//===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MachineRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/raw_os_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
// Pin the vtable to this file.
void MachineRegisterInfo::Delegate::anchor() {}
MachineRegisterInfo::MachineRegisterInfo(const TargetMachine &TM)
: TM(TM), TheDelegate(nullptr), IsSSA(true), TracksLiveness(true) {
VRegInfo.reserve(256);
RegAllocHints.reserve(256);
UsedRegUnits.resize(getTargetRegisterInfo()->getNumRegUnits());
UsedPhysRegMask.resize(getTargetRegisterInfo()->getNumRegs());
// Create the physreg use/def lists.
PhysRegUseDefLists =
new MachineOperand*[getTargetRegisterInfo()->getNumRegs()];
memset(PhysRegUseDefLists, 0,
sizeof(MachineOperand*)*getTargetRegisterInfo()->getNumRegs());
}
MachineRegisterInfo::~MachineRegisterInfo() {
delete [] PhysRegUseDefLists;
}
/// setRegClass - Set the register class of the specified virtual register.
///
void
MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
assert(RC && RC->isAllocatable() && "Invalid RC for virtual register");
VRegInfo[Reg].first = RC;
}
const TargetRegisterClass *
MachineRegisterInfo::constrainRegClass(unsigned Reg,
const TargetRegisterClass *RC,
unsigned MinNumRegs) {
const TargetRegisterClass *OldRC = getRegClass(Reg);
if (OldRC == RC)
return RC;
const TargetRegisterClass *NewRC =
getTargetRegisterInfo()->getCommonSubClass(OldRC, RC);
if (!NewRC || NewRC == OldRC)
return NewRC;
if (NewRC->getNumRegs() < MinNumRegs)
return nullptr;
setRegClass(Reg, NewRC);
return NewRC;
}
bool
MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
const TargetInstrInfo *TII = TM.getInstrInfo();
const TargetRegisterClass *OldRC = getRegClass(Reg);
const TargetRegisterClass *NewRC =
getTargetRegisterInfo()->getLargestLegalSuperClass(OldRC);
// Stop early if there is no room to grow.
if (NewRC == OldRC)
return false;
// Accumulate constraints from all uses.
for (MachineOperand &MO : reg_nodbg_operands(Reg)) {
// Apply the effect of the given operand to NewRC.
MachineInstr *MI = MO.getParent();
unsigned OpNo = &MO - &MI->getOperand(0);
NewRC = MI->getRegClassConstraintEffect(OpNo, NewRC, TII,
getTargetRegisterInfo());
if (!NewRC || NewRC == OldRC)
return false;
}
setRegClass(Reg, NewRC);
return true;
}
/// createVirtualRegister - Create and return a new virtual register in the
/// function with the specified register class.
///
unsigned
MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
assert(RegClass && "Cannot create register without RegClass!");
assert(RegClass->isAllocatable() &&
"Virtual register RegClass must be allocatable.");
// New virtual register number.
unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
VRegInfo.grow(Reg);
VRegInfo[Reg].first = RegClass;
RegAllocHints.grow(Reg);
if (TheDelegate)
TheDelegate->MRI_NoteNewVirtualRegister(Reg);
return Reg;
}
/// clearVirtRegs - Remove all virtual registers (after physreg assignment).
void MachineRegisterInfo::clearVirtRegs() {
#ifndef NDEBUG
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
if (!VRegInfo[Reg].second)
continue;
verifyUseList(Reg);
llvm_unreachable("Remaining virtual register operands");
}
#endif
VRegInfo.clear();
}
void MachineRegisterInfo::verifyUseList(unsigned Reg) const {
#ifndef NDEBUG
bool Valid = true;
for (MachineOperand &M : reg_operands(Reg)) {
MachineOperand *MO = &M;
MachineInstr *MI = MO->getParent();
if (!MI) {
errs() << PrintReg(Reg, getTargetRegisterInfo())
<< " use list MachineOperand " << MO
<< " has no parent instruction.\n";
Valid = false;
}
MachineOperand *MO0 = &MI->getOperand(0);
unsigned NumOps = MI->getNumOperands();
if (!(MO >= MO0 && MO < MO0+NumOps)) {
errs() << PrintReg(Reg, getTargetRegisterInfo())
<< " use list MachineOperand " << MO
<< " doesn't belong to parent MI: " << *MI;
Valid = false;
}
if (!MO->isReg()) {
errs() << PrintReg(Reg, getTargetRegisterInfo())
<< " MachineOperand " << MO << ": " << *MO
<< " is not a register\n";
Valid = false;
}
if (MO->getReg() != Reg) {
errs() << PrintReg(Reg, getTargetRegisterInfo())
<< " use-list MachineOperand " << MO << ": "
<< *MO << " is the wrong register\n";
Valid = false;
}
}
assert(Valid && "Invalid use list");
#endif
}
void MachineRegisterInfo::verifyUseLists() const {
#ifndef NDEBUG
for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
verifyUseList(TargetRegisterInfo::index2VirtReg(i));
for (unsigned i = 1, e = getTargetRegisterInfo()->getNumRegs(); i != e; ++i)
verifyUseList(i);
#endif
}
/// Add MO to the linked list of operands for its register.
