/**
* fsck.c
*
* Copyright (c) 2013 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
char *tree_mark;
uint32_t tree_mark_size = 256;
static int add_into_hard_link_list(struct f2fs_sb_info *sbi, u32 nid, u32 link_cnt)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *tmp = NULL, *prev = NULL;
node = calloc(sizeof(struct hard_link_node), 1);
ASSERT(node != NULL);
node->nid = nid;
node->links = link_cnt;
node->next = NULL;
if (fsck->hard_link_list_head == NULL) {
fsck->hard_link_list_head = node;
goto out;
}
tmp = fsck->hard_link_list_head;
/* Find insertion position */
while (tmp && (nid < tmp->nid)) {
ASSERT(tmp->nid != nid);
prev = tmp;
tmp = tmp->next;
}
if (tmp == fsck->hard_link_list_head) {
node->next = tmp;
fsck->hard_link_list_head = node;
} else {
prev->next = node;
node->next = tmp;
}
out:
DBG(2, "ino[0x%x] has hard links [0x%x]\n", nid, link_cnt);
return 0;
}
static int find_and_dec_hard_link_list(struct f2fs_sb_info *sbi, u32 nid)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL, *prev = NULL;
if (fsck->hard_link_list_head == NULL) {
ASSERT(0);
return -1;
}
node = fsck->hard_link_list_head;
while (node && (nid < node->nid)) {
prev = node;
node = node->next;
}
if (node == NULL || (nid != node->nid)) {
ASSERT(0);
return -1;
}
/* Decrease link count */
node->links = node->links - 1;
/* if link count becomes one, remove the node */
if (node->links == 1) {
if (fsck->hard_link_list_head == node)
fsck->hard_link_list_head = node->next;
else
prev->next = node->next;
free(node);
}
return 0;
}
static int is_valid_ssa_node_blk(struct f2fs_sb_info *sbi, u32 nid, u32 blk_addr)
{
int ret = 0;
struct f2fs_summary sum_entry;
ret = get_sum_entry(sbi, blk_addr, &sum_entry);
ASSERT(ret >= 0);
if (ret == SEG_TYPE_DATA || ret == SEG_TYPE_CUR_DATA) {
ASSERT_MSG(0, "Summary footer is not a node segment summary\n");;
} else if (ret == SEG_TYPE_NODE) {
if (le32_to_cpu(sum_entry.nid) != nid) {
DBG(0, "nid [0x%x]\n", nid);
DBG(0, "target blk_addr [0x%x]\n", blk_addr);
DBG(0, "summary blk_addr [0x%x]\n",
GET_SUM_BLKADDR(sbi, GET_SEGNO(sbi, blk_addr)));
DBG(0, "seg no / offset [0x%x / 0x%x]\n",
GET_SEGNO(sbi, blk_addr), OFFSET_IN_SEG(sbi, blk_addr));
DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry.nid));
DBG(0, "--> node block's nid [0x%x]\n", nid);
ASSERT_MSG(0, "Invalid node seg summary\n");
}
} else if (ret == SEG_TYPE_CUR_NODE) {
/* current node segment has no ssa */
} else {
ASSERT_MSG(0, "Invalid return value of 'get_sum_entry'");
}
return 1;
}
static int is_valid_ssa_data_blk(struct f2fs_sb_info *sbi, u32 blk_addr,
u32 parent_nid, u16 idx_in_node, u8 version)
{
int ret = 0;
struct f2fs_summary sum_entry;
ret = get_sum_entry(sbi, blk_addr, &sum_entry);
ASSERT(ret == SEG_TYPE_DATA || ret == SEG_TYPE_CUR_DATA);
if (le32_to_cpu(sum_entry.nid) != parent_nid ||
sum_entry.version != version ||
le16_to_cpu(sum_entry.ofs_in_node) != idx_in_node) {
DBG(0, "summary_entry.nid [0x%x]\n", le32_to_cpu(sum_entry.nid));
DBG(0, "summary_entry.version [0x%x]\n", sum_entry.version);
DBG(0, "summary_entry.ofs_in_node [0x%x]\n", le16_to_cpu(sum_entry.ofs_in_node));
DBG(0, "parent nid [0x%x]\n", parent_nid);
DBG(0, "version from nat [0x%x]\n", version);
DBG(0, "idx in parent node [0x%x]\n", idx_in_node);
DBG(0, "Target data block addr [0x%x]\n", blk_addr);
ASSERT_MSG(0, "Invalid data seg summary\n");
}
return 1;
}
int fsck_chk_node_blk(struct f2fs_sb_info *sbi,
struct f2fs_inode *inode,
u32 nid,
enum FILE_TYPE ftype,
enum NODE_TYPE ntype,
u32 *blk_cnt)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct node_info ni;
struct f2fs_node *node_blk = NULL;
int ret = 0;
IS_VALID_NID(sbi, nid);
if (ftype != F2FS_FT_ORPHAN ||
f2fs_test_bit(nid, fsck->nat_area_bitmap) != 0x0)
f2fs_clear_bit(nid, fsck->nat_area_bitmap);
else
ASSERT_MSG(0, "nid duplicated [0x%x]\n", nid);
ret = get_node_info(sbi, nid, &ni);
ASSERT(ret >= 0);
/* Is it reserved block?
