//===--- RuntimeDyldChecker.cpp - RuntimeDyld tester framework --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/StringRefMemoryObject.h"
#include "RuntimeDyldImpl.h"
#include <cctype>
#include <memory>
#define DEBUG_TYPE "rtdyld"
using namespace llvm;
namespace llvm {
// Helper class that implements the language evaluated by RuntimeDyldChecker.
class RuntimeDyldCheckerExprEval {
public:
RuntimeDyldCheckerExprEval(const RuntimeDyldChecker &Checker,
llvm::raw_ostream &ErrStream)
: Checker(Checker), ErrStream(ErrStream) {}
bool evaluate(StringRef Expr) const {
// Expect equality expression of the form 'LHS = RHS'.
Expr = Expr.trim();
size_t EQIdx = Expr.find('=');
// Evaluate LHS.
StringRef LHSExpr = Expr.substr(0, EQIdx).rtrim();
StringRef RemainingExpr;
EvalResult LHSResult;
std::tie(LHSResult, RemainingExpr) =
evalComplexExpr(evalSimpleExpr(LHSExpr));
if (LHSResult.hasError())
return handleError(Expr, LHSResult);
if (RemainingExpr != "")
return handleError(Expr, unexpectedToken(RemainingExpr, LHSExpr, ""));
// Evaluate RHS.
StringRef RHSExpr = Expr.substr(EQIdx + 1).ltrim();
EvalResult RHSResult;
std::tie(RHSResult, RemainingExpr) =
evalComplexExpr(evalSimpleExpr(RHSExpr));
if (RHSResult.hasError())
return handleError(Expr, RHSResult);
if (RemainingExpr != "")
return handleError(Expr, unexpectedToken(RemainingExpr, RHSExpr, ""));
if (LHSResult.getValue() != RHSResult.getValue()) {
ErrStream << "Expression '" << Expr << "' is false: "
<< format("0x%lx", LHSResult.getValue()) << " != "
<< format("0x%lx", RHSResult.getValue()) << "\n";
return false;
}
return true;
}
private:
const RuntimeDyldChecker &Checker;
llvm::raw_ostream &ErrStream;
enum class BinOpToken : unsigned { Invalid, Add, Sub, BitwiseAnd,
BitwiseOr, ShiftLeft, ShiftRight };
class EvalResult {
public:
EvalResult()
: Value(0), ErrorMsg("") {}
EvalResult(uint64_t Value)
: Value(Value), ErrorMsg("") {}
EvalResult(std::string ErrorMsg)
: Value(0), ErrorMsg(ErrorMsg) {}
uint64_t getValue() const { return Value; }
bool hasError() const { return ErrorMsg != ""; }
const std::string& getErrorMsg() const { return ErrorMsg; }
private:
uint64_t Value;
std::string ErrorMsg;
};
StringRef getTokenForError(StringRef Expr) const {
if (Expr.empty())
return "";
StringRef Token, Remaining;
if (isalpha(Expr[0]))
std::tie(Token, Remaining) = parseSymbol(Expr);
else if (isdigit(Expr[0]))
std::tie(Token, Remaining) = parseNumberString(Expr);
else {
unsigned TokLen = 1;
if (Expr.startswith("<<") || Expr.startswith(">>"))
TokLen = 2;
Token = Expr.substr(0, TokLen);
}
return Token;
}
EvalResult unexpectedToken(StringRef TokenStart,
StringRef SubExpr,
StringRef ErrText) const {
std::string ErrorMsg("Encountered unexpected token '");
ErrorMsg += getTokenForError(TokenStart);
if (SubExpr != "") {
ErrorMsg += "' while parsing subexpression '";
ErrorMsg += SubExpr;
}
ErrorMsg += "'";
if (ErrText != "") {
ErrorMsg += " ";
ErrorMsg += ErrText;
}
return EvalResult(std::move(ErrorMsg));
}
bool handleError(StringRef Expr, const EvalResult &R) const {
assert(R.hasError() && "Not an error result.");
ErrStream << "Error evaluating expression '" << Expr << "': "
<< R.getErrorMsg() << "\n";
return false;
}
std::pair<BinOpToken, StringRef> parseBinOpToken(StringRef Expr) const {
if (Expr.empty())
return std::make_pair(BinOpToken::Invalid, "");
// Handle the two 2-character tokens.
