/**************************************************************************
*
* Copyright 2011 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "util/u_pointer.h"
#include "util/u_memory.h"
#include "util/u_math.h"
#include "gallivm/lp_bld.h"
#include "gallivm/lp_bld_debug.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_arit.h"
#include "lp_test.h"
void
write_tsv_header(FILE *fp)
{
fprintf(fp,
"result\t"
"format\n");
fflush(fp);
}
typedef void (*unary_func_t)(float *out, const float *in);
/**
* Describe a test case of one unary function.
*/
struct unary_test_t
{
/*
* Test name -- name of the mathematical function under test.
*/
const char *name;
LLVMValueRef
(*builder)(struct lp_build_context *bld, LLVMValueRef a);
/*
* Reference (pure-C) function.
*/
float
(*ref)(float a);
/*
* Test values.
*/
const float *values;
unsigned num_values;
/*
* Required precision in bits.
*/
double precision;
};
static float negf(float x)
{
return -x;
}
static float sgnf(float x)
{
if (x > 0.0f) {
return 1.0f;
}
if (x < 0.0f) {
return -1.0f;
}
return 0.0f;
}
const float exp2_values[] = {
-60,
-4,
-2,
-1,
-1e-007,
0,
1e-007,
0.01,
0.1,
0.9,
0.99,
1,
2,
4,
60
};
const float log2_values[] = {
#if 0
/*
* Smallest denormalized number; meant just for experimentation, but not
* validation.
*/
1.4012984643248171e-45,
#endif
1e-007,
0.1,
0.5,
0.99,
1,
1.01,
1.1,
1.9,
1.99,
2,
4,
100000,
1e+018
};
static float rsqrtf(float x)
{
return 1.0/sqrt(x);
}
const float rsqrt_values[] = {
-1, -1e-007,
1e-007, 1,
-4, -1,
1, 4,
-1e+035, -100000,
100000, 1e+035,
};
const float sincos_values[] = {
-5*M_PI/4,
-4*M_PI/4,
-4*M_PI/4,
-3*M_PI/4,
-2*M_PI/4,
-1*M_PI/4,
1*M_PI/4,
2*M_PI/4,
3*M_PI/4,
4*M_PI/4,
5*M_PI/4,
};
const float round_values[] = {
-10.0, -1, 0.0, 12.0,
-1.49, -0.25, 1.25, 2.51,
-0.99, -0.01, 0.01, 0.99,
};
static float fractf(float x)
{
x -= floorf(x);
if (x >= 1.0f) {
// clamp to the largest number smaller than one
x = 1.0f - 0.5f*FLT_EPSILON;
}
return x;
}
const float fract_values[] = {
// http://en.wikipedia.org/wiki/IEEE_754-1985#Examples
0.0f,
-0.0f,
1.0f,
-1.0f,
0.5f,
-0.5f,
1.401298464324817e-45f, // smallest denormal
-1.401298464324817e-45f,
5.88e-39f, // middle denormal
1.18e-38f, // largest denormal
-1.18e-38f,
-1.62981451e-08f,
FLT_EPSILON,
-FLT_EPSILON,
1.0f - 0.5f*FLT_EPSILON,
-1.0f + FLT_EPSILON,
FLT_MAX,
-FLT_MAX
};
/*
* Unary test cases.
*/
static const struct unary_test_t
unary_tests[] = {
{"neg", &lp_build_negate, &negf, exp2_values, Elements(exp2_values), 20.0 },
{"exp2", &lp_build_exp2, &exp2f, exp2_values, Elements(exp2_values), 20.0 },
{"log2", &lp_build_log2, &log2f, log2_values, Elements(log2_values), 20.0 },
{"exp", &lp_build_exp, &expf, exp2_values, Elements(exp2_values), 18.0 },
{"log", &lp_build_log, &logf, log2_values, Elements(log2_values), 20.0 },
{"rsqrt", &lp_build_rsqrt, &rsqrtf, rsqrt_values, Elements(rsqrt_values), 20.0 },
{"sin", &lp_build_sin, &sinf, sincos_values, Elements(sincos_values), 20.0 },
{"cos", &lp_build_cos, &cosf, sincos_values, Elements(sincos_values), 20.0 },
{"sgn", &lp_build_sgn, &sgnf, exp2_values, Elements(exp2_values), 20.0 },
{"round", &lp_build_round, &roundf, round_values, Elements(round_values), 24.0 },
{"trunc", &lp_build_trunc, &truncf, round_values, Elements(round_values), 24.0 },
{"floor", &lp_build_floor, &floorf, round_values, Elements(round_values), 24.0 },
{"ceil", &lp_build_ceil, &ceilf, round_values, Elements(round_values), 24.0 },
{"fract", &lp_build_fract_safe, &fractf, fract_values, Elements(fract_values), 24.0 },
};
/*
* Build LLVM function that exercises the unary operator builder.
