);
}
else {
/* RGBA */
st_make_drawpix_fragment_program(st, &stfp->Base, &fp);
variant->parameters = _mesa_clone_parameter_list(fp->Base.Parameters);
deleteFP = GL_TRUE;
}
stfp = st_fragment_program(fp);
}
#endif
if (!stfp->glsl_to_tgsi)
_mesa_remove_output_reads(&stfp->Base.Base, PROGRAM_OUTPUT);
/*
* Convert Mesa program inputs to TGSI input register semantics.
*/
inputsRead = stfp->Base.Base.InputsRead;
for (attr = 0; attr < FRAG_ATTRIB_MAX; attr++) {
if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
const GLuint slot = fs_num_inputs++;
inputMapping[attr] = slot;
is_centroid[slot] = (stfp->Base.IsCentroid & BITFIELD64_BIT(attr)) != 0;
switch (attr) {
case FRAG_ATTRIB_WPOS:
input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
input_semantic_index[slot] = 0;
interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
break;
case FRAG_ATTRIB_COL0:
input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
input_semantic_index[slot] = 0;
interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
TRUE);
break;
case FRAG_ATTRIB_COL1:
input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
input_semantic_index[slot] = 1;
interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
TRUE);
break;
case FRAG_ATTRIB_FOGC:
input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
input_semantic_index[slot] = 0;
interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
break;
case FRAG_ATTRIB_FACE:
input_semantic_name[slot] = TGSI_SEMANTIC_FACE;
input_semantic_index[slot] = 0;
interpMode[slot] = TGSI_INTERPOLATE_CONSTANT;
break;
case FRAG_ATTRIB_CLIP_DIST0:
input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
input_semantic_index[slot] = 0;
interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
break;
case FRAG_ATTRIB_CLIP_DIST1:
input_semantic_name[slot] = TGSI_SEMANTIC_CLIPDIST;
input_semantic_index[slot] = 1;
interpMode[slot] = TGSI_INTERPOLATE_PERSPECTIVE;
break;
/* In most cases, there is nothing special about these
* inputs, so adopt a convention to use the generic
* semantic name and the mesa FRAG_ATTRIB_ number as the
* index.
*
* All that is required is that the vertex shader labels
* its own outputs similarly, and that the vertex shader
* generates at least every output required by the
* fragment shader plus fixed-function hardware (such as
* BFC).
*
* There is no requirement that semantic indexes start at
* zero or be restricted to a particular range -- nobody
* should be building tables based on semantic index.
*/
case FRAG_ATTRIB_PNTC:
case FRAG_ATTRIB_TEX0:
case FRAG_ATTRIB_TEX1:
case FRAG_ATTRIB_TEX2:
case FRAG_ATTRIB_TEX3:
case FRAG_ATTRIB_TEX4:
case FRAG_ATTRIB_TEX5:
case FRAG_ATTRIB_TEX6:
case FRAG_ATTRIB_TEX7:
case FRAG_ATTRIB_VAR0:
default:
/* Actually, let's try and zero-base this just for
* readability of the generated TGSI.