if (Expr.startswith("<<"))
return std::make_pair(BinOpToken::ShiftLeft,
Expr.substr(2).ltrim());
if (Expr.startswith(">>"))
return std::make_pair(BinOpToken::ShiftRight,
Expr.substr(2).ltrim());
// Handle one-character tokens.
BinOpToken Op;
switch (Expr[0]) {
default: return std::make_pair(BinOpToken::Invalid, Expr);
case '+': Op = BinOpToken::Add; break;
case '-': Op = BinOpToken::Sub; break;
case '&': Op = BinOpToken::BitwiseAnd; break;
case '|': Op = BinOpToken::BitwiseOr; break;
}
return std::make_pair(Op, Expr.substr(1).ltrim());
}
EvalResult computeBinOpResult(BinOpToken Op, const EvalResult &LHSResult,
const EvalResult &RHSResult) const {
switch (Op) {
default: llvm_unreachable("Tried to evaluate unrecognized operation.");
case BinOpToken::Add:
return EvalResult(LHSResult.getValue() + RHSResult.getValue());
case BinOpToken::Sub:
return EvalResult(LHSResult.getValue() - RHSResult.getValue());
case BinOpToken::BitwiseAnd:
return EvalResult(LHSResult.getValue() & RHSResult.getValue());
case BinOpToken::BitwiseOr:
return EvalResult(LHSResult.getValue() | RHSResult.getValue());
case BinOpToken::ShiftLeft:
return EvalResult(LHSResult.getValue() << RHSResult.getValue());
case BinOpToken::ShiftRight:
return EvalResult(LHSResult.getValue() >> RHSResult.getValue());
}
}
// Parse a symbol and return a (string, string) pair representing the symbol
// name and expression remaining to be parsed.
std::pair<StringRef, StringRef> parseSymbol(StringRef Expr) const {
size_t FirstNonSymbol =
Expr.find_first_not_of("0123456789"
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
":_");
return std::make_pair(Expr.substr(0, FirstNonSymbol),
Expr.substr(FirstNonSymbol).ltrim());
}
// Evaluate a call to decode_operand. Decode the instruction operand at the
// given symbol and get the value of the requested operand.
// Returns an error if the instruction cannot be decoded, or the requested
// operand is not an immediate.
// On success, retuns a pair containing the value of the operand, plus
// the expression remaining to be evaluated.
std::pair<EvalResult, StringRef> evalDecodeOperand(StringRef Expr) const {
if (!Expr.startswith("("))
return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
StringRef RemainingExpr = Expr.substr(1).ltrim();
StringRef Symbol;
std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
if (!Checker.checkSymbolIsValidForLoad(Symbol))
return std::make_pair(EvalResult(("Cannot decode unknown symbol '" +
Symbol + "'").str()),
"");
if (!RemainingExpr.startswith(","))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected ','"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
EvalResult OpIdxExpr;
std::tie(OpIdxExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
if (OpIdxExpr.hasError())
return std::make_pair(OpIdxExpr, "");
if (!RemainingExpr.startswith(")"))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected ')'"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
MCInst Inst;
uint64_t Size;
if (!decodeInst(Symbol, Inst, Size))
return std::make_pair(EvalResult(("Couldn't decode instruction at '" +
Symbol + "'").str()),
"");
unsigned OpIdx = OpIdxExpr.getValue();
if (OpIdx >= Inst.getNumOperands()) {
std::string ErrMsg;
raw_string_ostream ErrMsgStream(ErrMsg);
ErrMsgStream << "Invalid operand index '" << format("%i", OpIdx)
<< " for instruction '" << Symbol
<< ". Instruction has only "
<< format("%i", Inst.getNumOperands()) << " operands.";
return std::make_pair(EvalResult(ErrMsgStream.str()), "");
}
const MCOperand &Op = Inst.getOperand(OpIdx);
if (!Op.isImm()) {
std::string ErrMsg;
raw_string_ostream ErrMsgStream(ErrMsg);
ErrMsgStream << "Operand '" << format("%i", OpIdx)
<< "' of instruction '" << Symbol
<< "' is not an immediate.\nInstruction is:\n ";
Inst.dump_pretty(ErrMsgStream,
Checker.Disassembler->getContext().getAsmInfo(),
Checker.InstPrinter);
return std::make_pair(EvalResult(ErrMsgStream.str()), "");
}
return std::make_pair(EvalResult(Op.getImm()), RemainingExpr);
}
// Evaluate a call to next_pc. Decode the instruction at the given
// symbol and return the following program counter..
