#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "util/u_linkage.h"
#include "util/u_debug.h"
#include "pipe/p_shader_tokens.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_util.h"
#include "tgsi/tgsi_ureg.h"
#include "draw/draw_context.h"
#include "nv30-40_3d.xml.h"
#include "nv30_context.h"
#include "nv30_resource.h"
/* TODO (at least...):
* 1. Indexed consts + ARL
* 3. NV_vp11, NV_vp2, NV_vp3 features
* - extra arith opcodes
* - branching
* - texture sampling
* - indexed attribs
* - indexed results
* 4. bugs
*/
#include "nv30_vertprog.h"
#include "nv40_vertprog.h"
struct nvfx_loop_entry {
unsigned brk_target;
unsigned cont_target;
};
struct nvfx_vpc {
struct nv30_context* nv30;
struct pipe_shader_state pipe;
struct nv30_vertprog *vp;
struct tgsi_shader_info* info;
struct nv30_vertprog_exec *vpi;
unsigned r_temps;
unsigned r_temps_discard;
struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
struct nvfx_reg *r_address;
struct nvfx_reg *r_temp;
struct nvfx_reg *r_const;
struct nvfx_reg r_0_1;
struct nvfx_reg *imm;
unsigned nr_imm;
int hpos_idx;
int cvtx_idx;
struct util_dynarray label_relocs;
struct util_dynarray loop_stack;
};
static struct nvfx_reg
temp(struct nvfx_vpc *vpc)
{
int idx = ffs(~vpc->r_temps) - 1;
if (idx < 0) {
NOUVEAU_ERR("out of temps!!\n");
assert(0);
return nvfx_reg(NVFXSR_TEMP, 0);
}
vpc->r_temps |= (1 << idx);
vpc->r_temps_discard |= (1 << idx);
return nvfx_reg(NVFXSR_TEMP, idx);
}
static inline void
release_temps(struct nvfx_vpc *vpc)
{
vpc->r_temps &= ~vpc->r_temps_discard;
vpc->r_temps_discard = 0;
}
static struct nvfx_reg
constant(struct nvfx_vpc *vpc, int pipe, float x, float y, float z, float w)
{
struct nv30_vertprog *vp = vpc->vp;
struct nv30_vertprog_data *vpd;
int idx;
if (pipe >= 0) {
for (idx = 0; idx < vp->nr_consts; idx++) {
if (vp->consts[idx].index == pipe)
return nvfx_reg(NVFXSR_CONST, idx);
}
}
idx = vp->nr_consts++;
vp->consts = realloc(vp->consts, sizeof(*vpd) * vp->nr_consts);
vpd = &vp->consts[idx];
vpd->index = pipe;
vpd->value[0] = x;
vpd->value[1] = y;
vpd->value[2] = z;
vpd->value[3] = w;
return nvfx_reg(NVFXSR_CONST, idx);
}
#define arith(s,t,o,d,m,s0,s1,s2) \
nvfx_insn((s), (NVFX_VP_INST_SLOT_##t << 7) | NVFX_VP_INST_##t##_OP_##o, -1, (d), (m), (s0), (s1), (s2))
static void
emit_src(struct nv30_context *nv30, struct nvfx_vpc *vpc, uint32_t *hw,
int pos, struct nvfx_src src)
{
struct nv30_vertprog *vp = vpc->vp;
uint32_t sr = 0;
struct nvfx_relocation reloc;
switch (src.reg.type) {
case NVFXSR_TEMP:
sr |= (NVFX_VP(SRC_REG_TYPE_TEMP) << NVFX_VP(SRC_REG_TYPE_SHIFT));
sr |= (src.reg.index << NVFX_VP(SRC_TEMP_SRC_SHIFT));
break;
case NVFXSR_INPUT:
sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) <<
NVFX_VP(SRC_REG_TYPE_SHIFT));
vp->ir |= (1 << src.reg.index);
hw[1] |= (src.reg.index << NVFX_VP(INST_INPUT_SRC_SHIFT));
break;
case NVFXSR_CONST:
sr |= (NVFX_VP(SRC_REG_TYPE_CONST) <<
NVFX_VP(SRC_REG_TYPE_SHIFT));
if (src.reg.index < 256 && src.reg.index >= -256) {
reloc.location = vp->nr_insns - 1;
reloc.target = src.reg.index;
util_dynarray_append(&vp->const_relocs, struct nvfx_relocation, reloc);
} else {
hw[1] |= (src.reg.index << NVFX_VP(INST_CONST_SRC_SHIFT)) &
