/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
* Copyright 2008-2010 VMware, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* Texture sampling
*
* Authors:
* Brian Paul
* Keith Whitwell
*/
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "sp_quad.h" /* only for #define QUAD_* tokens */
#include "sp_tex_sample.h"
#include "sp_tex_tile_cache.h"
/** Set to one to help debug texture sampling */
#define DEBUG_TEX 0
/*
* Return fractional part of 'f'. Used for computing interpolation weights.
* Need to be careful with negative values.
* Note, if this function isn't perfect you'll sometimes see 1-pixel bands
* of improperly weighted linear-filtered textures.
* The tests/texwrap.c demo is a good test.
*/
static INLINE float
frac(float f)
{
return f - floorf(f);
}
/**
* Linear interpolation macro
*/
static INLINE float
lerp(float a, float v0, float v1)
{
return v0 + a * (v1 - v0);
}
/**
* Do 2D/bilinear interpolation of float values.
* v00, v10, v01 and v11 are typically four texture samples in a square/box.
* a and b are the horizontal and vertical interpolants.
* It's important that this function is inlined when compiled with
* optimization! If we find that's not true on some systems, convert
* to a macro.
*/
static INLINE float
lerp_2d(float a, float b,
float v00, float v10, float v01, float v11)
{
const float temp0 = lerp(a, v00, v10);
const float temp1 = lerp(a, v01, v11);
return lerp(b, temp0, temp1);
}
/**
* As above, but 3D interpolation of 8 values.
*/
static INLINE float
lerp_3d(float a, float b, float c,
float v000, float v100, float v010, float v110,
float v001, float v101, float v011, float v111)
{
const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
return lerp(c, temp0, temp1);
}
/**
* Compute coord % size for repeat wrap modes.
* Note that if coord is negative, coord % size doesn't give the right
* value. To avoid that problem we add a large multiple of the size
* (rather than using a conditional).
*/
static INLINE int
repeat(int coord, unsigned size)
{
return (coord + size * 1024) % size;
}
/**
* Apply texture coord wrapping mode and return integer texture indexes
* for a vector of four texcoords (S or T or P).
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the incoming texcoords
* \param size the texture image size
* \param icoord returns the integer texcoords
* \return integer texture index
*/
static void
wrap_nearest_repeat(float s, unsigned size, int *icoord)
{
/* s limited to [0,1) */
/* i limited to [0,size-1] */
int i = util_ifloor(s * size);
*icoord = repeat(i, size);
}
static void
wrap_nearest_clamp(float s, unsigned size, int *icoord)
{
/* s limited to [0,1] */
/* i limited to [0,size-1] */
if (s <= 0.0F)
*icoord = 0;
else if (s >= 1.0F)
*icoord = size - 1;
else
*icoord = util_ifloor(s * size);
}
static void
wrap_nearest_clamp_to_edge(float s, unsigned size, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
if (s < min)
*icoord = 0;
else if (s > max)
*icoord = size - 1;
else
*icoord = util_ifloor(s * size);
}
static void
wrap_nearest_clamp_to_border(float s, unsigned size, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [-1, size] */
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
if (s <= min)
*icoord = -1;
else if (s >= max)
*icoord = size;
else
*icoord = util_ifloor(s * size);
}
static void
wrap_nearest_mirror_repeat(float s, unsigned size, int *icoord)
{
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
const int flr = util_ifloor(s);
float u = frac(s);
if (flr & 1)
u = 1.0F - u;
if (u < min)
*icoord = 0;
else if (u > max)
*icoord = size - 1;
else
*icoord = util_ifloor(u * size);
}
static void
wrap_nearest_mirror_clamp(float s, unsigned size, int *icoord)
{
/* s limited to [0,1] */
/* i limited to [0,size-1] */
const float u = fabsf(s);
if (u <= 0.0F)
*icoord = 0;
else if (u >= 1.0F)
*icoord = size - 1;
else
*icoord = util_ifloor(u * size);
}
static void
wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = 1.0F / (2.0F * size);
const float max = 1.0F - min;
const float u = fabsf(s);
if (u < min)
*icoord = 0;
else if (u > max)
*icoord = size - 1;
else
*icoord = util_ifloor(u * size);
}
static void
wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int *icoord)
{
/* s limited to [min,max] */
/* i limited to [0, size-1] */
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
const float u = fabsf(s);
if (u < min)
*icoord = -1;
else if (u > max)
*icoord = size;
else
*icoord = util_ifloor(u * size);
}
/**
* Used to compute texel locations for linear sampling
* \param wrapMode PIPE_TEX_WRAP_x
* \param s the texcoord
* \param size the texture image size
* \param icoord0 returns first texture index
* \param icoord1 returns second texture index (usually icoord0 + 1)
* \param w returns blend factor/weight between texture indices
* \param icoord returns the computed integer texture coord
*/
static void
wrap_linear_repeat(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = s * size - 0.5F;
*icoord0 = repeat(util_ifloor(u), size);
*icoord1 = repeat(*icoord0 + 1, size);
*w = frac(u);
}
static void
wrap_linear_clamp(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = CLAMP(s, 0.0F, 1.0F);
u = u * size - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_clamp_to_edge(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = CLAMP(s, 0.0F, 1.0F);
u = u * size - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord0 < 0)
*icoord0 = 0;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
*w = frac(u);
}
static void
wrap_linear_clamp_to_border(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
float u = CLAMP(s, min, max);
u = u * size - 0.5f;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_mirror_repeat(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
const int flr = util_ifloor(s);
float u = frac(s);
if (flr & 1)
u = 1.0F - u;
u = u * size - 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord0 < 0)
*icoord0 = 0;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
*w = frac(u);
}
static void
wrap_linear_mirror_clamp(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = fabsf(s);
if (u >= 1.0F)
u = (float) size;
else
u *= size;
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
static void
wrap_linear_mirror_clamp_to_edge(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = fabsf(s);
if (u >= 1.0F)
u = (float) size;
else
u *= size;
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord0 < 0)
*icoord0 = 0;
if (*icoord1 >= (int) size)
*icoord1 = size - 1;
*w = frac(u);
}
static void
wrap_linear_mirror_clamp_to_border(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
const float min = -1.0F / (2.0F * size);
const float max = 1.0F - min;
float u = fabsf(s);
if (u <= min)
u = min * size;
else if (u >= max)
u = max * size;
else
u *= size;
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp(float s, unsigned size, int *icoord)
{
int i = util_ifloor(s);
*icoord = CLAMP(i, 0, (int) size-1);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int *icoord)
{
*icoord = util_ifloor( CLAMP(s, -0.5F, (float) size + 0.5F) );
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
*/
static void
wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int *icoord)
{
*icoord = util_ifloor( CLAMP(s, 0.5F, (float) size - 0.5F) );
}
/**
* PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
/* Not exactly what the spec says, but it matches NVIDIA output */
float u = CLAMP(s - 0.5F, 0.0f, (float) size - 1.0f);
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp_to_border(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = CLAMP(s, -0.5F, (float) size + 0.5F);
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord1 > (int) size - 1)
*icoord1 = size - 1;
*w = frac(u);
}
/**
* PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
*/
static void
wrap_linear_unorm_clamp_to_edge(float s, unsigned size,
int *icoord0, int *icoord1, float *w)
{
float u = CLAMP(s, +0.5F, (float) size - 0.5F);
u -= 0.5F;
*icoord0 = util_ifloor(u);
*icoord1 = *icoord0 + 1;
if (*icoord1 > (int) size - 1)
*icoord1 = size - 1;
*w = frac(u);
}
/**
* Do coordinate to array index conversion. For array textures.