*/
assert(attr >= FRAG_ATTRIB_TEX0);
input_semantic_index[slot] = (attr - FRAG_ATTRIB_TEX0);
input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
if (attr == FRAG_ATTRIB_PNTC)
interpMode[slot] = TGSI_INTERPOLATE_LINEAR;
else
interpMode[slot] = st_translate_interp(stfp->Base.InterpQualifier[attr],
FALSE);
break;
}
}
else {
inputMapping[attr] = -1;
}
}
/*
* Semantics and mapping for outputs
*/
{
uint numColors = 0;
GLbitfield64 outputsWritten = stfp->Base.Base.OutputsWritten;
/* if z is written, emit that first */
if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_POSITION;
fs_output_semantic_index[fs_num_outputs] = 0;
outputMapping[FRAG_RESULT_DEPTH] = fs_num_outputs;
fs_num_outputs++;
outputsWritten &= ~(1 << FRAG_RESULT_DEPTH);
}
if (outputsWritten & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_STENCIL;
fs_output_semantic_index[fs_num_outputs] = 0;
outputMapping[FRAG_RESULT_STENCIL] = fs_num_outputs;
fs_num_outputs++;
outputsWritten &= ~(1 << FRAG_RESULT_STENCIL);
}
/* handle remaining outputs (color) */
for (attr = 0; attr < FRAG_RESULT_MAX; attr++) {
if (outputsWritten & BITFIELD64_BIT(attr)) {
switch (attr) {
case FRAG_RESULT_DEPTH:
case FRAG_RESULT_STENCIL:
/* handled above */
assert(0);
break;
case FRAG_RESULT_COLOR:
write_all = GL_TRUE; /* fallthrough */
default:
assert(attr == FRAG_RESULT_COLOR ||
(FRAG_RESULT_DATA0 <= attr && attr < FRAG_RESULT_MAX));
fs_output_semantic_name[fs_num_outputs] = TGSI_SEMANTIC_COLOR;
fs_output_semantic_index[fs_num_outputs] = numColors;
outputMapping[attr] = fs_num_outputs;
numColors++;
break;
}
fs_num_outputs++;
}
}
}
ureg = ureg_create( TGSI_PROCESSOR_FRAGMENT );
if (ureg == NULL) {
FREE(variant);
return NULL;
}
if (ST_DEBUG & DEBUG_MESA) {
_mesa_print_program(&stfp->Base.Base);
_mesa_print_program_parameters(st->ctx, &stfp->Base.Base);
debug_printf("\n");
}
if (write_all == GL_TRUE)
ureg_property_fs_color0_writes_all_cbufs(ureg, 1);
if (stfp->Base.FragDepthLayout != FRAG_DEPTH_LAYOUT_NONE) {
switch (stfp->Base.FragDepthLayout) {
case FRAG_DEPTH_LAYOUT_ANY:
ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_ANY);
break;
case FRAG_DEPTH_LAYOUT_GREATER:
ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_GREATER);
break;
case FRAG_DEPTH_LAYOUT_LESS:
ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_LESS);
break;
case FRAG_DEPTH_LAYOUT_UNCHANGED:
ureg_property_fs_depth_layout(ureg, TGSI_FS_DEPTH_LAYOUT_UNCHANGED);
break;
default:
assert(0);
}
}
if (stfp->glsl_to_tgsi)
st_translate_program(st->ctx,
TGSI_PROCESSOR_FRAGMENT,
ureg,
stfp->glsl_to_tgsi,
&stfp->Base.Base,
/* inputs */
fs_num_inputs,
inputMapping,
input_semantic_name,
input_semantic_index,
interpMode,
is_centroid,
/* outputs */
fs_num_outputs,
outputMapping,
fs_output_semantic_name,
fs_output_semantic_index, FALSE,
key->clamp_color );
else
st_translate_mesa_program(st->ctx,
TGSI_PROCESSOR_FRAGMENT,
ureg,
&stfp->Base.Base,
/* inputs */
fs_num_inputs,
inputMapping,
input_semantic_name,
input_semantic_index,
interpMode,
/* outputs */
fs_num_outputs,
outputMapping,
fs_output_semantic_name,
fs_output_semantic_index, FALSE,
key->clamp_color);
variant->tgsi.tokens = ureg_get_tokens( ureg, NULL );
ureg_destroy( ureg );
/* fill in variant */
variant->driver_shader = pipe->create_fs_state(pipe, &variant->tgsi);
variant->key = *key;
if (ST_DEBUG & DEBUG_TGSI) {
tgsi_dump( variant->tgsi.tokens, 0/*TGSI_DUMP_VERBOSE*/ );
debug_printf("\n");
}
if (deleteFP) {
/* Free the temporary program made above */
struct gl_fragment_program *fp = &stfp->Base;
_mesa_reference_fragprog(st->ctx, &fp, NULL);
}
return variant;
}
/**
* Translate fragment program if needed.