NVFX_VP(INST_CONST_SRC_MASK);
}
break;
case NVFXSR_NONE:
sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) <<
NVFX_VP(SRC_REG_TYPE_SHIFT));
break;
default:
assert(0);
}
if (src.negate)
sr |= NVFX_VP(SRC_NEGATE);
if (src.abs)
hw[0] |= (1 << (21 + pos));
sr |= ((src.swz[0] << NVFX_VP(SRC_SWZ_X_SHIFT)) |
(src.swz[1] << NVFX_VP(SRC_SWZ_Y_SHIFT)) |
(src.swz[2] << NVFX_VP(SRC_SWZ_Z_SHIFT)) |
(src.swz[3] << NVFX_VP(SRC_SWZ_W_SHIFT)));
if(src.indirect) {
if(src.reg.type == NVFXSR_CONST)
hw[3] |= NVFX_VP(INST_INDEX_CONST);
else if(src.reg.type == NVFXSR_INPUT)
hw[0] |= NVFX_VP(INST_INDEX_INPUT);
else
assert(0);
if(src.indirect_reg)
hw[0] |= NVFX_VP(INST_ADDR_REG_SELECT_1);
hw[0] |= src.indirect_swz << NVFX_VP(INST_ADDR_SWZ_SHIFT);
}
switch (pos) {
case 0:
hw[1] |= ((sr & NVFX_VP(SRC0_HIGH_MASK)) >>
NVFX_VP(SRC0_HIGH_SHIFT)) << NVFX_VP(INST_SRC0H_SHIFT);
hw[2] |= (sr & NVFX_VP(SRC0_LOW_MASK)) <<
NVFX_VP(INST_SRC0L_SHIFT);
break;
case 1:
hw[2] |= sr << NVFX_VP(INST_SRC1_SHIFT);
break;
case 2:
hw[2] |= ((sr & NVFX_VP(SRC2_HIGH_MASK)) >>
NVFX_VP(SRC2_HIGH_SHIFT)) << NVFX_VP(INST_SRC2H_SHIFT);
hw[3] |= (sr & NVFX_VP(SRC2_LOW_MASK)) <<
NVFX_VP(INST_SRC2L_SHIFT);
break;
default:
assert(0);
}
}
static void
emit_dst(struct nv30_context *nv30, struct nvfx_vpc *vpc, uint32_t *hw,
int slot, struct nvfx_reg dst)
{
struct nv30_vertprog *vp = vpc->vp;
switch (dst.type) {
case NVFXSR_NONE:
if(!nv30->is_nv4x)
hw[0] |= NV30_VP_INST_DEST_TEMP_ID_MASK;
else {
hw[3] |= NV40_VP_INST_DEST_MASK;
if (slot == 0)
hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK;
else
hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK;
}
break;
case NVFXSR_TEMP:
if(!nv30->is_nv4x)
hw[0] |= (dst.index << NV30_VP_INST_DEST_TEMP_ID_SHIFT);
else {
hw[3] |= NV40_VP_INST_DEST_MASK;
if (slot == 0)
hw[0] |= (dst.index << NV40_VP_INST_VEC_DEST_TEMP_SHIFT);
else
hw[3] |= (dst.index << NV40_VP_INST_SCA_DEST_TEMP_SHIFT);
}
break;
case NVFXSR_OUTPUT:
/* TODO: this may be wrong because on nv30 COL0 and BFC0 are swapped */
if(nv30->is_nv4x) {
switch (dst.index) {
case NV30_VP_INST_DEST_CLP(0):
dst.index = NVFX_VP(INST_DEST_FOGC);
vp->or |= (1 << 6);
break;
case NV30_VP_INST_DEST_CLP(1):
dst.index = NVFX_VP(INST_DEST_FOGC);
vp->or |= (1 << 7);
break;
case NV30_VP_INST_DEST_CLP(2):
dst.index = NVFX_VP(INST_DEST_FOGC);
vp->or |= (1 << 8);
break;
case NV30_VP_INST_DEST_CLP(3):
dst.index = NVFX_VP(INST_DEST_PSZ);
vp->or |= (1 << 9);
break;
case NV30_VP_INST_DEST_CLP(4):
dst.index = NVFX_VP(INST_DEST_PSZ);
vp->or |= (1 << 10);
break;
case NV30_VP_INST_DEST_CLP(5):
dst.index = NVFX_VP(INST_DEST_PSZ);
vp->or |= (1 << 11);
break;
case NV40_VP_INST_DEST_COL0: vp->or |= (1 << 0); break;
case NV40_VP_INST_DEST_COL1: vp->or |= (1 << 1); break;
case NV40_VP_INST_DEST_BFC0: vp->or |= (1 << 2); break;
case NV40_VP_INST_DEST_BFC1: vp->or |= (1 << 3); break;
case NV40_VP_INST_DEST_FOGC: vp->or |= (1 << 4); break;
case NV40_VP_INST_DEST_PSZ : vp->or |= (1 << 5); break;
}
}
if(!nv30->is_nv4x) {
hw[3] |= (dst.index << NV30_VP_INST_DEST_SHIFT);
hw[0] |= NV30_VP_INST_VEC_DEST_TEMP_MASK;
/*XXX: no way this is entirely correct, someone needs to
* figure out what exactly it is.