*/
static INLINE void
wrap_array_layer(float coord, unsigned size, int *layer)
{
int c = util_ifloor(coord + 0.5F);
*layer = CLAMP(c, 0, size - 1);
}
/**
* Examine the quad's texture coordinates to compute the partial
* derivatives w.r.t X and Y, then compute lambda (level of detail).
*/
static float
compute_lambda_1d(const struct sp_sampler_variant *samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
const struct pipe_resource *texture = samp->view->texture;
float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
return util_fast_log2(rho);
}
static float
compute_lambda_2d(const struct sp_sampler_variant *samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
const struct pipe_resource *texture = samp->view->texture;
float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
float rho = MAX2(maxx, maxy);
return util_fast_log2(rho);
}
static float
compute_lambda_3d(const struct sp_sampler_variant *samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
const struct pipe_resource *texture = samp->view->texture;
float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, samp->view->u.tex.first_level);
float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, samp->view->u.tex.first_level);
float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, samp->view->u.tex.first_level);
float rho;
rho = MAX2(maxx, maxy);
rho = MAX2(rho, maxz);
return util_fast_log2(rho);
}
/**
* Compute lambda for a vertex texture sampler.
* Since there aren't derivatives to use, just return 0.
*/
static float
compute_lambda_vert(const struct sp_sampler_variant *samp,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE])
{
return 0.0f;
}
/**
* Get a texel from a texture, using the texture tile cache.
*
* \param addr the template tex address containing cube, z, face info.
* \param x the x coord of texel within 2D image
* \param y the y coord of texel within 2D image
* \param rgba the quad to put the texel/color into
*
* XXX maybe move this into sp_tex_tile_cache.c and merge with the
* sp_get_cached_tile_tex() function.
*/
static INLINE const float *
get_texel_2d_no_border(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y)
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TILE_SIZE;
addr.bits.y = y / TILE_SIZE;
y %= TILE_SIZE;
x %= TILE_SIZE;
tile = sp_get_cached_tile_tex(samp->cache, addr);
return &tile->data.color[y][x][0];
}
static INLINE const float *
get_texel_2d(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y)
{
const struct pipe_resource *texture = samp->view->texture;
unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level)) {
return samp->sampler->border_color.f;
}
else {
return get_texel_2d_no_border( samp, addr, x, y );
}
}
/* Gather a quad of adjacent texels within a tile:
*/
static INLINE void
get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_variant *samp,
union tex_tile_address addr,
unsigned x, unsigned y,
const float *out[4])
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TILE_SIZE;
addr.bits.y = y / TILE_SIZE;
y %= TILE_SIZE;
x %= TILE_SIZE;
tile = sp_get_cached_tile_tex(samp->cache, addr);
out[0] = &tile->data.color[y ][x ][0];
out[1] = &tile->data.color[y ][x+1][0];
out[2] = &tile->data.color[y+1][x ][0];
out[3] = &tile->data.color[y+1][x+1][0];
}
/* Gather a quad of potentially non-adjacent texels:
*/
static INLINE void
get_texel_quad_2d_no_border(const struct sp_sampler_variant *samp,
union tex_tile_address addr,
int x0, int y0,
int x1, int y1,
const float *out[4])
{
out[0] = get_texel_2d_no_border( samp, addr, x0, y0 );
out[1] = get_texel_2d_no_border( samp, addr, x1, y0 );
out[2] = get_texel_2d_no_border( samp, addr, x0, y1 );
out[3] = get_texel_2d_no_border( samp, addr, x1, y1 );
}
/* Can involve a lot of unnecessary checks for border color:
*/
static INLINE void
get_texel_quad_2d(const struct sp_sampler_variant *samp,
union tex_tile_address addr,
int x0, int y0,
int x1, int y1,
const float *out[4])
{
out[0] = get_texel_2d( samp, addr, x0, y0 );
out[1] = get_texel_2d( samp, addr, x1, y0 );
out[3] = get_texel_2d( samp, addr, x1, y1 );
out[2] = get_texel_2d( samp, addr, x0, y1 );
}
/* 3d variants:
*/
static INLINE const float *
get_texel_3d_no_border(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y, int z)
{
const struct softpipe_tex_cached_tile *tile;
addr.bits.x = x / TILE_SIZE;
addr.bits.y = y / TILE_SIZE;
addr.bits.z = z;
y %= TILE_SIZE;
x %= TILE_SIZE;
tile = sp_get_cached_tile_tex(samp->cache, addr);
return &tile->data.color[y][x][0];
}
static INLINE const float *
get_texel_3d(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y, int z)
{
const struct pipe_resource *texture = samp->view->texture;
unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level) ||
z < 0 || z >= (int) u_minify(texture->depth0, level)) {
return samp->sampler->border_color.f;
}
else {
return get_texel_3d_no_border( samp, addr, x, y, z );
}
}
/* Get texel pointer for 1D array texture */
static INLINE const float *
get_texel_1d_array(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y)
{
const struct pipe_resource *texture = samp->view->texture;
unsigned level = addr.bits.level;
if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
return samp->sampler->border_color.f;
}
else {
return get_texel_2d_no_border(samp, addr, x, y);
}
}
/* Get texel pointer for 2D array texture */
static INLINE const float *
get_texel_2d_array(const struct sp_sampler_variant *samp,
union tex_tile_address addr, int x, int y, int layer)
{
const struct pipe_resource *texture = samp->view->texture;
unsigned level = addr.bits.level;
assert(layer < (int) texture->array_size);
assert(layer >= 0);
if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
y < 0 || y >= (int) u_minify(texture->height0, level)) {
return samp->sampler->border_color.f;
}
else {
return get_texel_3d_no_border(samp, addr, x, y, layer);
}
}
/**
* Given the logbase2 of a mipmap's base level size and a mipmap level,
* return the size (in texels) of that mipmap level.
* For example, if level[0].width = 256 then base_pot will be 8.
* If level = 2, then we'll return 64 (the width at level=2).
* Return 1 if level > base_pot.