*/
struct st_fp_variant *
st_get_fp_variant(struct st_context *st,
struct st_fragment_program *stfp,
const struct st_fp_variant_key *key)
{
struct st_fp_variant *fpv;
/* Search for existing variant */
for (fpv = stfp->variants; fpv; fpv = fpv->next) {
if (memcmp(&fpv->key, key, sizeof(*key)) == 0) {
break;
}
}
if (!fpv) {
/* create new */
fpv = st_translate_fragment_program(st, stfp, key);
if (fpv) {
/* insert into list */
fpv->next = stfp->variants;
stfp->variants = fpv;
}
}
return fpv;
}
/**
* Translate a geometry program to create a new variant.
*/
static struct st_gp_variant *
st_translate_geometry_program(struct st_context *st,
struct st_geometry_program *stgp,
const struct st_gp_variant_key *key)
{
GLuint inputMapping[GEOM_ATTRIB_MAX];
GLuint outputMapping[GEOM_RESULT_MAX];
struct pipe_context *pipe = st->pipe;
GLuint attr;
GLbitfield64 inputsRead;
GLuint vslot = 0;
GLuint num_generic = 0;
uint gs_num_inputs = 0;
uint gs_builtin_inputs = 0;
uint gs_array_offset = 0;
ubyte gs_output_semantic_name[PIPE_MAX_SHADER_OUTPUTS];
ubyte gs_output_semantic_index[PIPE_MAX_SHADER_OUTPUTS];
uint gs_num_outputs = 0;
GLint i;
GLuint maxSlot = 0;
struct ureg_program *ureg;
struct st_gp_variant *gpv;
gpv = CALLOC_STRUCT(st_gp_variant);
if (!gpv)
return NULL;
_mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_OUTPUT);
_mesa_remove_output_reads(&stgp->Base.Base, PROGRAM_VARYING);
ureg = ureg_create( TGSI_PROCESSOR_GEOMETRY );
if (ureg == NULL) {
FREE(gpv);
return NULL;
}
/* which vertex output goes to the first geometry input */
vslot = 0;
memset(inputMapping, 0, sizeof(inputMapping));
memset(outputMapping, 0, sizeof(outputMapping));
/*
* Convert Mesa program inputs to TGSI input register semantics.
*/
inputsRead = stgp->Base.Base.InputsRead;
for (attr = 0; attr < GEOM_ATTRIB_MAX; attr++) {
if ((inputsRead & BITFIELD64_BIT(attr)) != 0) {
const GLuint slot = gs_num_inputs;
gs_num_inputs++;
inputMapping[attr] = slot;
stgp->input_map[slot + gs_array_offset] = vslot - gs_builtin_inputs;
stgp->input_to_index[attr] = vslot;
stgp->index_to_input[vslot] = attr;
++vslot;
if (attr != GEOM_ATTRIB_PRIMITIVE_ID) {
gs_array_offset += 2;
} else
++gs_builtin_inputs;
#if 0
debug_printf("input map at %d = %d\n",
slot + gs_array_offset, stgp->input_map[slot + gs_array_offset]);
#endif
switch (attr) {
case GEOM_ATTRIB_PRIMITIVE_ID:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_PRIMID;
stgp->input_semantic_index[slot] = 0;
break;
case GEOM_ATTRIB_POSITION:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
stgp->input_semantic_index[slot] = 0;
break;
case GEOM_ATTRIB_COLOR0:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
stgp->input_semantic_index[slot] = 0;
break;
case GEOM_ATTRIB_COLOR1:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
stgp->input_semantic_index[slot] = 1;
break;
case GEOM_ATTRIB_FOG_FRAG_COORD:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_FOG;
stgp->input_semantic_index[slot] = 0;
break;
case GEOM_ATTRIB_TEX_COORD:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
stgp->input_semantic_index[slot] = num_generic++;
break;
case GEOM_ATTRIB_VAR0:
/* fall-through */
default:
stgp->input_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
stgp->input_semantic_index[slot] = num_generic++;
}
}
}
/* initialize output semantics to defaults */
for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
gs_output_semantic_name[i] = TGSI_SEMANTIC_GENERIC;
gs_output_semantic_index[i] = 0;
}
num_generic = 0;
/*
* Determine number of outputs, the (default) output register
* mapping and the semantic information for each output.