*/
hw[3] |= 0x800;
} else {
hw[3] |= (dst.index << NV40_VP_INST_DEST_SHIFT);
if (slot == 0) {
hw[0] |= NV40_VP_INST_VEC_RESULT;
hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK;
} else {
hw[3] |= NV40_VP_INST_SCA_RESULT;
hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK;
}
}
break;
default:
assert(0);
}
}
static void
nvfx_vp_emit(struct nvfx_vpc *vpc, struct nvfx_insn insn)
{
struct nv30_context *nv30 = vpc->nv30;
struct nv30_vertprog *vp = vpc->vp;
unsigned slot = insn.op >> 7;
unsigned op = insn.op & 0x7f;
uint32_t *hw;
vp->insns = realloc(vp->insns, ++vp->nr_insns * sizeof(*vpc->vpi));
vpc->vpi = &vp->insns[vp->nr_insns - 1];
memset(vpc->vpi, 0, sizeof(*vpc->vpi));
hw = vpc->vpi->data;
if (insn.cc_test != NVFX_COND_TR)
hw[0] |= NVFX_VP(INST_COND_TEST_ENABLE);
hw[0] |= (insn.cc_test << NVFX_VP(INST_COND_SHIFT));
hw[0] |= ((insn.cc_swz[0] << NVFX_VP(INST_COND_SWZ_X_SHIFT)) |
(insn.cc_swz[1] << NVFX_VP(INST_COND_SWZ_Y_SHIFT)) |
(insn.cc_swz[2] << NVFX_VP(INST_COND_SWZ_Z_SHIFT)) |
(insn.cc_swz[3] << NVFX_VP(INST_COND_SWZ_W_SHIFT)));
if(insn.cc_update)
hw[0] |= NVFX_VP(INST_COND_UPDATE_ENABLE);
if(insn.sat) {
assert(nv30->use_nv4x);
if(nv30->use_nv4x)
hw[0] |= NV40_VP_INST_SATURATE;
}
if(!nv30->is_nv4x) {
if(slot == 0)
hw[1] |= (op << NV30_VP_INST_VEC_OPCODE_SHIFT);
else {
hw[0] |= ((op >> 4) << NV30_VP_INST_SCA_OPCODEH_SHIFT);
hw[1] |= ((op & 0xf) << NV30_VP_INST_SCA_OPCODEL_SHIFT);
}
// hw[3] |= NVFX_VP(INST_SCA_DEST_TEMP_MASK);
// hw[3] |= (mask << NVFX_VP(INST_VEC_WRITEMASK_SHIFT));
if (insn.dst.type == NVFXSR_OUTPUT) {
if (slot)
hw[3] |= (insn.mask << NV30_VP_INST_SDEST_WRITEMASK_SHIFT);
else
hw[3] |= (insn.mask << NV30_VP_INST_VDEST_WRITEMASK_SHIFT);
} else {
if (slot)
hw[3] |= (insn.mask << NV30_VP_INST_STEMP_WRITEMASK_SHIFT);
else
hw[3] |= (insn.mask << NV30_VP_INST_VTEMP_WRITEMASK_SHIFT);
}
} else {
if (slot == 0) {
hw[1] |= (op << NV40_VP_INST_VEC_OPCODE_SHIFT);
hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK;
hw[3] |= (insn.mask << NV40_VP_INST_VEC_WRITEMASK_SHIFT);
} else {
hw[1] |= (op << NV40_VP_INST_SCA_OPCODE_SHIFT);
hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK ;
hw[3] |= (insn.mask << NV40_VP_INST_SCA_WRITEMASK_SHIFT);
}
}
emit_dst(nv30, vpc, hw, slot, insn.dst);
emit_src(nv30, vpc, hw, 0, insn.src[0]);
emit_src(nv30, vpc, hw, 1, insn.src[1]);
emit_src(nv30, vpc, hw, 2, insn.src[2]);
// if(insn.src[0].indirect || op == NVFX_VP_INST_VEC_OP_ARL)
// hw[3] |= NV40_VP_INST_SCA_RESULT;
}
static inline struct nvfx_src
tgsi_src(struct nvfx_vpc *vpc, const struct tgsi_full_src_register *fsrc) {
struct nvfx_src src;
switch (fsrc->Register.File) {
case TGSI_FILE_INPUT:
src.reg = nvfx_reg(NVFXSR_INPUT, fsrc->Register.Index);
break;
case TGSI_FILE_CONSTANT:
if(fsrc->Register.Indirect) {
src.reg = vpc->r_const[0];
src.reg.index = fsrc->Register.Index;
} else {
src.reg = vpc->r_const[fsrc->Register.Index];
}
break;
case TGSI_FILE_IMMEDIATE:
src.reg = vpc->imm[fsrc->Register.Index];
break;
case TGSI_FILE_TEMPORARY:
src.reg = vpc->r_temp[fsrc->Register.Index];
break;
default:
NOUVEAU_ERR("bad src file\n");
src.reg.index = 0;
src.reg.type = -1;
break;
}
src.abs = fsrc->Register.Absolute;
src.negate = fsrc->Register.Negate;
src.swz[0] = fsrc->Register.SwizzleX;
src.swz[1] = fsrc->Register.SwizzleY;
src.swz[2] = fsrc->Register.SwizzleZ;
src.swz[3] = fsrc->Register.SwizzleW;
src.indirect = 0;
src.indirect_reg = 0;
src.indirect_swz = 0;
if(fsrc->Register.Indirect) {
if(fsrc->Indirect.File == TGSI_FILE_ADDRESS &&
(fsrc->Register.File == TGSI_FILE_CONSTANT ||
fsrc->Register.File == TGSI_FILE_INPUT)) {
src.indirect = 1;
src.indirect_reg = fsrc->Indirect.Index;
src.indirect_swz = fsrc->Indirect.SwizzleX;
} else {
src.reg.index = 0;
src.reg.type = -1;
}
}
return src;
}
static INLINE struct nvfx_reg
tgsi_dst(struct nvfx_vpc *vpc, const struct tgsi_full_dst_register *fdst) {
struct nvfx_reg dst;