*/
static INLINE unsigned
pot_level_size(unsigned base_pot, unsigned level)
{
return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
}
static void
print_sample(const char *function, const float *rgba)
{
debug_printf("%s %g %g %g %g\n",
function,
rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
}
static void
print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
function,
rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
}
/* Some image-filter fastpaths:
*/
static INLINE void
img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
unsigned xpot = pot_level_size(samp->xpot, level);
unsigned ypot = pot_level_size(samp->ypot, level);
unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */
unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */
union tex_tile_address addr;
int c;
float u = s * xpot - 0.5F;
float v = t * ypot - 0.5F;
int uflr = util_ifloor(u);
int vflr = util_ifloor(v);
float xw = u - (float)uflr;
float yw = v - (float)vflr;
int x0 = uflr & (xpot - 1);
int y0 = vflr & (ypot - 1);
const float *tx[4];
addr.value = 0;
addr.bits.level = level;
/* Can we fetch all four at once:
*/
if (x0 < xmax && y0 < ymax) {
get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx);
}
else {
unsigned x1 = (x0 + 1) & (xpot - 1);
unsigned y1 = (y0 + 1) & (ypot - 1);
get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx);
}
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++) {
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx[0][c], tx[1][c],
tx[2][c], tx[3][c]);
}
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static INLINE void
img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float rgba[TGSI_QUAD_SIZE])
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
unsigned xpot = pot_level_size(samp->xpot, level);
unsigned ypot = pot_level_size(samp->ypot, level);
const float *out;
union tex_tile_address addr;
int c;
float u = s * xpot;
float v = t * ypot;
int uflr = util_ifloor(u);
int vflr = util_ifloor(v);
int x0 = uflr & (xpot - 1);
int y0 = vflr & (ypot - 1);
addr.value = 0;
addr.bits.level = level;
out = get_texel_2d_no_border(samp, addr, x0, y0);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static INLINE void
img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float rgba[TGSI_QUAD_SIZE])
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
unsigned xpot = pot_level_size(samp->xpot, level);
unsigned ypot = pot_level_size(samp->ypot, level);
union tex_tile_address addr;
int c;
float u = s * xpot;
float v = t * ypot;
int x0, y0;
const float *out;
addr.value = 0;
addr.bits.level = level;
x0 = util_ifloor(u);
if (x0 < 0)
x0 = 0;
else if (x0 > xpot - 1)
x0 = xpot - 1;
y0 = util_ifloor(v);
if (y0 < 0)
y0 = 0;
else if (y0 > ypot - 1)
y0 = ypot - 1;
out = get_texel_2d_no_border(samp, addr, x0, y0);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float rgba[TGSI_QUAD_SIZE])
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width;
int x;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
assert(width > 0);
addr.value = 0;
addr.bits.level = level;
samp->nearest_texcoord_s(s, width, &x);
out = get_texel_2d(samp, addr, x, 0);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_1d_array_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width;
int x, layer;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
assert(width > 0);
addr.value = 0;
addr.bits.level = level;
samp->nearest_texcoord_s(s, width, &x);
wrap_array_layer(t, texture->array_size, &layer);
out = get_texel_1d_array(samp, addr, x, layer);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x, y;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->nearest_texcoord_s(s, width, &x);
samp->nearest_texcoord_t(t, height, &y);
out = get_texel_2d(samp, addr, x, y);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_2d_array_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x, y, layer;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->nearest_texcoord_s(s, width, &x);
samp->nearest_texcoord_t(t, height, &y);
wrap_array_layer(p, texture->array_size, &layer);
out = get_texel_2d_array(samp, addr, x, y, layer);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static INLINE union tex_tile_address
face(union tex_tile_address addr, unsigned face )
{
addr.bits.face = face;
return addr;
}
static void
img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x, y;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->nearest_texcoord_s(s, width, &x);
samp->nearest_texcoord_t(t, height, &y);
out = get_texel_2d(samp, face(addr, face_id), x, y);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
if (DEBUG_TEX) {
print_sample(__FUNCTION__, rgba);
}
}
static void
img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height, depth;
int x, y, z;
union tex_tile_address addr;
const float *out;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
depth = u_minify(texture->depth0, level);
assert(width > 0);
assert(height > 0);
assert(depth > 0);
samp->nearest_texcoord_s(s, width, &x);
samp->nearest_texcoord_t(t, height, &y);
samp->nearest_texcoord_p(p, depth, &z);
addr.value = 0;
addr.bits.level = level;
out = get_texel_3d(samp, addr, x, y, z);
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = out[c];
}
static void
img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width;
int x0, x1;
float xw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1;
int c;
width = u_minify(texture->width0, level);
assert(width > 0);
addr.value = 0;
addr.bits.level = level;
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
tx0 = get_texel_2d(samp, addr, x0, 0);
tx1 = get_texel_2d(samp, addr, x1, 0);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
}
static void
img_filter_1d_array_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width;
int x0, x1, layer;
float xw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1;
int c;
width = u_minify(texture->width0, level);
assert(width > 0);
addr.value = 0;
addr.bits.level = level;
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
wrap_array_layer(t, texture->array_size, &layer);
tx0 = get_texel_1d_array(samp, addr, x0, layer);
tx1 = get_texel_1d_array(samp, addr, x1, layer);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
}
static void
img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1, *tx2, *tx3;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
tx0 = get_texel_2d(samp, addr, x0, y0);
tx1 = get_texel_2d(samp, addr, x1, y0);
tx2 = get_texel_2d(samp, addr, x0, y1);
tx3 = get_texel_2d(samp, addr, x1, y1);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx0[c], tx1[c],
tx2[c], tx3[c]);
}
static void
img_filter_2d_array_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x0, y0, x1, y1, layer;
float xw, yw; /* weights */
union tex_tile_address addr;
const float *tx0, *tx1, *tx2, *tx3;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
wrap_array_layer(p, texture->array_size, &layer);
tx0 = get_texel_2d_array(samp, addr, x0, y0, layer);
tx1 = get_texel_2d_array(samp, addr, x1, y0, layer);
tx2 = get_texel_2d_array(samp, addr, x0, y1, layer);
tx3 = get_texel_2d_array(samp, addr, x1, y1, layer);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx0[c], tx1[c],
tx2[c], tx3[c]);
}
static void
img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height;
int x0, y0, x1, y1;
float xw, yw; /* weights */
union tex_tile_address addr, addrj;
const float *tx0, *tx1, *tx2, *tx3;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
assert(width > 0);
assert(height > 0);
addr.value = 0;
addr.bits.level = level;
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
addrj = face(addr, face_id);
tx0 = get_texel_2d(samp, addrj, x0, y0);
tx1 = get_texel_2d(samp, addrj, x1, y0);
tx2 = get_texel_2d(samp, addrj, x0, y1);
tx3 = get_texel_2d(samp, addrj, x1, y1);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
tx0[c], tx1[c],
tx2[c], tx3[c]);
}
static void
img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler,
float s,
float t,
float p,
unsigned level,
unsigned face_id,
enum tgsi_sampler_control control,
float *rgba)
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int width, height, depth;
int x0, x1, y0, y1, z0, z1;
float xw, yw, zw; /* interpolation weights */
union tex_tile_address addr;
const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
int c;
width = u_minify(texture->width0, level);
height = u_minify(texture->height0, level);
depth = u_minify(texture->depth0, level);
addr.value = 0;
addr.bits.level = level;
assert(width > 0);
assert(height > 0);
assert(depth > 0);
samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
samp->linear_texcoord_p(p, depth, &z0, &z1, &zw);
tx00 = get_texel_3d(samp, addr, x0, y0, z0);
tx01 = get_texel_3d(samp, addr, x1, y0, z0);
tx02 = get_texel_3d(samp, addr, x0, y1, z0);
tx03 = get_texel_3d(samp, addr, x1, y1, z0);
tx10 = get_texel_3d(samp, addr, x0, y0, z1);
tx11 = get_texel_3d(samp, addr, x1, y0, z1);
tx12 = get_texel_3d(samp, addr, x0, y1, z1);
tx13 = get_texel_3d(samp, addr, x1, y1, z1);
/* interpolate R, G, B, A */
for (c = 0; c < TGSI_QUAD_SIZE; c++)
rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
tx00[c], tx01[c],
tx02[c], tx03[c],
tx10[c], tx11[c],
tx12[c], tx13[c]);
}
/* Calculate level of detail for every fragment.