*/
for (attr = 0; attr < GEOM_RESULT_MAX; attr++) {
if (stgp->Base.Base.OutputsWritten & BITFIELD64_BIT(attr)) {
GLuint slot;
slot = gs_num_outputs;
gs_num_outputs++;
outputMapping[attr] = slot;
switch (attr) {
case GEOM_RESULT_POS:
assert(slot == 0);
gs_output_semantic_name[slot] = TGSI_SEMANTIC_POSITION;
gs_output_semantic_index[slot] = 0;
break;
case GEOM_RESULT_COL0:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
gs_output_semantic_index[slot] = 0;
break;
case GEOM_RESULT_COL1:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_COLOR;
gs_output_semantic_index[slot] = 1;
break;
case GEOM_RESULT_SCOL0:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
gs_output_semantic_index[slot] = 0;
break;
case GEOM_RESULT_SCOL1:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_BCOLOR;
gs_output_semantic_index[slot] = 1;
break;
case GEOM_RESULT_FOGC:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_FOG;
gs_output_semantic_index[slot] = 0;
break;
case GEOM_RESULT_PSIZ:
gs_output_semantic_name[slot] = TGSI_SEMANTIC_PSIZE;
gs_output_semantic_index[slot] = 0;
break;
case GEOM_RESULT_TEX0:
case GEOM_RESULT_TEX1:
case GEOM_RESULT_TEX2:
case GEOM_RESULT_TEX3:
case GEOM_RESULT_TEX4:
case GEOM_RESULT_TEX5:
case GEOM_RESULT_TEX6:
case GEOM_RESULT_TEX7:
/* fall-through */
case GEOM_RESULT_VAR0:
/* fall-through */
default:
assert(slot < Elements(gs_output_semantic_name));
/* use default semantic info */
gs_output_semantic_name[slot] = TGSI_SEMANTIC_GENERIC;
gs_output_semantic_index[slot] = num_generic++;
}
}
}
assert(gs_output_semantic_name[0] == TGSI_SEMANTIC_POSITION);
/* find max output slot referenced to compute gs_num_outputs */
for (attr = 0; attr < GEOM_RESULT_MAX; attr++) {
if (outputMapping[attr] != ~0 && outputMapping[attr] > maxSlot)
maxSlot = outputMapping[attr];
}
gs_num_outputs = maxSlot + 1;
#if 0 /* debug */
{
GLuint i;
printf("outputMapping? %d\n", outputMapping ? 1 : 0);
if (outputMapping) {
printf("attr -> slot\n");
for (i = 0; i < 16; i++) {
printf(" %2d %3d\n", i, outputMapping[i]);
}
}
printf("slot sem_name sem_index\n");
for (i = 0; i < gs_num_outputs; i++) {
printf(" %2d %d %d\n",
i,
gs_output_semantic_name[i],
gs_output_semantic_index[i]);
}
}
#endif
/* free old shader state, if any */
if (stgp->tgsi.tokens) {
st_free_tokens(stgp->tgsi.tokens);
stgp->tgsi.tokens = NULL;
}
ureg_property_gs_input_prim(ureg, stgp->Base.InputType);
ureg_property_gs_output_prim(ureg, stgp->Base.OutputType);