switch (fdst->Register.File) {
case TGSI_FILE_NULL:
dst = nvfx_reg(NVFXSR_NONE, 0);
break;
case TGSI_FILE_OUTPUT:
dst = vpc->r_result[fdst->Register.Index];
break;
case TGSI_FILE_TEMPORARY:
dst = vpc->r_temp[fdst->Register.Index];
break;
case TGSI_FILE_ADDRESS:
dst = vpc->r_address[fdst->Register.Index];
break;
default:
NOUVEAU_ERR("bad dst file %i\n", fdst->Register.File);
dst.index = 0;
dst.type = 0;
break;
}
return dst;
}
static inline int
tgsi_mask(uint tgsi)
{
int mask = 0;
if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_VP_MASK_X;
if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_VP_MASK_Y;
if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_VP_MASK_Z;
if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_VP_MASK_W;
return mask;
}
static boolean
nvfx_vertprog_parse_instruction(struct nv30_context *nv30, struct nvfx_vpc *vpc,
unsigned idx, const struct tgsi_full_instruction *finst)
{
struct nvfx_src src[3], tmp;
struct nvfx_reg dst;
struct nvfx_reg final_dst;
struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
struct nvfx_insn insn;
struct nvfx_relocation reloc;
struct nvfx_loop_entry loop;
boolean sat = FALSE;
int mask;
int ai = -1, ci = -1, ii = -1;
int i;
unsigned sub_depth = 0;
for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
const struct tgsi_full_src_register *fsrc;
fsrc = &finst->Src[i];
if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
src[i] = tgsi_src(vpc, fsrc);
}
}
for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
const struct tgsi_full_src_register *fsrc;
fsrc = &finst->Src[i];
switch (fsrc->Register.File) {
case TGSI_FILE_INPUT:
if (ai == -1 || ai == fsrc->Register.Index) {
ai = fsrc->Register.Index;
src[i] = tgsi_src(vpc, fsrc);
} else {
src[i] = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL,
tgsi_src(vpc, fsrc), none, none));
}
break;
case TGSI_FILE_CONSTANT:
if ((ci == -1 && ii == -1) ||
ci == fsrc->Register.Index) {
ci = fsrc->Register.Index;
src[i] = tgsi_src(vpc, fsrc);
} else {
src[i] = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL,
tgsi_src(vpc, fsrc), none, none));
}
break;
case TGSI_FILE_IMMEDIATE:
if ((ci == -1 && ii == -1) ||
ii == fsrc->Register.Index) {
ii = fsrc->Register.Index;
src[i] = tgsi_src(vpc, fsrc);
} else {
src[i] = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL,
tgsi_src(vpc, fsrc), none, none));
}
break;
case TGSI_FILE_TEMPORARY:
/* handled above */
break;
default:
NOUVEAU_ERR("bad src file\n");
return FALSE;
}
}
for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
if(src[i].reg.type < 0)
return FALSE;
}
if(finst->Dst[0].Register.File == TGSI_FILE_ADDRESS &&
finst->Instruction.Opcode != TGSI_OPCODE_ARL)
return FALSE;
final_dst = dst = tgsi_dst(vpc, &finst->Dst[0]);
mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
if(finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE) {
assert(finst->Instruction.Opcode != TGSI_OPCODE_ARL);
if (nv30->use_nv4x)
sat = TRUE;
else
if(dst.type != NVFXSR_TEMP)
dst = temp(vpc);
}
switch (finst->Instruction.Opcode) {
case TGSI_OPCODE_ABS:
nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, abs(src[0]), none, none));
break;
case TGSI_OPCODE_ADD:
nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, src[0], none, src[1]));
break;
case TGSI_OPCODE_ARL:
nvfx_vp_emit(vpc, arith(0, VEC, ARL, dst, mask, src[0], none, none));
break;
case TGSI_OPCODE_CEIL:
tmp = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, FLR, tmp.reg, mask, neg(src[0]), none, none));
nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, neg(tmp), none, none));
break;
case TGSI_OPCODE_CMP:
insn = arith(0, VEC, MOV, none.reg, mask, src[0], none, none);
insn.cc_update = 1;
nvfx_vp_emit(vpc, insn);
insn = arith(sat, VEC, MOV, dst, mask, src[2], none, none);
insn.cc_test = NVFX_COND_GE;
nvfx_vp_emit(vpc, insn);
insn = arith(sat, VEC, MOV, dst, mask, src[1], none, none);
insn.cc_test = NVFX_COND_LT;
nvfx_vp_emit(vpc, insn);