* Note that lambda has already been biased by global LOD bias.
*/
static INLINE void
compute_lod(const struct pipe_sampler_state *sampler,
const float biased_lambda,
const float lodbias[TGSI_QUAD_SIZE],
float lod[TGSI_QUAD_SIZE])
{
uint i;
for (i = 0; i < TGSI_QUAD_SIZE; i++) {
lod[i] = biased_lambda + lodbias[i];
lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod);
}
}
static void
mip_filter_linear(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int j;
float lod[TGSI_QUAD_SIZE];
if (control == tgsi_sampler_lod_bias) {
float lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
compute_lod(samp->sampler, lambda, c0, lod);
} else {
assert(control == tgsi_sampler_lod_explicit);
memcpy(lod, c0, sizeof(lod));
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int level0 = samp->view->u.tex.first_level + (int)lod[j];
if (lod[j] < 0.0)
samp->mag_img_filter(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
else if (level0 >= texture->last_level)
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], texture->last_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
else {
float levelBlend = frac(lod[j]);
float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
int c;
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], level0, samp->faces[j], tgsi_sampler_lod_bias, &rgbax[0][0]);
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], level0+1, samp->faces[j], tgsi_sampler_lod_bias, &rgbax[0][1]);
for (c = 0; c < 4; c++) {
rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
}
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Compute nearest mipmap level from texcoords.
* Then sample the texture level for four elements of a quad.
* \param c0 the LOD bias factors, or absolute LODs (depending on control)
*/
static void
mip_filter_nearest(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
float lod[TGSI_QUAD_SIZE];
int j;
if (control == tgsi_sampler_lod_bias) {
float lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
compute_lod(samp->sampler, lambda, c0, lod);
} else {
assert(control == tgsi_sampler_lod_explicit);
memcpy(lod, c0, sizeof(lod));
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (lod[j] < 0.0)
samp->mag_img_filter(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
else {
float level = samp->view->u.tex.first_level + (int)(lod[j] + 0.5F) ;
level = MIN2(level, (int)texture->last_level);
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
static void
mip_filter_none(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
float lod[TGSI_QUAD_SIZE];
int j;
if (control == tgsi_sampler_lod_bias) {
float lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
compute_lod(samp->sampler, lambda, c0, lod);
} else {
assert(control == tgsi_sampler_lod_explicit);
memcpy(lod, c0, sizeof(lod));
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
if (lod[j] < 0.0) {
samp->mag_img_filter(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
else {
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
}
}
static void
mip_filter_none_no_filter_select(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
int j;
for (j = 0; j < TGSI_QUAD_SIZE; j++)
samp->mag_img_filter(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
/* For anisotropic filtering */
#define WEIGHT_LUT_SIZE 1024
static float *weightLut = NULL;
/**
* Creates the look-up table used to speed-up EWA sampling
*/
static void
create_filter_table(void)
{
unsigned i;
if (!weightLut) {
weightLut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
float alpha = 2;
float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
float weight = (float) exp(-alpha * r2);
weightLut[i] = weight;
}
}
}
/**
* Elliptical weighted average (EWA) filter for producing high quality
* anisotropic filtered results.
* Based on the Higher Quality Elliptical Weighted Average Filter
* published by Paul S. Heckbert in his Master's Thesis
* "Fundamentals of Texture Mapping and Image Warping" (1989)
*/
static void
img_filter_2d_ewa(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
unsigned level,
enum tgsi_sampler_control control,
const float dudx, const float dvdx,
const float dudy, const float dvdy,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
// ??? Won't the image filters blow up if level is negative?
unsigned level0 = level > 0 ? level : 0;
float scaling = 1.0 / (1 << level0);
int width = u_minify(texture->width0, level0);
int height = u_minify(texture->height0, level0);
float ux = dudx * scaling;
float vx = dvdx * scaling;
float uy = dudy * scaling;
float vy = dvdy * scaling;
/* compute ellipse coefficients to bound the region:
* A*x*x + B*x*y + C*y*y = F.
*/
float A = vx*vx+vy*vy+1;
float B = -2*(ux*vx+uy*vy);
float C = ux*ux+uy*uy+1;
float F = A*C-B*B/4.0;
/* check if it is an ellipse */
/* ASSERT(F > 0.0); */
/* Compute the ellipse's (u,v) bounding box in texture space */
float d = -B*B+4.0*C*A;
float box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */
float box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
float s_buffer[TGSI_QUAD_SIZE];
float t_buffer[TGSI_QUAD_SIZE];
float weight_buffer[TGSI_QUAD_SIZE];
unsigned buffer_next;
int j;
float den; /* = 0.0F; */
float ddq;
float U; /* = u0 - tex_u; */
int v;
/* Scale ellipse formula to directly index the Filter Lookup Table.
* i.e. scale so that F = WEIGHT_LUT_SIZE-1
*/
double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
A *= formScale;
B *= formScale;
C *= formScale;
/* F *= formScale; */ /* no need to scale F as we don't use it below here */
/* For each quad, the du and dx values are the same and so the ellipse is
* also the same. Note that texel/image access can only be performed using
* a quad, i.e. it is not possible to get the pixel value for a single
* tex coord. In order to have a better performance, the access is buffered
* using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
* full, then the pixel values are read from the image.
