/*
*******************************************************************************
*
* Copyright (C) 2003-2013, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: gencnvex.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2003oct12
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "cmemory.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "toolutil.h"
#include "unewdata.h"
#include "ucm.h"
#include "makeconv.h"
#include "genmbcs.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
static void
CnvExtClose(NewConverter *cnvData);
static UBool
CnvExtIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length);
static UBool
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
static uint32_t
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType);
typedef struct CnvExtData {
NewConverter newConverter;
UCMFile *ucm;
/* toUnicode (state table in ucm->states) */
UToolMemory *toUTable, *toUUChars;
/* fromUnicode */
UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
uint16_t stage1[MBCS_STAGE_1_SIZE];
uint16_t stage2[MBCS_STAGE_2_SIZE];
uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
uint32_t stage3b[0x10000];
int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
/* for stage3 compaction of <subchar1> |2 mappings */
uint16_t stage3Sub1Block;
/* statistics */
int32_t
maxInBytes, maxOutBytes, maxBytesPerUChar,
maxInUChars, maxOutUChars, maxUCharsPerByte;
} CnvExtData;
NewConverter *
CnvExtOpen(UCMFile *ucm) {
CnvExtData *extData;
extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
if(extData==NULL) {
printf("out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
uprv_memset(extData, 0, sizeof(CnvExtData));
extData->ucm=ucm; /* aliased, not owned */
extData->newConverter.close=CnvExtClose;
extData->newConverter.isValid=CnvExtIsValid;
extData->newConverter.addTable=CnvExtAddTable;
extData->newConverter.write=CnvExtWrite;
return &extData->newConverter;
}
static void
CnvExtClose(NewConverter *cnvData) {
CnvExtData *extData=(CnvExtData *)cnvData;
if(extData!=NULL) {
utm_close(extData->toUTable);
utm_close(extData->toUUChars);
utm_close(extData->fromUTableUChars);
utm_close(extData->fromUTableValues);
utm_close(extData->fromUBytes);
uprv_free(extData);
}
}
/* we do not expect this to be called */
static UBool
CnvExtIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length) {
return FALSE;
}
static uint32_t
CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType) {
CnvExtData *extData=(CnvExtData *)cnvData;
int32_t length, top, headerSize;
int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
if(tableType&TABLE_BASE) {
headerSize=0;
} else {
_MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
/* write the header and base table name for an extension-only table */
length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
while(length&3) {
/* add padding */
extData->ucm->baseName[length++]=0;
}
headerSize=MBCS_HEADER_V4_LENGTH*4+length;
/* fill the header */
header.version[0]=4;
header.version[1]=2;
header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
/* write the header and the base table name */
udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
udata_writeBlock(pData, extData->ucm->baseName, length);
}
/* fill indexes[] - offsets/indexes are in units of the target array */
top=0;
indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
top+=length*4;
indexes[UCNV_EXT_TO_U_INDEX]=top;
indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
top+=length*4;
indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
top+=length*2;
indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
length=utm_countItems(extData->fromUTableUChars);
top+=length*2;
if(top&3) {
/* add padding */
*((UChar *)utm_alloc(extData->fromUTableUChars))=0;
*((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
++length;
top+=2;
}
indexes[UCNV_EXT_FROM_U_LENGTH]=length;
indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
top+=length*4;
indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
length=utm_countItems(extData->fromUBytes);
top+=length;
if(top&1) {
/* add padding */
*((uint8_t *)utm_alloc(extData->fromUBytes))=0;
++length;
++top;
}
indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
top+=length*2;
indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
length=extData->stage3Top;
top+=length*2;
if(top&3) {
/* add padding */
extData->stage3[extData->stage3Top++]=0;
++length;