break;
case TGSI_OPCODE_COS:
nvfx_vp_emit(vpc, arith(sat, SCA, COS, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_DP2:
tmp = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, NVFX_VP_MASK_X | NVFX_VP_MASK_Y, src[0], src[1], none));
nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, swz(tmp, X, X, X, X), none, swz(tmp, Y, Y, Y, Y)));
break;
case TGSI_OPCODE_DP3:
nvfx_vp_emit(vpc, arith(sat, VEC, DP3, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_DP4:
nvfx_vp_emit(vpc, arith(sat, VEC, DP4, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_DPH:
nvfx_vp_emit(vpc, arith(sat, VEC, DPH, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_DST:
nvfx_vp_emit(vpc, arith(sat, VEC, DST, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_EX2:
nvfx_vp_emit(vpc, arith(sat, SCA, EX2, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_EXP:
nvfx_vp_emit(vpc, arith(sat, SCA, EXP, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_FLR:
nvfx_vp_emit(vpc, arith(sat, VEC, FLR, dst, mask, src[0], none, none));
break;
case TGSI_OPCODE_FRC:
nvfx_vp_emit(vpc, arith(sat, VEC, FRC, dst, mask, src[0], none, none));
break;
case TGSI_OPCODE_LG2:
nvfx_vp_emit(vpc, arith(sat, SCA, LG2, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_LIT:
nvfx_vp_emit(vpc, arith(sat, SCA, LIT, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_LOG:
nvfx_vp_emit(vpc, arith(sat, SCA, LOG, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_LRP:
tmp = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, mask, src[0], src[1], tmp));
break;
case TGSI_OPCODE_MAD:
nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, mask, src[0], src[1], src[2]));
break;
case TGSI_OPCODE_MAX:
nvfx_vp_emit(vpc, arith(sat, VEC, MAX, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_MIN:
nvfx_vp_emit(vpc, arith(sat, VEC, MIN, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_MOV:
nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, src[0], none, none));
break;
case TGSI_OPCODE_MUL:
nvfx_vp_emit(vpc, arith(sat, VEC, MUL, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_NOP:
break;
case TGSI_OPCODE_POW:
tmp = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, SCA, LG2, tmp.reg, NVFX_VP_MASK_X, none, none, swz(src[0], X, X, X, X)));
nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, NVFX_VP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
nvfx_vp_emit(vpc, arith(sat, SCA, EX2, dst, mask, none, none, swz(tmp, X, X, X, X)));
break;
case TGSI_OPCODE_RCP:
nvfx_vp_emit(vpc, arith(sat, SCA, RCP, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_RSQ:
nvfx_vp_emit(vpc, arith(sat, SCA, RSQ, dst, mask, none, none, abs(src[0])));
break;
case TGSI_OPCODE_SEQ:
nvfx_vp_emit(vpc, arith(sat, VEC, SEQ, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SFL:
nvfx_vp_emit(vpc, arith(sat, VEC, SFL, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SGE:
nvfx_vp_emit(vpc, arith(sat, VEC, SGE, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SGT:
nvfx_vp_emit(vpc, arith(sat, VEC, SGT, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SIN:
nvfx_vp_emit(vpc, arith(sat, SCA, SIN, dst, mask, none, none, src[0]));
break;
case TGSI_OPCODE_SLE:
nvfx_vp_emit(vpc, arith(sat, VEC, SLE, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SLT:
nvfx_vp_emit(vpc, arith(sat, VEC, SLT, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SNE:
nvfx_vp_emit(vpc, arith(sat, VEC, SNE, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SSG:
nvfx_vp_emit(vpc, arith(sat, VEC, SSG, dst, mask, src[0], none, none));
break;
case TGSI_OPCODE_STR:
nvfx_vp_emit(vpc, arith(sat, VEC, STR, dst, mask, src[0], src[1], none));
break;
case TGSI_OPCODE_SUB:
nvfx_vp_emit(vpc, arith(sat, VEC, ADD, dst, mask, src[0], none, neg(src[1])));
break;
case TGSI_OPCODE_TRUNC:
tmp = nvfx_src(temp(vpc));
insn = arith(0, VEC, MOV, none.reg, mask, src[0], none, none);
insn.cc_update = 1;