* if block addresss was 0xffff,ffff,ffff,ffff
* it means that block was already allocated, but not stored in disk
*/
if (ni.blk_addr == NEW_ADDR) {
fsck->chk.valid_blk_cnt++;
fsck->chk.valid_node_cnt++;
if (ntype == TYPE_INODE)
fsck->chk.valid_inode_cnt++;
return 0;
}
IS_VALID_BLK_ADDR(sbi, ni.blk_addr);
is_valid_ssa_node_blk(sbi, nid, ni.blk_addr);
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->sit_area_bitmap) == 0x0) {
DBG(0, "SIT bitmap is 0x0. blk_addr[0x%x]\n", ni.blk_addr);
ASSERT(0);
}
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) == 0x0) {
fsck->chk.valid_blk_cnt++;
fsck->chk.valid_node_cnt++;
}
node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
ASSERT(node_blk != NULL);
ret = dev_read_block(node_blk, ni.blk_addr);
ASSERT(ret >= 0);
ASSERT_MSG(nid == le32_to_cpu(node_blk->footer.nid),
"nid[0x%x] blk_addr[0x%x] footer.nid[0x%x]\n",
nid, ni.blk_addr, le32_to_cpu(node_blk->footer.nid));
if (ntype == TYPE_INODE) {
ret = fsck_chk_inode_blk(sbi,
nid,
ftype,
node_blk,
blk_cnt,
&ni);
} else {
/* it's not inode */
ASSERT(node_blk->footer.nid != node_blk->footer.ino);
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) != 0) {
DBG(0, "Duplicated node block. ino[0x%x][0x%x]\n", nid, ni.blk_addr);
ASSERT(0);
}
f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap);
switch (ntype) {
case TYPE_DIRECT_NODE:
ret = fsck_chk_dnode_blk(sbi,
inode,
nid,
ftype,
node_blk,
blk_cnt,
&ni);
break;
case TYPE_INDIRECT_NODE:
ret = fsck_chk_idnode_blk(sbi,
inode,
ftype,
node_blk,
blk_cnt);
break;
case TYPE_DOUBLE_INDIRECT_NODE:
ret = fsck_chk_didnode_blk(sbi,
inode,
ftype,
node_blk,
blk_cnt);
break;
default:
ASSERT(0);
}
}
ASSERT(ret >= 0);
free(node_blk);
return 0;
}
int fsck_chk_inode_blk(struct f2fs_sb_info *sbi,
u32 nid,
enum FILE_TYPE ftype,
struct f2fs_node *node_blk,
u32 *blk_cnt,
struct node_info *ni)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
u32 child_cnt = 0, child_files = 0;
enum NODE_TYPE ntype;
u32 i_links = le32_to_cpu(node_blk->i.i_links);
u64 i_blocks = le64_to_cpu(node_blk->i.i_blocks);
unsigned int idx = 0;
int ret = 0;
ASSERT(node_blk->footer.nid == node_blk->footer.ino);
ASSERT(le32_to_cpu(node_blk->footer.nid) == nid);
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) == 0x0)
fsck->chk.valid_inode_cnt++;
/* Orphan node. i_links should be 0 */
if (ftype == F2FS_FT_ORPHAN) {
ASSERT(i_links == 0);
} else {
ASSERT(i_links > 0);
}
if (ftype == F2FS_FT_DIR) {
/* not included '.' & '..' */
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) != 0) {
DBG(0, "Duplicated inode blk. ino[0x%x][0x%x]\n", nid, ni->blk_addr);
ASSERT(0);
}
f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap);
} else {
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap) == 0x0) {
f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni->blk_addr), fsck->main_area_bitmap);
if (i_links > 1) {
/* First time. Create new hard link node */
add_into_hard_link_list(sbi, nid, i_links);
fsck->chk.multi_hard_link_files++;
}
} else {
if (i_links <= 1) {
DBG(0, "Error. Node ID [0x%x]."