top+=2;
}
indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
top+=length*4;
indexes[UCNV_EXT_SIZE]=top;
/* statistics */
indexes[UCNV_EXT_COUNT_BYTES]=
(extData->maxInBytes<<16)|
(extData->maxOutBytes<<8)|
extData->maxBytesPerUChar;
indexes[UCNV_EXT_COUNT_UCHARS]=
(extData->maxInUChars<<16)|
(extData->maxOutUChars<<8)|
extData->maxUCharsPerByte;
indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
/* write the extension data */
udata_writeBlock(pData, indexes, sizeof(indexes));
udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
#if 0
{
int32_t i, j;
length=extData->stage1Top;
printf("\nstage1[%x]:\n", length);
for(i=0; i<length; ++i) {
if(extData->stage1[i]!=length) {
printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
}
}
j=length;
length=extData->stage2Top;
printf("\nstage2[%x]:\n", length);
for(i=0; i<length; ++j, ++i) {
if(extData->stage2[i]!=0) {
printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
}
}
length=extData->stage3Top;
printf("\nstage3[%x]:\n", length);
for(i=0; i<length; ++i) {
if(extData->stage3[i]!=0) {
printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
}
}
length=extData->stage3bTop;
printf("\nstage3b[%x]:\n", length);
for(i=0; i<length; ++i) {
if(extData->stage3b[i]!=0) {
printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
}
}
}
#endif
if(VERBOSE) {
printf("size of extension data: %ld\n", (long)top);
}
/* return the number of bytes that should have been written */
return (uint32_t)(headerSize+top);
}
/* to Unicode --------------------------------------------------------------- */
/*
* Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
* the toUnicode table.
* This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
* for the base toUnicode table but not for the base fromUnicode table.
* The table must be sorted.
* Modifies previous data in the reverseMap.
*/
static int32_t
reduceToUMappings(UCMTable *table) {
UCMapping *mappings;
int32_t *map;
int32_t i, j, count;
int8_t flag;
mappings=table->mappings;
map=table->reverseMap;
count=table->mappingsLength;
/* leave the map alone for the initial mappings with desired flags */
for(i=j=0; i<count; ++i) {
flag=mappings[map[i]].f;
if(flag!=0 && flag!=3) {
break;
}
}
/* reduce from here to the rest */
for(j=i; i<count; ++i) {
flag=mappings[map[i]].f;
if(flag==0 || flag==3) {
map[j++]=map[i];
}
}
return j;
}
static uint32_t
getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
UChar32 *u32;
UChar *u;
uint32_t value;
int32_t u16Length, ratio;
UErrorCode errorCode;
/* write the Unicode result code point or string index */
if(m->uLen==1) {
u16Length=U16_LENGTH(m->u);
value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
} else {
/* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
/* get the result code point string and its 16-bit string length */
u32=UCM_GET_CODE_POINTS(table, m);
errorCode=U_ZERO_ERROR;
u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
exit(errorCode);
}
/* allocate it and put its length and index into the value */
value=
(((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
((uint32_t)utm_countItems(extData->toUUChars));
u=utm_allocN(extData->toUUChars, u16Length);
/* write the result 16-bit string */
errorCode=U_ZERO_ERROR;
u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
exit(errorCode);
}
}
if(m->f==0) {
value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
}
/* update statistics */
if(m->bLen>extData->maxInBytes) {
extData->maxInBytes=m->bLen;
}
if(u16Length>extData->maxOutUChars) {
extData->maxOutUChars=u16Length;
}
ratio=(u16Length+(m->bLen-1))/m->bLen;
if(ratio>extData->maxUCharsPerByte) {
extData->maxUCharsPerByte=ratio;
}
return value;
}
/*
* Recursive toUTable generator core function.
* Preconditions:
* - start<limit (There is at least one mapping.)
* - The mappings are sorted lexically. (Access is through the reverseMap.)
* - All mappings between start and limit have input sequences that share
* the same prefix of unitIndex length, and therefore all of these sequences
* are at least unitIndex+1 long.
* - There are only relevant mappings available through the reverseMap,
* see reduceToUMappings().
*
* One function invocation generates one section table.
*
* Steps:
* 1. Count the number of unique unit values and get the low/high unit values
* that occur at unitIndex.
* 2. Allocate the section table with possible optimization for linear access.