// Returns an error if the instruction cannot be decoded.
// On success, returns a pair containing the next PC, plus the length of the
// expression remaining to be evaluated.
std::pair<EvalResult, StringRef> evalNextPC(StringRef Expr) const {
if (!Expr.startswith("("))
return std::make_pair(unexpectedToken(Expr, Expr, "expected '('"), "");
StringRef RemainingExpr = Expr.substr(1).ltrim();
StringRef Symbol;
std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
if (!Checker.checkSymbolIsValidForLoad(Symbol))
return std::make_pair(EvalResult(("Cannot decode unknown symbol '"
+ Symbol + "'").str()),
"");
if (!RemainingExpr.startswith(")"))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected ')'"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
MCInst Inst;
uint64_t Size;
if (!decodeInst(Symbol, Inst, Size))
return std::make_pair(EvalResult(("Couldn't decode instruction at '" +
Symbol + "'").str()),
"");
uint64_t NextPC = Checker.getSymbolAddress(Symbol) + Size;
return std::make_pair(EvalResult(NextPC), RemainingExpr);
}
// Evaluate an identiefer expr, which may be a symbol, or a call to
// one of the builtin functions: get_insn_opcode or get_insn_length.
// Return the result, plus the expression remaining to be parsed.
std::pair<EvalResult, StringRef> evalIdentifierExpr(StringRef Expr) const {
StringRef Symbol;
StringRef RemainingExpr;
std::tie(Symbol, RemainingExpr) = parseSymbol(Expr);
// Check for builtin function calls.
if (Symbol == "decode_operand")
return evalDecodeOperand(RemainingExpr);
else if (Symbol == "next_pc")
return evalNextPC(RemainingExpr);
// Looks like a plain symbol reference.
return std::make_pair(EvalResult(Checker.getSymbolAddress(Symbol)),
RemainingExpr);
}
// Parse a number (hexadecimal or decimal) and return a (string, string)
// pair representing the number and the expression remaining to be parsed.
std::pair<StringRef, StringRef> parseNumberString(StringRef Expr) const {
size_t FirstNonDigit = StringRef::npos;
if (Expr.startswith("0x")) {
FirstNonDigit = Expr.find_first_not_of("0123456789abcdefABCDEF", 2);
if (FirstNonDigit == StringRef::npos)
FirstNonDigit = Expr.size();
} else {
FirstNonDigit = Expr.find_first_not_of("0123456789");
if (FirstNonDigit == StringRef::npos)
FirstNonDigit = Expr.size();
}
return std::make_pair(Expr.substr(0, FirstNonDigit),
Expr.substr(FirstNonDigit));
}
// Evaluate a constant numeric expression (hexidecimal or decimal) and
// return a pair containing the result, and the expression remaining to be
// evaluated.