void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
assert(!MO->isOnRegUseList() && "Already on list");
MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
MachineOperand *const Head = HeadRef;
// Head points to the first list element.
// Next is NULL on the last list element.
// Prev pointers are circular, so Head->Prev == Last.
// Head is NULL for an empty list.
if (!Head) {
MO->Contents.Reg.Prev = MO;
MO->Contents.Reg.Next = nullptr;
HeadRef = MO;
return;
}
assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
// Insert MO between Last and Head in the circular Prev chain.
MachineOperand *Last = Head->Contents.Reg.Prev;
assert(Last && "Inconsistent use list");
assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
Head->Contents.Reg.Prev = MO;
MO->Contents.Reg.Prev = Last;
// Def operands always precede uses. This allows def_iterator to stop early.
// Insert def operands at the front, and use operands at the back.
if (MO->isDef()) {
// Insert def at the front.
MO->Contents.Reg.Next = Head;
HeadRef = MO;
} else {
// Insert use at the end.
MO->Contents.Reg.Next = nullptr;
Last->Contents.Reg.Next = MO;
}
}
/// Remove MO from its use-def list.
void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
assert(MO->isOnRegUseList() && "Operand not on use list");
MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
MachineOperand *const Head = HeadRef;
assert(Head && "List already empty");
// Unlink this from the doubly linked list of operands.
MachineOperand *Next = MO->Contents.Reg.Next;
MachineOperand *Prev = MO->Contents.Reg.Prev;
// Prev links are circular, next link is NULL instead of looping back to Head.
if (MO == Head)
HeadRef = Next;
else
Prev->Contents.Reg.Next = Next;
(Next ? Next : Head)->Contents.Reg.Prev = Prev;
MO->Contents.Reg.Prev = nullptr;
MO->Contents.Reg.Next = nullptr;
}
/// Move NumOps operands from Src to Dst, updating use-def lists as needed.
///
/// The Dst range is assumed to be uninitialized memory. (Or it may contain
/// operands that won't be destroyed, which is OK because the MO destructor is
/// trivial anyway).
///
/// The Src and Dst ranges may overlap.
void MachineRegisterInfo::moveOperands(MachineOperand *Dst,
MachineOperand *Src,
unsigned NumOps) {
assert(Src != Dst && NumOps && "Noop moveOperands");
// Copy backwards if Dst is within the Src range.
int Stride = 1;
if (Dst >= Src && Dst < Src + NumOps) {
Stride = -1;
Dst += NumOps - 1;
Src += NumOps - 1;
}
// Copy one operand at a time.
do {
new (Dst) MachineOperand(*Src);
// Dst takes Src's place in the use-def chain.
if (Src->isReg()) {
MachineOperand *&Head = getRegUseDefListHead(Src->getReg());
MachineOperand *Prev = Src->Contents.Reg.Prev;
MachineOperand *Next = Src->Contents.Reg.Next;
assert(Head && "List empty, but operand is chained");
assert(Prev && "Operand was not on use-def list");
// Prev links are circular, next link is NULL instead of looping back to
// Head.
if (Src == Head)
Head = Dst;
else
Prev->Contents.Reg.Next = Dst;
// Update Prev pointer. This also works when Src was pointing to itself
// in a 1-element list. In that case Head == Dst.