* 3. Write temporary version of the section table with start indexes of
* subsections, each corresponding to one unit value at unitIndex.
* 4. Iterate through the table once more, and depending on the subsection length:
* 0: write 0 as a result value (unused byte in linear-access section table)
* >0: if there is one mapping with an input unit sequence of unitIndex+1
* then defaultValue=compute the mapping result for this whole sequence
* else defaultValue=0
*
* recurse into the subsection
*/
static UBool
generateToUTable(CnvExtData *extData, UCMTable *table,
int32_t start, int32_t limit, int32_t unitIndex,
uint32_t defaultValue) {
UCMapping *mappings, *m;
int32_t *map;
int32_t i, j, uniqueCount, count, subStart, subLimit;
uint8_t *bytes;
int32_t low, high, prev;
uint32_t *section;
mappings=table->mappings;
map=table->reverseMap;
/* step 1: examine the input units; set low, high, uniqueCount */
m=mappings+map[start];
bytes=UCM_GET_BYTES(table, m);
low=bytes[unitIndex];
uniqueCount=1;
prev=high=low;
for(i=start+1; i<limit; ++i) {
m=mappings+map[i];
bytes=UCM_GET_BYTES(table, m);
high=bytes[unitIndex];
if(high!=prev) {
prev=high;
++uniqueCount;
}
}
/* step 2: allocate the section; set count, section */
count=(high-low)+1;
if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
/*
* for the root table and for fairly full tables:
* allocate for direct, linear array access
* by keeping count, to write an entry for each unit value
* from low to high
* exception: use a compact table if count==0x100 because
* that cannot be encoded in the length byte
*/
} else {
count=uniqueCount;
}
if(count>=0x100) {
fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
return FALSE;
}
/* allocate the section: 1 entry for the header + count for the items */
section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
/* write the section header */
*section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
/* step 3: write temporary section table with subsection starts */
prev=low-1; /* just before low to prevent empty subsections before low */
j=0; /* section table index */
for(i=start; i<limit; ++i) {
m=mappings+map[i];
bytes=UCM_GET_BYTES(table, m);
high=bytes[unitIndex];
if(high!=prev) {
/* start of a new subsection for unit high */
if(count>uniqueCount) {
/* write empty subsections for unused units in a linear table */
while(++prev<high) {
section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
}
} else {
prev=high;
}
/* write the entry with the subsection start */
section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
}
}
/* assert(j==count) */
/* step 4: recurse and write results */
subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
for(j=0; j<count; ++j) {
subStart=subLimit;
subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
/* remove the subStart temporary value */
section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
if(subStart==subLimit) {
/* leave the value zero: empty subsection for unused unit in a linear table */
continue;
}
/* see if there is exactly one input unit sequence of length unitIndex+1 */
defaultValue=0;
m=mappings+map[subStart];
if(m->bLen==unitIndex+1) {
/* do not include this in generateToUTable() */
++subStart;
if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
/* print error for multiple same-input-sequence mappings */
fprintf(stderr, "error: multiple mappings from same bytes\n");
ucm_printMapping(table, m, stderr);
ucm_printMapping(table, mappings+map[subStart], stderr);
return FALSE;
}
defaultValue=getToUnicodeValue(extData, table, m);
}
if(subStart==subLimit) {
/* write the result for the input sequence ending here */
section[j]|=defaultValue;
} else {
/* write the index to the subsection table */
section[j]|=(uint32_t)utm_countItems(extData->toUTable);
/* recurse */
if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
return FALSE;
}
}
}
return TRUE;
}
/*
* Generate the toUTable and toUUChars from the input table.
* The input table must be sorted, and all precision flags must be 0..3.
* This function will modify the table's reverseMap.
*/
static UBool
makeToUTable(CnvExtData *extData, UCMTable *table) {
int32_t toUCount;
toUCount=reduceToUMappings(table);
extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
return generateToUTable(extData, table, 0, toUCount, 0, 0);
}
/* from Unicode ------------------------------------------------------------- */
/*
* preprocessing:
* rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
* change each Unicode string to encode all but the first code point in 16-bit form
*
* generation:
* for each unique code point
* write an entry in the 3-stage trie
* check that there is only one single-code point sequence
* start recursion for following 16-bit input units
*/
/*
* Remove toUnicode fallbacks and non-<subchar1> SUB mappings
* which are irrelevant for the fromUnicode extension table.