std::pair<EvalResult, StringRef> evalNumberExpr(StringRef Expr) const {
StringRef ValueStr;
StringRef RemainingExpr;
std::tie(ValueStr, RemainingExpr) = parseNumberString(Expr);
if (ValueStr.empty() || !isdigit(ValueStr[0]))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected number"),
"");
uint64_t Value;
ValueStr.getAsInteger(0, Value);
return std::make_pair(EvalResult(Value), RemainingExpr);
}
// Evaluate an expression of the form "(<expr>)" and return a pair
// containing the result of evaluating <expr>, plus the expression
// remaining to be parsed.
std::pair<EvalResult, StringRef> evalParensExpr(StringRef Expr) const {
assert(Expr.startswith("(") && "Not a parenthesized expression");
EvalResult SubExprResult;
StringRef RemainingExpr;
std::tie(SubExprResult, RemainingExpr) =
evalComplexExpr(evalSimpleExpr(Expr.substr(1).ltrim()));
if (SubExprResult.hasError())
return std::make_pair(SubExprResult, "");
if (!RemainingExpr.startswith(")"))
return std::make_pair(unexpectedToken(RemainingExpr, Expr,
"expected ')'"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
return std::make_pair(SubExprResult, RemainingExpr);
}
// Evaluate an expression in one of the following forms:
// *{<number>}<symbol>
// *{<number>}(<symbol> + <number>)
// *{<number>}(<symbol> - <number>)
// Return a pair containing the result, plus the expression remaining to be
// parsed.
std::pair<EvalResult, StringRef> evalLoadExpr(StringRef Expr) const {
assert(Expr.startswith("*") && "Not a load expression");
StringRef RemainingExpr = Expr.substr(1).ltrim();
// Parse read size.
if (!RemainingExpr.startswith("{"))
return std::make_pair(EvalResult("Expected '{' following '*'."), "");
RemainingExpr = RemainingExpr.substr(1).ltrim();
EvalResult ReadSizeExpr;
std::tie(ReadSizeExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
if (ReadSizeExpr.hasError())
return std::make_pair(ReadSizeExpr, RemainingExpr);
uint64_t ReadSize = ReadSizeExpr.getValue();
if (ReadSize < 1 || ReadSize > 8)
return std::make_pair(EvalResult("Invalid size for dereference."), "");
if (!RemainingExpr.startswith("}"))
return std::make_pair(EvalResult("Missing '}' for dereference."), "");
RemainingExpr = RemainingExpr.substr(1).ltrim();
// Check for '(symbol +/- constant)' form.
bool SymbolPlusConstant = false;
if (RemainingExpr.startswith("(")) {
SymbolPlusConstant = true;
RemainingExpr = RemainingExpr.substr(1).ltrim();
}
// Read symbol.
StringRef Symbol;
std::tie(Symbol, RemainingExpr) = parseSymbol(RemainingExpr);
if (!Checker.checkSymbolIsValidForLoad(Symbol))
return std::make_pair(EvalResult(("Cannot dereference unknown symbol '"
+ Symbol + "'").str()),
"");
// Set up defaut offset.
int64_t Offset = 0;
// Handle "+/- constant)" portion if necessary.
if (SymbolPlusConstant) {
char OpChar = RemainingExpr[0];
if (OpChar != '+' && OpChar != '-')
return std::make_pair(EvalResult("Invalid operator in load address."),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
EvalResult OffsetExpr;
std::tie(OffsetExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
Offset = (OpChar == '+') ?
OffsetExpr.getValue() : -1 * OffsetExpr.getValue();
if (!RemainingExpr.startswith(")"))
return std::make_pair(EvalResult("Missing ')' in load address."),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
}
return std::make_pair(
EvalResult(Checker.readMemoryAtSymbol(Symbol, Offset, ReadSize)),
RemainingExpr);
}
// Evaluate a "simple" expression. This is any expression that _isn't_ an
// un-parenthesized binary expression.
//
// "Simple" expressions can be optionally bit-sliced. See evalSlicedExpr.