nvfx_vp_emit(vpc, insn);
nvfx_vp_emit(vpc, arith(0, VEC, FLR, tmp.reg, mask, abs(src[0]), none, none));
nvfx_vp_emit(vpc, arith(sat, VEC, MOV, dst, mask, tmp, none, none));
insn = arith(sat, VEC, MOV, dst, mask, neg(tmp), none, none);
insn.cc_test = NVFX_COND_LT;
nvfx_vp_emit(vpc, insn);
break;
case TGSI_OPCODE_XPD:
tmp = nvfx_src(temp(vpc));
nvfx_vp_emit(vpc, arith(0, VEC, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none));
nvfx_vp_emit(vpc, arith(sat, VEC, MAD, dst, (mask & ~NVFX_VP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)));
break;
case TGSI_OPCODE_IF:
insn = arith(0, VEC, MOV, none.reg, NVFX_VP_MASK_X, src[0], none, none);
insn.cc_update = 1;
nvfx_vp_emit(vpc, insn);
reloc.location = vpc->vp->nr_insns;
reloc.target = finst->Label.Label + 1;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
insn = arith(0, SCA, BRA, none.reg, 0, none, none, none);
insn.cc_test = NVFX_COND_EQ;
insn.cc_swz[0] = insn.cc_swz[1] = insn.cc_swz[2] = insn.cc_swz[3] = 0;
nvfx_vp_emit(vpc, insn);
break;
case TGSI_OPCODE_ELSE:
case TGSI_OPCODE_BRA:
case TGSI_OPCODE_CAL:
reloc.location = vpc->vp->nr_insns;
reloc.target = finst->Label.Label;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
if(finst->Instruction.Opcode == TGSI_OPCODE_CAL)
insn = arith(0, SCA, CAL, none.reg, 0, none, none, none);
else
insn = arith(0, SCA, BRA, none.reg, 0, none, none, none);
nvfx_vp_emit(vpc, insn);
break;
case TGSI_OPCODE_RET:
if(sub_depth || !vpc->vp->enabled_ucps) {
tmp = none;
tmp.swz[0] = tmp.swz[1] = tmp.swz[2] = tmp.swz[3] = 0;
nvfx_vp_emit(vpc, arith(0, SCA, RET, none.reg, 0, none, none, tmp));
} else {
reloc.location = vpc->vp->nr_insns;
reloc.target = vpc->info->num_instructions;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none));
}
break;
case TGSI_OPCODE_BGNSUB:
++sub_depth;
break;
case TGSI_OPCODE_ENDSUB:
--sub_depth;
break;
case TGSI_OPCODE_ENDIF:
/* nothing to do here */
break;
case TGSI_OPCODE_BGNLOOP:
loop.cont_target = idx;
loop.brk_target = finst->Label.Label + 1;
util_dynarray_append(&vpc->loop_stack, struct nvfx_loop_entry, loop);
break;
case TGSI_OPCODE_ENDLOOP:
loop = util_dynarray_pop(&vpc->loop_stack, struct nvfx_loop_entry);
reloc.location = vpc->vp->nr_insns;
reloc.target = loop.cont_target;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none));
break;
case TGSI_OPCODE_CONT:
loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry);
reloc.location = vpc->vp->nr_insns;
reloc.target = loop.cont_target;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none));
break;
case TGSI_OPCODE_BRK:
loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry);
reloc.location = vpc->vp->nr_insns;
reloc.target = loop.brk_target;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none));
break;
case TGSI_OPCODE_END:
assert(!sub_depth);
if(vpc->vp->enabled_ucps) {
if(idx != (vpc->info->num_instructions - 1)) {
reloc.location = vpc->vp->nr_insns;
reloc.target = vpc->info->num_instructions;
util_dynarray_append(&vpc->label_relocs, struct nvfx_relocation, reloc);
nvfx_vp_emit(vpc, arith(0, SCA, BRA, none.reg, 0, none, none, none));
}
} else {
if(vpc->vp->nr_insns)
vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST;
nvfx_vp_emit(vpc, arith(0, VEC, NOP, none.reg, 0, none, none, none));
vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST;
}
break;
default:
NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
return FALSE;
}
if(finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE && !nv30->use_nv4x) {
if (!vpc->r_0_1.type)
vpc->r_0_1 = constant(vpc, -1, 0, 1, 0, 0);
nvfx_vp_emit(vpc, arith(0, VEC, MAX, dst, mask, nvfx_src(dst), swz(nvfx_src(vpc->r_0_1), X, X, X, X), none));
nvfx_vp_emit(vpc, arith(0, VEC, MIN, final_dst, mask, nvfx_src(dst), swz(nvfx_src(vpc->r_0_1), Y, Y, Y, Y), none));
}
release_temps(vpc);
return TRUE;
}
static boolean
nvfx_vertprog_parse_decl_output(struct nv30_context *nv30, struct nvfx_vpc *vpc,