* Remove MBCS_FROM_U_EXT_FLAG bits.
* Overwrite the reverseMap with an index array to the relevant mappings.
* Modify the code point sequences to a generator-friendly format where
* the first code points remains unchanged but the following are recoded
* into 16-bit Unicode string form.
* The table must be sorted.
* Destroys previous data in the reverseMap.
*/
static int32_t
prepareFromUMappings(UCMTable *table) {
UCMapping *mappings, *m;
int32_t *map;
int32_t i, j, count;
int8_t flag;
mappings=table->mappings;
map=table->reverseMap;
count=table->mappingsLength;
/*
* we do not go through the map on input because the mappings are
* sorted lexically
*/
m=mappings;
for(i=j=0; i<count; ++m, ++i) {
flag=m->f;
if(flag>=0) {
flag&=MBCS_FROM_U_EXT_MASK;
m->f=flag;
}
if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
map[j++]=i;
if(m->uLen>1) {
/* recode all but the first code point to 16-bit Unicode */
UChar32 *u32;
UChar *u;
UChar32 c;
int32_t q, r;
u32=UCM_GET_CODE_POINTS(table, m);
u=(UChar *)u32; /* destructive in-place recoding */
for(r=2, q=1; q<m->uLen; ++q) {
c=u32[q];
U16_APPEND_UNSAFE(u, r, c);
}
/* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
m->uLen=(int8_t)r;
}
}
}
return j;
}
static uint32_t
getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
uint8_t *bytes, *resultBytes;
uint32_t value;
int32_t u16Length, ratio;
if(m->f==2) {
/*
* no mapping, <subchar1> preferred
*
* no need to count in statistics because the subchars are already
* counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
* and this non-mapping does not count for maxInUChars which are always
* trivially at least two if counting unmappable supplementary code points
*/
return UCNV_EXT_FROM_U_SUBCHAR1;
}
bytes=UCM_GET_BYTES(table, m);
value=0;
switch(m->bLen) {
/* 1..3: store the bytes in the value word */
case 3:
value=((uint32_t)*bytes++)<<16;
case 2:
value|=((uint32_t)*bytes++)<<8;
case 1:
value|=*bytes;
break;
default:
/* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
/* store the bytes in fromUBytes[] and the index in the value word */
value=(uint32_t)utm_countItems(extData->fromUBytes);
resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
uprv_memcpy(resultBytes, bytes, m->bLen);
break;
}
value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
if(m->f==0) {
value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
} else if(m->f==4) {
value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
}
/* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
if(m->uLen==1) {
u16Length=U16_LENGTH(m->u);
} else {
u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
}
/* update statistics */
if(u16Length>extData->maxInUChars) {
extData->maxInUChars=u16Length;
}
if(m->bLen>extData->maxOutBytes) {
extData->maxOutBytes=m->bLen;
}
ratio=(m->bLen+(u16Length-1))/u16Length;
if(ratio>extData->maxBytesPerUChar) {
extData->maxBytesPerUChar=ratio;
}
return value;
}
/*
* works like generateToUTable(), except that the
* output section consists of two arrays, one for input UChars and one
* for result values
*
* also, fromUTable sections are always stored in a compact form for
* access via binary search
*/
static UBool
generateFromUTable(CnvExtData *extData, UCMTable *table,
int32_t start, int32_t limit, int32_t unitIndex,
uint32_t defaultValue) {
UCMapping *mappings, *m;
int32_t *map;
int32_t i, j, uniqueCount, count, subStart, subLimit;
UChar *uchars;
UChar32 low, high, prev;
UChar *sectionUChars;
uint32_t *sectionValues;
mappings=table->mappings;
map=table->reverseMap;
/* step 1: examine the input units; set low, high, uniqueCount */
m=mappings+map[start];
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
low=uchars[unitIndex];
uniqueCount=1;
prev=high=low;
for(i=start+1; i<limit; ++i) {
m=mappings+map[i];
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
high=uchars[unitIndex];
if(high!=prev) {
prev=high;
++uniqueCount;
}
}
/* step 2: allocate the section; set count, section */
/* the fromUTable always stores for access via binary search */
count=uniqueCount;
/* allocate the section: 1 entry for the header + count for the items */
sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
/* write the section header */
*sectionUChars++=(UChar)count;
*sectionValues++=defaultValue;
/* step 3: write temporary section table with subsection starts */
prev=low-1; /* just before low to prevent empty subsections before low */
j=0; /* section table index */
for(i=start; i<limit; ++i) {
m=mappings+map[i];
uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
high=uchars[unitIndex];
if(high!=prev) {
/* start of a new subsection for unit high */
prev=high;
/* write the entry with the subsection start */
sectionUChars[j]=(UChar)high;
sectionValues[j]=(uint32_t)i;
++j;
}
}
/* assert(j==count) */
/* step 4: recurse and write results */
subLimit=(int32_t)(sectionValues[0]);
for(j=0; j<count; ++j) {
subStart=subLimit;
subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
/* see if there is exactly one input unit sequence of length unitIndex+1 */
defaultValue=0;
m=mappings+map[subStart];
if(m->uLen==unitIndex+1) {
/* do not include this in generateToUTable() */
++subStart;
if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
/* print error for multiple same-input-sequence mappings */
fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
ucm_printMapping(table, m, stderr);
ucm_printMapping(table, mappings+map[subStart], stderr);
return FALSE;
}
defaultValue=getFromUBytesValue(extData, table, m);
}
if(subStart==subLimit) {
/* write the result for the input sequence ending here */
sectionValues[j]=defaultValue;
} else {
/* write the index to the subsection table */
sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
/* recurse */
if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
return FALSE;
}
}
}
return TRUE;
}
/*
* add entries to the fromUnicode trie,
* assume to be called with code points in ascending order
* and use that to build the trie in precompacted form
*/
static void
addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
if(value==0) {
return;
}
/*
* compute the index for each stage,
* allocate a stage block if necessary,
* and write the stage value
*/
i1=c>>10;
if(i1>=extData->stage1Top) {
extData->stage1Top=i1+1;
}
nextOffset=(c>>4)&0x3f;
if(extData->stage1[i1]==0) {
/* allocate another block in stage 2; overlap with the previous block */
newBlock=extData->stage2Top;
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && extData->stage2[newBlock-1]==0) {
--newBlock;
}
extData->stage1[i1]=(uint16_t)newBlock;
extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
if(extData->stage2Top>LENGTHOF(extData->stage2)) {
fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
exit(U_MEMORY_ALLOCATION_ERROR);
}
}
i2=extData->stage1[i1]+nextOffset;
nextOffset=c&0xf;
if(extData->stage2[i2]==0) {
/* allocate another block in stage 3; overlap with the previous block */
newBlock=extData->stage3Top;
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && extData->stage3[newBlock-1]==0) {
--newBlock;
}
/* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
if(extData->stage3Top>LENGTHOF(extData->stage3)) {
fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
exit(U_MEMORY_ALLOCATION_ERROR);
}
}
i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
/*
* assume extData->stage3[i3]==0 because we get
* code points in strictly ascending order
*/
if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
/* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
extData->stage3[i3]=1;
/*
* precompaction is not optimal for <subchar1> |2 mappings because
* stage3 values for them are all the same, unlike for other mappings
* which all have unique values;
* use a simple compaction of reusing a whole block filled with these
* mappings
*/
/* is the entire block filled with <subchar1> |2 mappings? */
if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
for(min=i3-nextOffset;
min<i3 && extData->stage3[min]==1;
++min) {}
if(min==i3) {
/* the entire block is filled with these mappings */
if(extData->stage3Sub1Block!=0) {
/* point to the previous such block and remove this block from stage3 */
extData->stage2[i2]=extData->stage3Sub1Block;
extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
} else {
/* remember this block's stage2 entry */
extData->stage3Sub1Block=extData->stage2[i2];
}
}
}
} else {
if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) {
fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
exit(U_MEMORY_ALLOCATION_ERROR);
}
/* roundtrip or fallback mapping */
extData->stage3[i3]=(uint16_t)i3b;
extData->stage3b[i3b]=value;
}
}
static UBool
generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
UCMapping *mappings, *m;
int32_t *map;
uint32_t value;
int32_t subStart, subLimit;
UChar32 *codePoints;
UChar32 c, next;
if(mapLength==0) {
return TRUE;
}
mappings=table->mappings;
map=table->reverseMap;
/*
* iterate over same-initial-code point mappings,
* enter the initial code point into the trie,
* and start a recursion on the corresponding mappings section
* with generateFromUTable()
*/
m=mappings+map[0];
codePoints=UCM_GET_CODE_POINTS(table, m);
next=codePoints[0];
subLimit=0;
while(subLimit<mapLength) {
/* get a new subsection of mappings starting with the same code point */
subStart=subLimit;
c=next;
while(next==c && ++subLimit<mapLength) {
m=mappings+map[subLimit];
codePoints=UCM_GET_CODE_POINTS(table, m);
next=codePoints[0];
}
/*
* compute the value for this code point;
* if there is a mapping for this code point alone, it is at subStart
* because the table is sorted lexically
*/
value=0;
m=mappings+map[subStart];
codePoints=UCM_GET_CODE_POINTS(table, m);
if(m->uLen==1) {
/* do not include this in generateFromUTable() */
++subStart;
if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
/* print error for multiple same-input-sequence mappings */
fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
ucm_printMapping(table, m, stderr);
ucm_printMapping(table, mappings+map[subStart], stderr);
return FALSE;
}
value=getFromUBytesValue(extData, table, m);
}
if(subStart==subLimit) {
/* write the result for this one code point */
addFromUTrieEntry(extData, c, value);
} else {
/* write the index to the subsection table */
addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
/* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
return FALSE;
}
}
}
return TRUE;
}
/*
* Generate the fromU data structures from the input table.
* The input table must be sorted, and all precision flags must be 0..3.
* This function will modify the table's reverseMap.
*/
static UBool
makeFromUTable(CnvExtData *extData, UCMTable *table) {
uint16_t *stage1;
int32_t i, stage1Top, fromUCount;
fromUCount=prepareFromUMappings(table);
extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
/* allocate all-unassigned stage blocks */
extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
/*
* stage 3b stores only unique values, and in
* index 0: 0 for "no mapping"
* index 1: "no mapping" with preference for <subchar1> rather than <subchar>
*/
extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
extData->stage3bTop=2;
/* allocate the first entry in the fromUTable because index 0 means "no result" */
utm_alloc(extData->fromUTableUChars);
utm_alloc(extData->fromUTableValues);
if(!generateFromUTrie(extData, table, fromUCount)) {
return FALSE;
}
/*
* offset the stage 1 trie entries by stage1Top because they will
* be stored in a single array
*/
stage1=extData->stage1;
stage1Top=extData->stage1Top;
for(i=0; i<stage1Top; ++i) {
stage1[i]=(uint16_t)(stage1[i]+stage1Top);
}
return TRUE;
}
/* -------------------------------------------------------------------------- */
static UBool
CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
CnvExtData *extData;
if(table->unicodeMask&UCNV_HAS_SURROGATES) {
fprintf(stderr, "error: contains mappings for surrogate code points\n");
return FALSE;
}
staticData->conversionType=UCNV_MBCS;
extData=(CnvExtData *)cnvData;
/*
* assume that the table is sorted
*
* call the functions in this order because
* makeToUTable() modifies the original reverseMap,
* makeFromUTable() writes a whole new mapping into reverseMap
*/
return
makeToUTable(extData, table) &&
makeFromUTable(extData, table);
}