//
// Returns a pair containing the result of the evaluation, plus the
// expression remaining to be parsed.
std::pair<EvalResult, StringRef> evalSimpleExpr(StringRef Expr) const {
EvalResult SubExprResult;
StringRef RemainingExpr;
if (Expr.empty())
return std::make_pair(EvalResult("Unexpected end of expression"), "");
if (Expr[0] == '(')
std::tie(SubExprResult, RemainingExpr) = evalParensExpr(Expr);
else if (Expr[0] == '*')
std::tie(SubExprResult, RemainingExpr) = evalLoadExpr(Expr);
else if (isalpha(Expr[0]))
std::tie(SubExprResult, RemainingExpr) = evalIdentifierExpr(Expr);
else if (isdigit(Expr[0]))
std::tie(SubExprResult, RemainingExpr) = evalNumberExpr(Expr);
if (SubExprResult.hasError())
return std::make_pair(SubExprResult, RemainingExpr);
// Evaluate bit-slice if present.
if (RemainingExpr.startswith("["))
std::tie(SubExprResult, RemainingExpr) =
evalSliceExpr(std::make_pair(SubExprResult, RemainingExpr));
return std::make_pair(SubExprResult, RemainingExpr);
}
// Evaluate a bit-slice of an expression.
// A bit-slice has the form "<expr>[high:low]". The result of evaluating a
// slice is the bits between high and low (inclusive) in the original
// expression, right shifted so that the "low" bit is in position 0 in the
// result.
// Returns a pair containing the result of the slice operation, plus the
// expression remaining to be parsed.
std::pair<EvalResult, StringRef> evalSliceExpr(
std::pair<EvalResult, StringRef> Ctx) const{
EvalResult SubExprResult;
StringRef RemainingExpr;
std::tie(SubExprResult, RemainingExpr) = Ctx;
assert(RemainingExpr.startswith("[") && "Not a slice expr.");
RemainingExpr = RemainingExpr.substr(1).ltrim();
EvalResult HighBitExpr;
std::tie(HighBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
if (HighBitExpr.hasError())
return std::make_pair(HighBitExpr, RemainingExpr);
if (!RemainingExpr.startswith(":"))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected ':'"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
EvalResult LowBitExpr;
std::tie(LowBitExpr, RemainingExpr) = evalNumberExpr(RemainingExpr);
if (LowBitExpr.hasError())
return std::make_pair(LowBitExpr, RemainingExpr);
if (!RemainingExpr.startswith("]"))
return std::make_pair(unexpectedToken(RemainingExpr, RemainingExpr,
"expected ']'"),
"");
RemainingExpr = RemainingExpr.substr(1).ltrim();
unsigned HighBit = HighBitExpr.getValue();
unsigned LowBit = LowBitExpr.getValue();
uint64_t Mask = ((uint64_t)1 << (HighBit - LowBit + 1)) - 1;
uint64_t SlicedValue = (SubExprResult.getValue() >> LowBit) & Mask;
return std::make_pair(EvalResult(SlicedValue), RemainingExpr);
}
// Evaluate a "complex" expression.
// Takes an already evaluated subexpression and checks for the presence of a
// binary operator, computing the result of the binary operation if one is
// found. Used to make arithmetic expressions left-associative.
// Returns a pair containing the ultimate result of evaluating the
// expression, plus the expression remaining to be evaluated.
std::pair<EvalResult, StringRef> evalComplexExpr(
std::pair<EvalResult, StringRef> Ctx) const {
EvalResult LHSResult;
StringRef RemainingExpr;
std::tie(LHSResult, RemainingExpr) = Ctx;
// If there was an error, or there's nothing left to evaluate, return the
// result.
if (LHSResult.hasError() || RemainingExpr == "")
return std::make_pair(LHSResult, RemainingExpr);
// Otherwise check if this is a binary expressioan.
BinOpToken BinOp;
std::tie(BinOp, RemainingExpr) = parseBinOpToken(RemainingExpr);
// If this isn't a recognized expression just return.
if (BinOp == BinOpToken::Invalid)
return std::make_pair(LHSResult, RemainingExpr);
// This is a recognized bin-op. Evaluate the RHS, then evaluate the binop.