*/
ddq = 2 * A;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
/* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
* and incrementally update the value of Ax^2+Bxy*Cy^2; when this
* value, q, is less than F, we're inside the ellipse
*/
float tex_u = -0.5F + s[j] * texture->width0 * scaling;
float tex_v = -0.5F + t[j] * texture->height0 * scaling;
int u0 = (int) floorf(tex_u - box_u);
int u1 = (int) ceilf(tex_u + box_u);
int v0 = (int) floorf(tex_v - box_v);
int v1 = (int) ceilf(tex_v + box_v);
float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
buffer_next = 0;
den = 0;
U = u0 - tex_u;
for (v = v0; v <= v1; ++v) {
float V = v - tex_v;
float dq = A * (2 * U + 1) + B * V;
float q = (C * V + B * U) * V + A * U * U;
int u;
for (u = u0; u <= u1; ++u) {
/* Note that the ellipse has been pre-scaled so F =
* WEIGHT_LUT_SIZE - 1
*/
if (q < WEIGHT_LUT_SIZE) {
/* as a LUT is used, q must never be negative;
* should not happen, though
*/
const int qClamped = q >= 0.0F ? q : 0;
float weight = weightLut[qClamped];
weight_buffer[buffer_next] = weight;
s_buffer[buffer_next] = u / ((float) width);
t_buffer[buffer_next] = v / ((float) height);
buffer_next++;
if (buffer_next == TGSI_QUAD_SIZE) {
/* 4 texel coords are in the buffer -> read it now */
unsigned jj;
/* it is assumed that samp->min_img_filter is set to
* img_filter_2d_nearest or one of the
* accelerated img_filter_2d_nearest_XXX functions.
*/
for (jj = 0; jj < buffer_next; jj++) {
samp->min_img_filter(tgsi_sampler, s_buffer[jj], t_buffer[jj], p[jj], level, samp->faces[j],
tgsi_sampler_lod_bias, &rgba_temp[0][jj]);
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
}
buffer_next = 0;
}
den += weight;
}
q += dq;
dq += ddq;
}
}
/* if the tex coord buffer contains unread values, we will read
* them now.
*/
if (buffer_next > 0) {
unsigned jj;
/* it is assumed that samp->min_img_filter is set to
* img_filter_2d_nearest or one of the
* accelerated img_filter_2d_nearest_XXX functions.
*/
for (jj = 0; jj < buffer_next; jj++) {
samp->min_img_filter(tgsi_sampler, s_buffer[jj], t_buffer[jj], p[jj], level, samp->faces[j],
tgsi_sampler_lod_bias, &rgba_temp[0][jj]);
num[0] += weight_buffer[jj] * rgba_temp[0][jj];
num[1] += weight_buffer[jj] * rgba_temp[1][jj];
num[2] += weight_buffer[jj] * rgba_temp[2][jj];
num[3] += weight_buffer[jj] * rgba_temp[3][jj];
}
}
if (den <= 0.0F) {
/* Reaching this place would mean that no pixels intersected
* the ellipse. This should never happen because the filter
* we use always intersects at least one pixel.
*/
/*rgba[0]=0;
rgba[1]=0;
rgba[2]=0;
rgba[3]=0;*/
/* not enough pixels in resampling, resort to direct interpolation */
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], level, samp->faces[j],
tgsi_sampler_lod_bias, &rgba_temp[0][j]);
den = 1;
num[0] = rgba_temp[0][j];
num[1] = rgba_temp[1][j];
num[2] = rgba_temp[2][j];
num[3] = rgba_temp[3][j];
}
rgba[0][j] = num[0] / den;
rgba[1][j] = num[1] / den;
rgba[2][j] = num[2] / den;
rgba[3][j] = num[3] / den;
}
}
/**
* Sample 2D texture using an anisotropic filter.
*/
static void
mip_filter_linear_aniso(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int level0;
float lambda;
float lod[TGSI_QUAD_SIZE];
float s_to_u = u_minify(texture->width0, samp->view->u.tex.first_level);
float t_to_v = u_minify(texture->height0, samp->view->u.tex.first_level);
float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
if (control == tgsi_sampler_lod_bias) {
/* note: instead of working with Px and Py, we will use the
* squared length instead, to avoid sqrt.
*/
float Px2 = dudx * dudx + dvdx * dvdx;
float Py2 = dudy * dudy + dvdy * dvdy;
float Pmax2;
float Pmin2;
float e;
const float maxEccentricity = samp->sampler->max_anisotropy * samp->sampler->max_anisotropy;
if (Px2 < Py2) {
Pmax2 = Py2;
Pmin2 = Px2;
}
else {
Pmax2 = Px2;
Pmin2 = Py2;
}
/* if the eccentricity of the ellipse is too big, scale up the shorter
* of the two vectors to limit the maximum amount of work per pixel
*/
e = Pmax2 / Pmin2;
if (e > maxEccentricity) {
/* float s=e / maxEccentricity;
minor[0] *= s;
minor[1] *= s;
Pmin2 *= s; */
Pmin2 = Pmax2 / maxEccentricity;
}
/* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
* this since 0.5*log(x) = log(sqrt(x))
*/
lambda = 0.5F * util_fast_log2(Pmin2) + samp->sampler->lod_bias;
compute_lod(samp->sampler, lambda, c0, lod);
}
else {
assert(control == tgsi_sampler_lod_explicit);
memcpy(lod, c0, sizeof(lod));
}
/* XXX: Take into account all lod values.
*/
lambda = lod[0];
level0 = samp->view->u.tex.first_level + (int)lambda;
/* If the ellipse covers the whole image, we can
* simply return the average of the whole image.
*/
if (level0 >= (int) texture->last_level) {
int j;
for (j = 0; j < TGSI_QUAD_SIZE; j++)
samp->min_img_filter(tgsi_sampler, s[j], t[j], p[j], texture->last_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
else {
/* don't bother interpolating between multiple LODs; it doesn't
* seem to be worth the extra running time.
*/
img_filter_2d_ewa(tgsi_sampler, s, t, p, level0, tgsi_sampler_lod_bias,
dudx, dvdx, dudy, dvdy, rgba);
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Specialized version of mip_filter_linear with hard-wired calls to
* 2d lambda calculation and 2d_linear_repeat_POT img filters.