ureg_property_gs_max_vertices(ureg, stgp->Base.VerticesOut);
st_translate_mesa_program(st->ctx,
TGSI_PROCESSOR_GEOMETRY,
ureg,
&stgp->Base.Base,
/* inputs */
gs_num_inputs,
inputMapping,
stgp->input_semantic_name,
stgp->input_semantic_index,
NULL,
/* outputs */
gs_num_outputs,
outputMapping,
gs_output_semantic_name,
gs_output_semantic_index,
FALSE,
FALSE);
stgp->num_inputs = gs_num_inputs;
stgp->tgsi.tokens = ureg_get_tokens( ureg, NULL );
ureg_destroy( ureg );
if (stgp->glsl_to_tgsi) {
st_translate_stream_output_info(stgp->glsl_to_tgsi,
outputMapping,
&stgp->tgsi.stream_output);
}
/* fill in new variant */
gpv->driver_shader = pipe->create_gs_state(pipe, &stgp->tgsi);
gpv->key = *key;
if ((ST_DEBUG & DEBUG_TGSI) && (ST_DEBUG & DEBUG_MESA)) {
_mesa_print_program(&stgp->Base.Base);
debug_printf("\n");
}
if (ST_DEBUG & DEBUG_TGSI) {
tgsi_dump(stgp->tgsi.tokens, 0);
debug_printf("\n");
}
return gpv;
}
/**
* Get/create geometry program variant.
*/
struct st_gp_variant *
st_get_gp_variant(struct st_context *st,
struct st_geometry_program *stgp,
const struct st_gp_variant_key *key)
{
struct st_gp_variant *gpv;
/* Search for existing variant */
for (gpv = stgp->variants; gpv; gpv = gpv->next) {
if (memcmp(&gpv->key, key, sizeof(*key)) == 0) {
break;
}
}
if (!gpv) {
/* create new */
gpv = st_translate_geometry_program(st, stgp, key);
if (gpv) {
/* insert into list */
gpv->next = stgp->variants;
stgp->variants = gpv;
}
}
return gpv;
}
/**
* Debug- print current shader text
*/
void
st_print_shaders(struct gl_context *ctx)
{
struct gl_shader_program *shProg[3] = {
ctx->Shader.CurrentVertexProgram,
ctx->Shader.CurrentGeometryProgram,
ctx->Shader.CurrentFragmentProgram,
};
unsigned j;
for (j = 0; j < 3; j++) {
unsigned i;
if (shProg[j] == NULL)
continue;
for (i = 0; i < shProg[j]->NumShaders; i++) {
struct gl_shader *sh;
switch (shProg[j]->Shaders[i]->Type) {
case GL_VERTEX_SHADER:
sh = (i != 0) ? NULL : shProg[j]->Shaders[i];
break;
case GL_GEOMETRY_SHADER_ARB:
sh = (i != 1) ? NULL : shProg[j]->Shaders[i];
break;
case GL_FRAGMENT_SHADER:
sh = (i != 2) ? NULL : shProg[j]->Shaders[i];
break;
default:
assert(0);
sh = NULL;
break;
}
if (sh != NULL) {
printf("GLSL shader %u of %u:\n", i, shProg[j]->NumShaders);
printf("%s\n", sh->Source);
}
}
}
}
/**
* Vert/Geom/Frag programs have per-context variants. Free all the
* variants attached to the given program which match the given context.