(Next ? Next : Head)->Contents.Reg.Prev = Dst;
}
Dst += Stride;
Src += Stride;
} while (--NumOps);
}
/// replaceRegWith - Replace all instances of FromReg with ToReg in the
/// machine function. This is like llvm-level X->replaceAllUsesWith(Y),
/// except that it also changes any definitions of the register as well.
void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
assert(FromReg != ToReg && "Cannot replace a reg with itself");
// TODO: This could be more efficient by bulk changing the operands.
for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
MachineOperand &O = *I;
++I;
O.setReg(ToReg);
}
}
/// getVRegDef - Return the machine instr that defines the specified virtual
/// register or null if none is found. This assumes that the code is in SSA
/// form, so there should only be one definition.
MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
// Since we are in SSA form, we can use the first definition.
def_instr_iterator I = def_instr_begin(Reg);
assert((I.atEnd() || std::next(I) == def_instr_end()) &&
"getVRegDef assumes a single definition or no definition");
return !I.atEnd() ? &*I : nullptr;
}
/// getUniqueVRegDef - Return the unique machine instr that defines the
/// specified virtual register or null if none is found. If there are
/// multiple definitions or no definition, return null.
MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const {
if (def_empty(Reg)) return nullptr;
def_instr_iterator I = def_instr_begin(Reg);
if (std::next(I) != def_instr_end())
return nullptr;
return &*I;
}
bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
use_nodbg_iterator UI = use_nodbg_begin(RegNo);
if (UI == use_nodbg_end())
return false;
return ++UI == use_nodbg_end();
}
/// clearKillFlags - Iterate over all the uses of the given register and
/// clear the kill flag from the MachineOperand. This function is used by
/// optimization passes which extend register lifetimes and need only
/// preserve conservative kill flag information.
void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
for (MachineOperand &MO : use_operands(Reg))
MO.setIsKill(false);
}
bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->first == Reg || I->second == Reg)
return true;
return false;
}
/// getLiveInPhysReg - If VReg is a live-in virtual register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->second == VReg)
return I->first;
return 0;
}
/// getLiveInVirtReg - If PReg is a live-in physical register, return the
/// corresponding live-in physical register.
unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
if (I->first == PReg)
return I->second;
return 0;
}
/// EmitLiveInCopies - Emit copies to initialize livein virtual registers
/// into the given entry block.
void
MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
const TargetRegisterInfo &TRI,
const TargetInstrInfo &TII) {
// Emit the copies into the top of the block.
for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
if (LiveIns[i].second) {
if (use_empty(LiveIns[i].second)) {
// The livein has no uses. Drop it.
//
// It would be preferable to have isel avoid creating live-in
// records for unused arguments in the first place, but it's
// complicated by the debug info code for arguments.
LiveIns.erase(LiveIns.begin() + i);
--i; --e;
} else {
// Emit a copy.
BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
TII.get(TargetOpcode::COPY), LiveIns[i].second)
.addReg(LiveIns[i].first);
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
} else {
// Add the register to the entry block live-in set.
EntryMBB->addLiveIn(LiveIns[i].first);
}
}
#ifndef NDEBUG
void MachineRegisterInfo::dumpUses(unsigned Reg) const {
for (MachineInstr &I : use_instructions(Reg))
I.dump();
}
#endif
void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
ReservedRegs = getTargetRegisterInfo()->getReservedRegs(MF);
assert(ReservedRegs.size() == getTargetRegisterInfo()->getNumRegs() &&
"Invalid ReservedRegs vector from target");
}
bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
const MachineFunction &MF) const {
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
// Check if any overlapping register is modified, or allocatable so it may be
// used later.
for (MCRegAliasIterator AI(PhysReg, getTargetRegisterInfo(), true);
AI.isValid(); ++AI)
if (!def_empty(*AI) || isAllocatable(*AI))
return false;
return true;
}
/// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
/// specified register as undefined which causes the DBG_VALUE to be
/// deleted during LiveDebugVariables analysis.
void MachineRegisterInfo::markUsesInDebugValueAsUndef(unsigned Reg) const {
// Mark any DBG_VALUE that uses Reg as undef (but don't delete it.)
MachineRegisterInfo::use_instr_iterator nextI;
for (use_instr_iterator I = use_instr_begin(Reg), E = use_instr_end();
I != E; I = nextI) {
nextI = std::next(I); // I is invalidated by the setReg
MachineInstr *UseMI = &*I;
if (UseMI->isDebugValue())
UseMI->getOperand(0).setReg(0U);
}
}