*/
static void
mip_filter_linear_2d_linear_repeat_POT(
struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_resource *texture = samp->view->texture;
int j;
float lambda;
float lod[TGSI_QUAD_SIZE];
if (control == tgsi_sampler_lod_bias) {
lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
compute_lod(samp->sampler, lambda, c0, lod);
} else {
assert(control == tgsi_sampler_lod_explicit);
memcpy(lod, c0, sizeof(lod));
}
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int level0 = samp->view->u.tex.first_level + (int)lod[j];
/* Catches both negative and large values of level0:
*/
if ((unsigned)level0 >= texture->last_level) {
if (level0 < 0)
img_filter_2d_linear_repeat_POT(tgsi_sampler, s[j], t[j], p[j], samp->view->u.tex.first_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
else
img_filter_2d_linear_repeat_POT(tgsi_sampler, s[j], t[j], p[j], samp->view->texture->last_level, samp->faces[j], tgsi_sampler_lod_bias, &rgba[0][j]);
}
else {
float levelBlend = frac(lod[j]);
float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
int c;
img_filter_2d_linear_repeat_POT(tgsi_sampler, s[j], t[j], p[j], level0, samp->faces[j], tgsi_sampler_lod_bias, &rgbax[0][0]);
img_filter_2d_linear_repeat_POT(tgsi_sampler, s[j], t[j], p[j], level0+1, samp->faces[j], tgsi_sampler_lod_bias, &rgbax[0][1]);
for (c = 0; c < TGSI_NUM_CHANNELS; c++)
rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
}
}
if (DEBUG_TEX) {
print_sample_4(__FUNCTION__, rgba);
}
}
/**
* Do shadow/depth comparisons.
*/
static void
sample_compare(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_sampler_state *sampler = samp->sampler;
int j, k0, k1, k2, k3;
float val;
float pc0, pc1, pc2, pc3;
samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba);
/**
* Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
* for 2D Array texture we need to use the 'c0' (aka Q).
* When we sampled the depth texture, the depth value was put into all
* RGBA channels. We look at the red channel here.
*/
if (samp->view->texture->target == PIPE_TEXTURE_2D_ARRAY ||
samp->view->texture->target == PIPE_TEXTURE_CUBE) {
pc0 = CLAMP(c0[0], 0.0F, 1.0F);
pc1 = CLAMP(c0[1], 0.0F, 1.0F);
pc2 = CLAMP(c0[2], 0.0F, 1.0F);
pc3 = CLAMP(c0[3], 0.0F, 1.0F);
} else {
pc0 = CLAMP(p[0], 0.0F, 1.0F);
pc1 = CLAMP(p[1], 0.0F, 1.0F);
pc2 = CLAMP(p[2], 0.0F, 1.0F);
pc3 = CLAMP(p[3], 0.0F, 1.0F);
}
/* compare four texcoords vs. four texture samples */
switch (sampler->compare_func) {
case PIPE_FUNC_LESS:
k0 = pc0 < rgba[0][0];
k1 = pc1 < rgba[0][1];
k2 = pc2 < rgba[0][2];
k3 = pc3 < rgba[0][3];
break;
case PIPE_FUNC_LEQUAL:
k0 = pc0 <= rgba[0][0];
k1 = pc1 <= rgba[0][1];
k2 = pc2 <= rgba[0][2];
k3 = pc3 <= rgba[0][3];
break;
case PIPE_FUNC_GREATER:
k0 = pc0 > rgba[0][0];
k1 = pc1 > rgba[0][1];
k2 = pc2 > rgba[0][2];
k3 = pc3 > rgba[0][3];
break;
case PIPE_FUNC_GEQUAL:
k0 = pc0 >= rgba[0][0];
k1 = pc1 >= rgba[0][1];
k2 = pc2 >= rgba[0][2];
k3 = pc3 >= rgba[0][3];
break;
case PIPE_FUNC_EQUAL:
k0 = pc0 == rgba[0][0];
k1 = pc1 == rgba[0][1];
k2 = pc2 == rgba[0][2];
k3 = pc3 == rgba[0][3];
break;
case PIPE_FUNC_NOTEQUAL:
k0 = pc0 != rgba[0][0];
k1 = pc1 != rgba[0][1];
k2 = pc2 != rgba[0][2];
k3 = pc3 != rgba[0][3];
break;
case PIPE_FUNC_ALWAYS:
k0 = k1 = k2 = k3 = 1;
break;
case PIPE_FUNC_NEVER:
k0 = k1 = k2 = k3 = 0;
break;
default:
k0 = k1 = k2 = k3 = 0;
assert(0);
break;
}
if (sampler->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
/* convert four pass/fail values to an intensity in [0,1] */
val = 0.25F * (k0 + k1 + k2 + k3);
/* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
for (j = 0; j < 4; j++) {
rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
rgba[3][j] = 1.0F;
}
} else {
for (j = 0; j < 4; j++) {
rgba[0][j] = k0;
rgba[1][j] = k1;
rgba[2][j] = k2;
rgba[3][j] = 1.0F;
}
}
}
/**
* Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
* Put face info into the sampler faces[] array.
*/
static void
sample_cube(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
unsigned j;
float ssss[4], tttt[4];
/* Not actually used, but the intermediate steps that do the
* dereferencing don't know it.
*/
static const float pppp[4] = { 0, 0, 0, 0 };
/*
major axis
direction target sc tc ma
---------- ------------------------------- --- --- ---
+rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
-rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
-ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
-rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
*/
/* Choose the cube face and compute new s/t coords for the 2D face.
*
* Use the same cube face for all four pixels in the quad.
*
* This isn't ideal, but if we want to use a different cube face
* per pixel in the quad, we'd have to also compute the per-face
* LOD here too. That's because the four post-face-selection
* texcoords are no longer related to each other (they're
* per-face!) so we can't use subtraction to compute the partial
* deriviates to compute the LOD. Doing so (near cube edges
* anyway) gives us pretty much random values.
*/
{
/* use the average of the four pixel's texcoords to choose the face */
const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
if (arx >= ary && arx >= arz) {
float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const float ima = -0.5F / fabsf(s[j]);
ssss[j] = sign * p[j] * ima + 0.5F;
tttt[j] = t[j] * ima + 0.5F;
samp->faces[j] = face;
}
}
else if (ary >= arx && ary >= arz) {
float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const float ima = -0.5F / fabsf(t[j]);
ssss[j] = -s[j] * ima + 0.5F;
tttt[j] = sign * -p[j] * ima + 0.5F;
samp->faces[j] = face;
}
}
else {
float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
const float ima = -0.5F / fabsf(p[j]);
ssss[j] = sign * -s[j] * ima + 0.5F;
tttt[j] = t[j] * ima + 0.5F;
samp->faces[j] = face;
}
}
}
/* In our little pipeline, the compare stage is next. If compare
* is not active, this will point somewhere deeper into the
* pipeline, eg. to mip_filter or even img_filter.