const struct tgsi_full_declaration *fdec)
{
unsigned num_texcoords = nv30->is_nv4x ? 10 : 8;
unsigned idx = fdec->Range.First;
int hw = 0, i;
switch (fdec->Semantic.Name) {
case TGSI_SEMANTIC_POSITION:
hw = NVFX_VP(INST_DEST_POS);
vpc->hpos_idx = idx;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
vpc->r_result[idx] = temp(vpc);
vpc->r_temps_discard = 0;
vpc->cvtx_idx = idx;
return TRUE;
case TGSI_SEMANTIC_COLOR:
if (fdec->Semantic.Index == 0) {
hw = NVFX_VP(INST_DEST_COL0);
} else
if (fdec->Semantic.Index == 1) {
hw = NVFX_VP(INST_DEST_COL1);
} else {
NOUVEAU_ERR("bad colour semantic index\n");
return FALSE;
}
break;
case TGSI_SEMANTIC_BCOLOR:
if (fdec->Semantic.Index == 0) {
hw = NVFX_VP(INST_DEST_BFC0);
} else
if (fdec->Semantic.Index == 1) {
hw = NVFX_VP(INST_DEST_BFC1);
} else {
NOUVEAU_ERR("bad bcolour semantic index\n");
return FALSE;
}
break;
case TGSI_SEMANTIC_FOG:
hw = NVFX_VP(INST_DEST_FOGC);
break;
case TGSI_SEMANTIC_PSIZE:
hw = NVFX_VP(INST_DEST_PSZ);
break;
case TGSI_SEMANTIC_GENERIC:
for (i = 0; i < num_texcoords; i++) {
if (vpc->vp->texcoord[i] == fdec->Semantic.Index) {
hw = NVFX_VP(INST_DEST_TC(i));
break;
}
}
if (i == num_texcoords) {
vpc->r_result[idx] = nvfx_reg(NVFXSR_NONE, 0);
return TRUE;
}
break;
case TGSI_SEMANTIC_EDGEFLAG:
/* not really an error just a fallback */
NOUVEAU_ERR("cannot handle edgeflag output\n");
return FALSE;
default:
NOUVEAU_ERR("bad output semantic\n");
return FALSE;
}
vpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
return TRUE;
}
static boolean
nvfx_vertprog_prepare(struct nv30_context *nv30, struct nvfx_vpc *vpc)
{
struct tgsi_parse_context p;
int high_const = -1, high_temp = -1, high_addr = -1, nr_imm = 0, i;
tgsi_parse_init(&p, vpc->pipe.tokens);
while (!tgsi_parse_end_of_tokens(&p)) {
const union tgsi_full_token *tok = &p.FullToken;
tgsi_parse_token(&p);
switch(tok->Token.Type) {
case TGSI_TOKEN_TYPE_IMMEDIATE:
nr_imm++;
break;
case TGSI_TOKEN_TYPE_DECLARATION:
{
const struct tgsi_full_declaration *fdec;
fdec = &p.FullToken.FullDeclaration;
switch (fdec->Declaration.File) {
case TGSI_FILE_TEMPORARY:
if (fdec->Range.Last > high_temp) {
high_temp =
fdec->Range.Last;
}
break;
case TGSI_FILE_ADDRESS:
if (fdec->Range.Last > high_addr) {
high_addr =
fdec->Range.Last;
}
break;
case TGSI_FILE_CONSTANT:
if (fdec->Range.Last > high_const) {
high_const =
fdec->Range.Last;
}
break;
case TGSI_FILE_OUTPUT:
if (!nvfx_vertprog_parse_decl_output(nv30, vpc, fdec))
return FALSE;
break;
default:
break;
}
}
break;
default:
break;
}
}
tgsi_parse_free(&p);
if (nr_imm) {
vpc->imm = CALLOC(nr_imm, sizeof(struct nvfx_reg));
assert(vpc->imm);
}
if (++high_temp) {
vpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
for (i = 0; i < high_temp; i++)
vpc->r_temp[i] = temp(vpc);
}
if (++high_addr) {
vpc->r_address = CALLOC(high_addr, sizeof(struct nvfx_reg));
for (i = 0; i < high_addr; i++)
vpc->r_address[i] = nvfx_reg(NVFXSR_TEMP, i);
}
if(++high_const) {
vpc->r_const = CALLOC(high_const, sizeof(struct nvfx_reg));
for (i = 0; i < high_const; i++)
vpc->r_const[i] = constant(vpc, i, 0, 0, 0, 0);
}
vpc->r_temps_discard = 0;
return TRUE;
}
DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_vp, "NVFX_DUMP_VP", FALSE)
boolean
_nvfx_vertprog_translate(struct nv30_context *nv30, struct nv30_vertprog *vp)
{
struct tgsi_parse_context parse;
struct nvfx_vpc *vpc = NULL;
struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
struct util_dynarray insns;
int i, ucps;
vp->translated = FALSE;
vp->nr_insns = 0;
vp->nr_consts = 0;
vpc = CALLOC_STRUCT(nvfx_vpc);
if (!vpc)
return FALSE;
vpc->nv30 = nv30;
vpc->vp = vp;
vpc->pipe = vp->pipe;
vpc->info = &vp->info;
vpc->cvtx_idx = -1;
if (!nvfx_vertprog_prepare(nv30, vpc)) {
FREE(vpc);
return FALSE;
}
/* Redirect post-transform vertex position to a temp if user clip
* planes are enabled. We need to append code to the vtxprog
* to handle clip planes later.