*/
static LLVMValueRef
build_unary_test_func(struct gallivm_state *gallivm,
const struct unary_test_t *test)
{
struct lp_type type = lp_type_float_vec(32, lp_native_vector_width);
LLVMContextRef context = gallivm->context;
LLVMModuleRef module = gallivm->module;
LLVMTypeRef vf32t = lp_build_vec_type(gallivm, type);
LLVMTypeRef args[2] = { LLVMPointerType(vf32t, 0), LLVMPointerType(vf32t, 0) };
LLVMValueRef func = LLVMAddFunction(module, test->name,
LLVMFunctionType(LLVMVoidTypeInContext(context),
args, Elements(args), 0));
LLVMValueRef arg0 = LLVMGetParam(func, 0);
LLVMValueRef arg1 = LLVMGetParam(func, 1);
LLVMBuilderRef builder = gallivm->builder;
LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry");
LLVMValueRef ret;
struct lp_build_context bld;
lp_build_context_init(&bld, gallivm, type);
LLVMSetFunctionCallConv(func, LLVMCCallConv);
LLVMPositionBuilderAtEnd(builder, block);
arg1 = LLVMBuildLoad(builder, arg1, "");
ret = test->builder(&bld, arg1);
LLVMBuildStore(builder, ret, arg0);
LLVMBuildRetVoid(builder);
gallivm_verify_function(gallivm, func);
return func;
}
/*
* Test one LLVM unary arithmetic builder function.
*/
static boolean
test_unary(unsigned verbose, FILE *fp, const struct unary_test_t *test)
{
struct gallivm_state *gallivm;
LLVMValueRef test_func;
unary_func_t test_func_jit;
boolean success = TRUE;
int i, j;
int length = lp_native_vector_width / 32;
float *in, *out;
in = align_malloc(length * 4, length * 4);
out = align_malloc(length * 4, length * 4);
/* random NaNs or 0s could wreak havoc */
for (i = 0; i < length; i++) {
in[i] = 1.0;
}
gallivm = gallivm_create();
test_func = build_unary_test_func(gallivm, test);
gallivm_compile_module(gallivm);
test_func_jit = (unary_func_t) gallivm_jit_function(gallivm, test_func);
for (j = 0; j < (test->num_values + length - 1) / length; j++) {
int num_vals = ((j + 1) * length <= test->num_values) ? length :
test->num_values % length;
for (i = 0; i < num_vals; ++i) {
in[i] = test->values[i+j*length];
}
test_func_jit(out, in);
for (i = 0; i < num_vals; ++i) {
float ref = test->ref(in[i]);
double error, precision;
bool pass;
error = fabs(out[i] - ref);
precision = error ? -log2(error/fabs(ref)) : FLT_MANT_DIG;
pass = precision >= test->precision;
if (isnan(ref)) {
continue;
}
if (!pass || verbose) {
printf("%s(%.9g): ref = %.9g, out = %.9g, precision = %f bits, %s\n",
test->name, in[i], ref, out[i], precision,
pass ? "PASS" : "FAIL");
}
if (!pass) {
success = FALSE;
}
}
}
gallivm_free_function(gallivm, test_func, test_func_jit);
gallivm_destroy(gallivm);
align_free(in);
align_free(out);
return success;
}
boolean
test_all(unsigned verbose, FILE *fp)
{
boolean success = TRUE;
int i;
for (i = 0; i < Elements(unary_tests); ++i) {
if (!test_unary(verbose, fp, &unary_tests[i])) {
success = FALSE;
}
}
return success;
}
boolean
test_some(unsigned verbose, FILE *fp,
unsigned long n)
{
/*
* Not randomly generated test cases, so test all.
*/
return test_all(verbose, fp);
}
boolean
test_single(unsigned verbose, FILE *fp)
{
return TRUE;
}