*/
samp->compare(tgsi_sampler, ssss, tttt, pppp, c0, control, rgba);
}
static void
do_swizzling(const struct sp_sampler_variant *samp,
float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
int j;
const unsigned swizzle_r = samp->key.bits.swizzle_r;
const unsigned swizzle_g = samp->key.bits.swizzle_g;
const unsigned swizzle_b = samp->key.bits.swizzle_b;
const unsigned swizzle_a = samp->key.bits.swizzle_a;
switch (swizzle_r) {
case PIPE_SWIZZLE_ZERO:
for (j = 0; j < 4; j++)
out[0][j] = 0.0f;
break;
case PIPE_SWIZZLE_ONE:
for (j = 0; j < 4; j++)
out[0][j] = 1.0f;
break;
default:
assert(swizzle_r < 4);
for (j = 0; j < 4; j++)
out[0][j] = in[swizzle_r][j];
}
switch (swizzle_g) {
case PIPE_SWIZZLE_ZERO:
for (j = 0; j < 4; j++)
out[1][j] = 0.0f;
break;
case PIPE_SWIZZLE_ONE:
for (j = 0; j < 4; j++)
out[1][j] = 1.0f;
break;
default:
assert(swizzle_g < 4);
for (j = 0; j < 4; j++)
out[1][j] = in[swizzle_g][j];
}
switch (swizzle_b) {
case PIPE_SWIZZLE_ZERO:
for (j = 0; j < 4; j++)
out[2][j] = 0.0f;
break;
case PIPE_SWIZZLE_ONE:
for (j = 0; j < 4; j++)
out[2][j] = 1.0f;
break;
default:
assert(swizzle_b < 4);
for (j = 0; j < 4; j++)
out[2][j] = in[swizzle_b][j];
}
switch (swizzle_a) {
case PIPE_SWIZZLE_ZERO:
for (j = 0; j < 4; j++)
out[3][j] = 0.0f;
break;
case PIPE_SWIZZLE_ONE:
for (j = 0; j < 4; j++)
out[3][j] = 1.0f;
break;
default:
assert(swizzle_a < 4);
for (j = 0; j < 4; j++)
out[3][j] = in[swizzle_a][j];
}
}
static void
sample_swizzle(struct tgsi_sampler *tgsi_sampler,
const float s[TGSI_QUAD_SIZE],
const float t[TGSI_QUAD_SIZE],
const float p[TGSI_QUAD_SIZE],
const float c0[TGSI_QUAD_SIZE],
enum tgsi_sampler_control control,
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
samp->sample_target(tgsi_sampler, s, t, p, c0, control, rgba_temp);
do_swizzling(samp, rgba_temp, rgba);
}
static wrap_nearest_func
get_nearest_unorm_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_CLAMP:
return wrap_nearest_unorm_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_nearest_unorm_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_nearest_unorm_clamp_to_border;
default:
assert(0);
return wrap_nearest_unorm_clamp;
}
}
static wrap_nearest_func
get_nearest_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_REPEAT:
return wrap_nearest_repeat;
case PIPE_TEX_WRAP_CLAMP:
return wrap_nearest_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_nearest_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_nearest_clamp_to_border;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return wrap_nearest_mirror_repeat;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
return wrap_nearest_mirror_clamp;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
return wrap_nearest_mirror_clamp_to_edge;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
return wrap_nearest_mirror_clamp_to_border;
default:
assert(0);
return wrap_nearest_repeat;
}
}
static wrap_linear_func
get_linear_unorm_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_CLAMP:
return wrap_linear_unorm_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_linear_unorm_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_linear_unorm_clamp_to_border;
default:
assert(0);
return wrap_linear_unorm_clamp;
}
}
static wrap_linear_func
get_linear_wrap(unsigned mode)
{
switch (mode) {
case PIPE_TEX_WRAP_REPEAT:
return wrap_linear_repeat;
case PIPE_TEX_WRAP_CLAMP:
return wrap_linear_clamp;
case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
return wrap_linear_clamp_to_edge;
case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
return wrap_linear_clamp_to_border;
case PIPE_TEX_WRAP_MIRROR_REPEAT:
return wrap_linear_mirror_repeat;
case PIPE_TEX_WRAP_MIRROR_CLAMP:
return wrap_linear_mirror_clamp;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
return wrap_linear_mirror_clamp_to_edge;
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
return wrap_linear_mirror_clamp_to_border;
default:
assert(0);
return wrap_linear_repeat;
}
}
/**
* Is swizzling needed for the given state key?
*/
static INLINE bool
any_swizzle(union sp_sampler_key key)
{
return (key.bits.swizzle_r != PIPE_SWIZZLE_RED ||
key.bits.swizzle_g != PIPE_SWIZZLE_GREEN ||
key.bits.swizzle_b != PIPE_SWIZZLE_BLUE ||
key.bits.swizzle_a != PIPE_SWIZZLE_ALPHA);
}
static compute_lambda_func
get_lambda_func(const union sp_sampler_key key)
{
if (key.bits.processor == TGSI_PROCESSOR_VERTEX)
return compute_lambda_vert;
switch (key.bits.target) {
case PIPE_TEXTURE_1D:
case PIPE_TEXTURE_1D_ARRAY:
return compute_lambda_1d;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_2D_ARRAY:
case PIPE_TEXTURE_RECT:
case PIPE_TEXTURE_CUBE:
return compute_lambda_2d;
case PIPE_TEXTURE_3D:
return compute_lambda_3d;
default:
assert(0);
return compute_lambda_1d;
}
}
static img_filter_func
get_img_filter(const union sp_sampler_key key,
unsigned filter,
const struct pipe_sampler_state *sampler)
{
switch (key.bits.target) {
case PIPE_TEXTURE_1D:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_1d_nearest;
else
return img_filter_1d_linear;
break;
case PIPE_TEXTURE_1D_ARRAY:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_1d_array_nearest;
else
return img_filter_1d_array_linear;
break;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
/* Try for fast path:
*/
if (key.bits.is_pot &&
sampler->wrap_s == sampler->wrap_t &&
sampler->normalized_coords)
{
switch (sampler->wrap_s) {
case PIPE_TEX_WRAP_REPEAT:
switch (filter) {
case PIPE_TEX_FILTER_NEAREST:
return img_filter_2d_nearest_repeat_POT;
case PIPE_TEX_FILTER_LINEAR:
return img_filter_2d_linear_repeat_POT;
default:
break;
}
break;
case PIPE_TEX_WRAP_CLAMP:
switch (filter) {
case PIPE_TEX_FILTER_NEAREST:
return img_filter_2d_nearest_clamp_POT;
default:
break;
}
}
}
/* Otherwise use default versions:
*/
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_2d_nearest;
else
return img_filter_2d_linear;
break;
case PIPE_TEXTURE_2D_ARRAY:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_2d_array_nearest;
else
return img_filter_2d_array_linear;
break;
case PIPE_TEXTURE_CUBE:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_cube_nearest;
else
return img_filter_cube_linear;
break;
case PIPE_TEXTURE_3D:
if (filter == PIPE_TEX_FILTER_NEAREST)
return img_filter_3d_nearest;
else
return img_filter_3d_linear;
break;
default:
assert(0);
return img_filter_1d_nearest;
}
}
/**
* Bind the given texture object and texture cache to the sampler variant.