*/
if (vp->enabled_ucps && vpc->cvtx_idx < 0) {
vpc->r_result[vpc->hpos_idx] = temp(vpc);
vpc->r_temps_discard = 0;
vpc->cvtx_idx = vpc->hpos_idx;
}
util_dynarray_init(&insns);
tgsi_parse_init(&parse, vp->pipe.tokens);
while (!tgsi_parse_end_of_tokens(&parse)) {
tgsi_parse_token(&parse);
switch (parse.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_IMMEDIATE:
{
const struct tgsi_full_immediate *imm;
imm = &parse.FullToken.FullImmediate;
assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
assert(imm->Immediate.NrTokens == 4 + 1);
vpc->imm[vpc->nr_imm++] =
constant(vpc, -1,
imm->u[0].Float,
imm->u[1].Float,
imm->u[2].Float,
imm->u[3].Float);
}
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
{
const struct tgsi_full_instruction *finst;
unsigned idx = insns.size >> 2;
util_dynarray_append(&insns, unsigned, vp->nr_insns);
finst = &parse.FullToken.FullInstruction;
if (!nvfx_vertprog_parse_instruction(nv30, vpc, idx, finst))
goto out;
}
break;
default:
break;
}
}
util_dynarray_append(&insns, unsigned, vp->nr_insns);
for(unsigned i = 0; i < vpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
{
struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)vpc->label_relocs.data + i);
struct nvfx_relocation hw_reloc;
hw_reloc.location = label_reloc->location;
hw_reloc.target = ((unsigned*)insns.data)[label_reloc->target];
//debug_printf("hw %u -> tgsi %u = hw %u\n", hw_reloc.location, label_reloc->target, hw_reloc.target);
util_dynarray_append(&vp->branch_relocs, struct nvfx_relocation, hw_reloc);
}
util_dynarray_fini(&insns);
util_dynarray_trim(&vp->branch_relocs);
/* XXX: what if we add a RET before?! make sure we jump here...*/
/* Write out HPOS if it was redirected to a temp earlier */
if (vpc->r_result[vpc->hpos_idx].type != NVFXSR_OUTPUT) {
struct nvfx_reg hpos = nvfx_reg(NVFXSR_OUTPUT,
NVFX_VP(INST_DEST_POS));
struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->hpos_idx]);
nvfx_vp_emit(vpc, arith(0, VEC, MOV, hpos, NVFX_VP_MASK_ALL, htmp, none, none));
}
/* Insert code to handle user clip planes */
ucps = vp->enabled_ucps;
while (ucps) {
int i = ffs(ucps) - 1; ucps &= ~(1 << i);
struct nvfx_reg cdst = nvfx_reg(NVFXSR_OUTPUT, NV30_VP_INST_DEST_CLP(i));
struct nvfx_src ceqn = nvfx_src(nvfx_reg(NVFXSR_CONST, 512 + i));
struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->cvtx_idx]);
unsigned mask;
if(nv30->is_nv4x)
{
switch (i) {
case 0: case 3: mask = NVFX_VP_MASK_Y; break;
case 1: case 4: mask = NVFX_VP_MASK_Z; break;
case 2: case 5: mask = NVFX_VP_MASK_W; break;
default:
NOUVEAU_ERR("invalid clip dist #%d\n", i);
goto out;
}
}
else
mask = NVFX_VP_MASK_X;
nvfx_vp_emit(vpc, arith(0, VEC, DP4, cdst, mask, htmp, ceqn, none));
}
if (vpc->vp->nr_insns)
vpc->vp->insns[vpc->vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST;
if(debug_get_option_nvfx_dump_vp())
{
debug_printf("\n");
tgsi_dump(vpc->pipe.tokens, 0);
debug_printf("\n%s vertex program:\n", nv30->is_nv4x ? "nv4x" : "nv3x");
for (i = 0; i < vp->nr_insns; i++)
debug_printf("%3u: %08x %08x %08x %08x\n", i, vp->insns[i].data[0], vp->insns[i].data[1], vp->insns[i].data[2], vp->insns[i].data[3]);
debug_printf("\n");
}
vp->translated = TRUE;
out:
tgsi_parse_free(&parse);
if(vpc) {
util_dynarray_fini(&vpc->label_relocs);
util_dynarray_fini(&vpc->loop_stack);
FREE(vpc->r_temp);
FREE(vpc->r_address);
FREE(vpc->r_const);
FREE(vpc->imm);
FREE(vpc);
}
return vp->translated;
}