*/
static void
destroy_program_variants(struct st_context *st, struct gl_program *program)
{
if (!program)
return;
switch (program->Target) {
case GL_VERTEX_PROGRAM_ARB:
{
struct st_vertex_program *stvp = (struct st_vertex_program *) program;
struct st_vp_variant *vpv, **prevPtr = &stvp->variants;
for (vpv = stvp->variants; vpv; ) {
struct st_vp_variant *next = vpv->next;
if (vpv->key.st == st) {
/* unlink from list */
*prevPtr = next;
/* destroy this variant */
delete_vp_variant(st, vpv);
}
else {
prevPtr = &vpv->next;
}
vpv = next;
}
}
break;
case GL_FRAGMENT_PROGRAM_ARB:
{
struct st_fragment_program *stfp =
(struct st_fragment_program *) program;
struct st_fp_variant *fpv, **prevPtr = &stfp->variants;
for (fpv = stfp->variants; fpv; ) {
struct st_fp_variant *next = fpv->next;
if (fpv->key.st == st) {
/* unlink from list */
*prevPtr = next;
/* destroy this variant */
delete_fp_variant(st, fpv);
}
else {
prevPtr = &fpv->next;
}
fpv = next;
}
}
break;
case MESA_GEOMETRY_PROGRAM:
{
struct st_geometry_program *stgp =
(struct st_geometry_program *) program;
struct st_gp_variant *gpv, **prevPtr = &stgp->variants;
for (gpv = stgp->variants; gpv; ) {
struct st_gp_variant *next = gpv->next;
if (gpv->key.st == st) {
/* unlink from list */
*prevPtr = next;
/* destroy this variant */
delete_gp_variant(st, gpv);
}
else {
prevPtr = &gpv->next;
}
gpv = next;
}
}
break;
default:
_mesa_problem(NULL, "Unexpected program target 0x%x in "
"destroy_program_variants_cb()", program->Target);
}
}
/**
* Callback for _mesa_HashWalk. Free all the shader's program variants
* which match the given context.
*/
static void
destroy_shader_program_variants_cb(GLuint key, void *data, void *userData)
{
struct st_context *st = (struct st_context *) userData;
struct gl_shader *shader = (struct gl_shader *) data;
switch (shader->Type) {
case GL_SHADER_PROGRAM_MESA:
{
struct gl_shader_program *shProg = (struct gl_shader_program *) data;
GLuint i;
for (i = 0; i < shProg->NumShaders; i++) {
destroy_program_variants(st, shProg->Shaders[i]->Program);
}
for (i = 0; i < Elements(shProg->_LinkedShaders); i++) {
if (shProg->_LinkedShaders[i])
destroy_program_variants(st, shProg->_LinkedShaders[i]->Program);
}
}
break;
case GL_VERTEX_SHADER:
case GL_FRAGMENT_SHADER:
case GL_GEOMETRY_SHADER:
{
destroy_program_variants(st, shader->Program);
}
break;
default:
assert(0);
}
}
/**
* Callback for _mesa_HashWalk. Free all the program variants which match
* the given context.
*/
static void
destroy_program_variants_cb(GLuint key, void *data, void *userData)
{
struct st_context *st = (struct st_context *) userData;
struct gl_program *program = (struct gl_program *) data;
destroy_program_variants(st, program);
}
/**
* Walk over all shaders and programs to delete any variants which
* belong to the given context.
* This is called during context tear-down.
*/
void
st_destroy_program_variants(struct st_context *st)
{
/* ARB vert/frag program */
_mesa_HashWalk(st->ctx->Shared->Programs,
destroy_program_variants_cb, st);
/* GLSL vert/frag/geom shaders */
_mesa_HashWalk(st->ctx->Shared->ShaderObjects,
destroy_shader_program_variants_cb, st);
}
/**
* For debugging, print/dump the current vertex program.
*/
void
st_print_current_vertex_program(void)
{
GET_CURRENT_CONTEXT(ctx);
if (ctx->VertexProgram._Current) {
struct st_vertex_program *stvp =
(struct st_vertex_program *) ctx->VertexProgram._Current;
struct st_vp_variant *stv;
debug_printf("Vertex program %u\n", stvp->Base.Base.Id);
for (stv = stvp->variants; stv; stv = stv->next) {
debug_printf("variant %p\n", stv);
tgsi_dump(stv->tgsi.tokens, 0);
}
}
}