#define JEMALLOC_HUGE_C_
#include "jemalloc/internal/jemalloc_internal.h"
/******************************************************************************/
/* Data. */
/* Protects chunk-related data structures. */
static malloc_mutex_t huge_mtx;
/******************************************************************************/
/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t huge;
void *
huge_malloc(arena_t *arena, size_t size, bool zero)
{
return (huge_palloc(arena, size, chunksize, zero));
}
void *
huge_palloc(arena_t *arena, size_t size, size_t alignment, bool zero)
{
void *ret;
size_t csize;
extent_node_t *node;
bool is_zeroed;
/* Allocate one or more contiguous chunks for this request. */
csize = CHUNK_CEILING(size);
if (csize == 0) {
/* size is large enough to cause size_t wrap-around. */
return (NULL);
}
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
/*
* Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that
* it is possible to make correct junk/zero fill decisions below.
*/
is_zeroed = zero;
arena = choose_arena(arena);
ret = arena_chunk_alloc_huge(arena, csize, alignment, &is_zeroed);
if (ret == NULL) {
base_node_dalloc(node);
return (NULL);
}
/* Insert node into huge. */
node->addr = ret;
node->size = csize;
node->arena = arena;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
malloc_mutex_unlock(&huge_mtx);
if (config_fill && zero == false) {
if (opt_junk)
memset(ret, 0xa5, csize);
else if (opt_zero && is_zeroed == false)
memset(ret, 0, csize);
}
return (ret);
}
bool
huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size, size_t extra)
{
/*
* Avoid moving the allocation if the size class can be left the same.
*/
if (oldsize > arena_maxclass
&& CHUNK_CEILING(oldsize) >= CHUNK_CEILING(size)
&& CHUNK_CEILING(oldsize) <= CHUNK_CEILING(size+extra)) {
assert(CHUNK_CEILING(oldsize) == oldsize);
return (false);
}
/* Reallocation would require a move. */
return (true);
}
void *
huge_ralloc(arena_t *arena, void *ptr, size_t oldsize, size_t size,
size_t extra, size_t alignment, bool zero, bool try_tcache_dalloc)
{
void *ret;
size_t copysize;
/* Try to avoid moving the allocation. */
if (huge_ralloc_no_move(ptr, oldsize, size, extra) == false)
return (ptr);
/*
* size and oldsize are different enough that we need to use a
* different size class. In that case, fall back to allocating new
* space and copying.
*/
if (alignment > chunksize)
ret = huge_palloc(arena, size + extra, alignment, zero);
else
ret = huge_malloc(arena, size + extra, zero);
if (ret == NULL) {
if (extra == 0)
return (NULL);
/* Try again, this time without extra. */
if (alignment > chunksize)
ret = huge_palloc(arena, size, alignment, zero);
else
ret = huge_malloc(arena, size, zero);
if (ret == NULL)
return (NULL);
}
/*
* Copy at most size bytes (not size+extra), since the caller has no
* expectation that the extra bytes will be reliably preserved.
*/
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
iqalloct(ptr, try_tcache_dalloc);
return (ret);
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk_impl)
#endif
static void
huge_dalloc_junk(void *ptr, size_t usize)
{
if (config_fill && have_dss && opt_junk) {
/*
* Only bother junk filling if the chunk isn't about to be
* unmapped.
*/
if (config_munmap == false || (have_dss && chunk_in_dss(ptr)))
memset(ptr, 0x5a, usize);
}
}
#ifdef JEMALLOC_JET
#undef huge_dalloc_junk
#define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk)
huge_dalloc_junk_t *huge_dalloc_junk = JEMALLOC_N(huge_dalloc_junk_impl);
#endif
void
huge_dalloc(void *ptr)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = ptr;
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->addr == ptr);
extent_tree_ad_remove(&huge, node);
malloc_mutex_unlock(&huge_mtx);
huge_dalloc_junk(node->addr, node->size);
arena_chunk_dalloc_huge(node->arena, node->addr, node->size);
base_node_dalloc(node);
}
size_t
huge_salloc(const void *ptr)
{
size_t ret;
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->size;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
prof_ctx_t *
huge_prof_ctx_get(const void *ptr)
{
prof_ctx_t *ret;
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->prof_ctx;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
void
huge_prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
node->prof_ctx = ctx;
malloc_mutex_unlock(&huge_mtx);
}
bool
huge_boot(void)
{
/* Initialize chunks data. */
if (malloc_mutex_init(&huge_mtx))
return (true);
extent_tree_ad_new(&huge);
return (false);
}
void
huge_prefork(void)
{
malloc_mutex_prefork(&huge_mtx);
}
void
huge_postfork_parent(void)
{
malloc_mutex_postfork_parent(&huge_mtx);
}
void
huge_postfork_child(void)
{
malloc_mutex_postfork_child(&huge_mtx);
}