EvalResult RHSResult;
std::tie(RHSResult, RemainingExpr) = evalSimpleExpr(RemainingExpr);
// If there was an error evaluating the RHS, return it.
if (RHSResult.hasError())
return std::make_pair(RHSResult, RemainingExpr);
// This is a binary expression - evaluate and try to continue as a
// complex expr.
EvalResult ThisResult(computeBinOpResult(BinOp, LHSResult, RHSResult));
return evalComplexExpr(std::make_pair(ThisResult, RemainingExpr));
}
bool decodeInst(StringRef Symbol, MCInst &Inst, uint64_t &Size) const {
MCDisassembler *Dis = Checker.Disassembler;
StringRef SectionMem = Checker.getSubsectionStartingAt(Symbol);
StringRefMemoryObject SectionBytes(SectionMem, 0);
MCDisassembler::DecodeStatus S =
Dis->getInstruction(Inst, Size, SectionBytes, 0, nulls(), nulls());
return (S == MCDisassembler::Success);
}
};
}
bool RuntimeDyldChecker::check(StringRef CheckExpr) const {
CheckExpr = CheckExpr.trim();
DEBUG(llvm::dbgs() << "RuntimeDyldChecker: Checking '" << CheckExpr
<< "'...\n");
RuntimeDyldCheckerExprEval P(*this, ErrStream);
bool Result = P.evaluate(CheckExpr);
(void)Result;
DEBUG(llvm::dbgs() << "RuntimeDyldChecker: '" << CheckExpr << "' "
<< (Result ? "passed" : "FAILED") << ".\n");
return Result;
}
bool RuntimeDyldChecker::checkAllRulesInBuffer(StringRef RulePrefix,
MemoryBuffer* MemBuf) const {
bool DidAllTestsPass = true;
unsigned NumRules = 0;
const char *LineStart = MemBuf->getBufferStart();
// Eat whitespace.
while (LineStart != MemBuf->getBufferEnd() &&
std::isspace(*LineStart))
++LineStart;
while (LineStart != MemBuf->getBufferEnd() && *LineStart != '\0') {
const char *LineEnd = LineStart;
while (LineEnd != MemBuf->getBufferEnd() &&
*LineEnd != '\r' && *LineEnd != '\n')
++LineEnd;
StringRef Line(LineStart, LineEnd - LineStart);
if (Line.startswith(RulePrefix)) {
DidAllTestsPass &= check(Line.substr(RulePrefix.size()));
++NumRules;
}
// Eat whitespace.
LineStart = LineEnd;
while (LineStart != MemBuf->getBufferEnd() &&
std::isspace(*LineStart))
++LineStart;
}
return DidAllTestsPass && (NumRules != 0);
}
bool RuntimeDyldChecker::checkSymbolIsValidForLoad(StringRef Symbol) const {
return RTDyld.getSymbolAddress(Symbol) != nullptr;
}
uint64_t RuntimeDyldChecker::getSymbolAddress(StringRef Symbol) const {
return RTDyld.getAnySymbolRemoteAddress(Symbol);
}
uint64_t RuntimeDyldChecker::readMemoryAtSymbol(StringRef Symbol,
int64_t Offset,
unsigned Size) const {
uint8_t *Src = RTDyld.getSymbolAddress(Symbol);
uint64_t Result = 0;
memcpy(&Result, Src + Offset, Size);
return Result;
}
StringRef RuntimeDyldChecker::getSubsectionStartingAt(StringRef Name) const {
RuntimeDyldImpl::SymbolTableMap::const_iterator pos =
RTDyld.GlobalSymbolTable.find(Name);
if (pos == RTDyld.GlobalSymbolTable.end())
return StringRef();
RuntimeDyldImpl::SymbolLoc Loc = pos->second;
uint8_t *SectionAddr = RTDyld.getSectionAddress(Loc.first);
return StringRef(reinterpret_cast<const char*>(SectionAddr) + Loc.second,
RTDyld.Sections[Loc.first].Size - Loc.second);
}