*/
void
sp_sampler_variant_bind_view( struct sp_sampler_variant *samp,
struct softpipe_tex_tile_cache *tex_cache,
const struct pipe_sampler_view *view )
{
const struct pipe_resource *texture = view->texture;
samp->view = view;
samp->cache = tex_cache;
samp->xpot = util_logbase2( texture->width0 );
samp->ypot = util_logbase2( texture->height0 );
}
void
sp_sampler_variant_destroy( struct sp_sampler_variant *samp )
{
FREE(samp);
}
static void
sample_get_dims(struct tgsi_sampler *tgsi_sampler, int level,
int dims[4])
{
struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
const struct pipe_sampler_view *view = samp->view;
const struct pipe_resource *texture = view->texture;
/* undefined according to EXT_gpu_program */
level += view->u.tex.first_level;
if (level > view->u.tex.last_level)
return;
dims[0] = u_minify(texture->width0, level);
switch(texture->target) {
case PIPE_TEXTURE_1D_ARRAY:
dims[1] = texture->array_size;
/* fallthrough */
case PIPE_TEXTURE_1D:
case PIPE_BUFFER:
return;
case PIPE_TEXTURE_2D_ARRAY:
dims[2] = texture->array_size;
/* fallthrough */
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_CUBE:
case PIPE_TEXTURE_RECT:
dims[1] = u_minify(texture->height0, level);
return;
case PIPE_TEXTURE_3D:
dims[1] = u_minify(texture->height0, level);
dims[2] = u_minify(texture->depth0, level);
return;
default:
assert(!"unexpected texture target in sample_get_dims()");
return;
}
}
/**
* This function is only used for getting unfiltered texels via the
* TXF opcode. The GL spec says that out-of-bounds texel fetches
* produce undefined results. Instead of crashing, lets just clamp
* coords to the texture image size.
*/
static void
sample_get_texels(struct tgsi_sampler *tgsi_sampler,
const int v_i[TGSI_QUAD_SIZE],
const int v_j[TGSI_QUAD_SIZE],
const int v_k[TGSI_QUAD_SIZE],
const int lod[TGSI_QUAD_SIZE],
const int8_t offset[3],
float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
{
const struct sp_sampler_variant *samp = sp_sampler_variant(tgsi_sampler);
union tex_tile_address addr;
const struct pipe_resource *texture = samp->view->texture;
int j, c;
const float *tx;
const bool need_swizzle = any_swizzle(samp->key);
int width, height, depth, layers;
addr.value = 0;
/* TODO write a better test for LOD */
addr.bits.level = lod[0];
width = u_minify(texture->width0, addr.bits.level);
height = u_minify(texture->height0, addr.bits.level);
depth = u_minify(texture->depth0, addr.bits.level);
layers = texture->array_size;
switch(texture->target) {
case PIPE_TEXTURE_1D:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
tx = get_texel_2d(samp, addr, x, 0);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_1D_ARRAY:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
int y = CLAMP(v_j[j], 0, layers - 1);
tx = get_texel_1d_array(samp, addr, x, y);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_2D:
case PIPE_TEXTURE_RECT:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
tx = get_texel_2d(samp, addr, x, y);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_2D_ARRAY:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
int layer = CLAMP(v_k[j], 0, layers - 1);
tx = get_texel_2d_array(samp, addr, x, y, layer);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_3D:
for (j = 0; j < TGSI_QUAD_SIZE; j++) {
int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
tx = get_texel_3d(samp, addr, x, y, z);
for (c = 0; c < 4; c++) {
rgba[c][j] = tx[c];
}
}
break;
case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
default:
assert(!"Unknown or CUBE texture type in TXF processing\n");
break;
}
if (need_swizzle) {
float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
memcpy(rgba_temp, rgba, sizeof(rgba_temp));
do_swizzling(samp, rgba_temp, rgba);
}
}
/**
* Create a sampler variant for a given set of non-orthogonal state.
*/
struct sp_sampler_variant *
sp_create_sampler_variant( const struct pipe_sampler_state *sampler,
const union sp_sampler_key key )
{
struct sp_sampler_variant *samp = CALLOC_STRUCT(sp_sampler_variant);
if (!samp)
return NULL;
samp->sampler = sampler;
samp->key = key;
/* Note that (for instance) linear_texcoord_s and
* nearest_texcoord_s may be active at the same time, if the
* sampler min_img_filter differs from its mag_img_filter.
*/
if (sampler->normalized_coords) {
samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
}
else {
samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
}
samp->compute_lambda = get_lambda_func( key );
samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler);
samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler);
switch (sampler->min_mip_filter) {
case PIPE_TEX_MIPFILTER_NONE:
if (sampler->min_img_filter == sampler->mag_img_filter)
samp->mip_filter = mip_filter_none_no_filter_select;
else
samp->mip_filter = mip_filter_none;
break;
case PIPE_TEX_MIPFILTER_NEAREST:
samp->mip_filter = mip_filter_nearest;
break;
case PIPE_TEX_MIPFILTER_LINEAR:
if (key.bits.is_pot &&
key.bits.target == PIPE_TEXTURE_2D &&
sampler->min_img_filter == sampler->mag_img_filter &&
sampler->normalized_coords &&
sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
}
else {
samp->mip_filter = mip_filter_linear;
}
/* Anisotropic filtering extension. */
if (sampler->max_anisotropy > 1) {
samp->mip_filter = mip_filter_linear_aniso;
/* Override min_img_filter:
* min_img_filter needs to be set to NEAREST since we need to access
* each texture pixel as it is and weight it later; using linear
* filters will have incorrect results.
* By setting the filter to NEAREST here, we can avoid calling the
* generic img_filter_2d_nearest in the anisotropic filter function,
* making it possible to use one of the accelerated implementations
*/
samp->min_img_filter = get_img_filter(key, PIPE_TEX_FILTER_NEAREST, sampler);
/* on first access create the lookup table containing the filter weights. */
if (!weightLut) {
create_filter_table();
}
}
break;
}
if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
samp->compare = sample_compare;
}
else {
/* Skip compare operation by promoting the mip_filter function
* pointer:
*/
samp->compare = samp->mip_filter;
}
if (key.bits.target == PIPE_TEXTURE_CUBE) {
samp->sample_target = sample_cube;
}
else {
samp->faces[0] = 0;
samp->faces[1] = 0;
samp->faces[2] = 0;
samp->faces[3] = 0;
/* Skip cube face determination by promoting the compare
* function pointer:
*/
samp->sample_target = samp->compare;
}
if (any_swizzle(key)) {
samp->base.get_samples = sample_swizzle;
}
else {
samp->base.get_samples = samp->sample_target;
}
samp->base.get_dims = sample_get_dims;
samp->base.get_texel = sample_get_texels;
return samp;
}