" There are one more hard links."
" But i_links is [0x%x]\n",
nid, i_links);
ASSERT(0);
}
DBG(3, "ino[0x%x] has hard links [0x%x]\n", nid, i_links);
ret = find_and_dec_hard_link_list(sbi, nid);
ASSERT(ret >= 0);
/* No need to go deep into the node */
goto out;
}
}
fsck_chk_xattr_blk(sbi, nid, le32_to_cpu(node_blk->i.i_xattr_nid), blk_cnt);
if (ftype == F2FS_FT_CHRDEV || ftype == F2FS_FT_BLKDEV ||
ftype == F2FS_FT_FIFO || ftype == F2FS_FT_SOCK)
goto check;
if((node_blk->i.i_inline & F2FS_INLINE_DATA)){
DBG(3, "ino[0x%x] has inline data!\n", nid);
goto check;
}
/* check data blocks in inode */
for (idx = 0; idx < ADDRS_PER_INODE(&node_blk->i); idx++) {
if (le32_to_cpu(node_blk->i.i_addr[idx]) != 0) {
*blk_cnt = *blk_cnt + 1;
ret = fsck_chk_data_blk(sbi,
le32_to_cpu(node_blk->i.i_addr[idx]),
&child_cnt,
&child_files,
(i_blocks == *blk_cnt),
ftype,
nid,
idx,
ni->version);
ASSERT(ret >= 0);
}
}
/* check node blocks in inode */
for (idx = 0; idx < 5; idx++) {
if (idx == 0 || idx == 1)
ntype = TYPE_DIRECT_NODE;
else if (idx == 2 || idx == 3)
ntype = TYPE_INDIRECT_NODE;
else if (idx == 4)
ntype = TYPE_DOUBLE_INDIRECT_NODE;
else
ASSERT(0);
if (le32_to_cpu(node_blk->i.i_nid[idx]) != 0) {
*blk_cnt = *blk_cnt + 1;
ret = fsck_chk_node_blk(sbi,
&node_blk->i,
le32_to_cpu(node_blk->i.i_nid[idx]),
ftype,
ntype,
blk_cnt);
ASSERT(ret >= 0);
}
}
check:
if (ftype == F2FS_FT_DIR)
DBG(1, "Directory Inode: ino: %x name: %s depth: %d child files: %d\n\n",
le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name,
le32_to_cpu(node_blk->i.i_current_depth), child_files);
if (ftype == F2FS_FT_ORPHAN)
DBG(1, "Orphan Inode: ino: %x name: %s i_blocks: %u\n\n",
le32_to_cpu(node_blk->footer.ino), node_blk->i.i_name,
(u32)i_blocks);
if ((ftype == F2FS_FT_DIR && i_links != child_cnt) ||
(i_blocks != *blk_cnt)) {
print_node_info(node_blk);
DBG(1, "blk cnt [0x%x]\n", *blk_cnt);
DBG(1, "child cnt [0x%x]\n", child_cnt);
}
ASSERT(i_blocks == *blk_cnt);
if (ftype == F2FS_FT_DIR)
ASSERT(i_links == child_cnt);
out:
return 0;
}
int fsck_chk_dnode_blk(struct f2fs_sb_info *sbi,
struct f2fs_inode *inode,
u32 nid,
enum FILE_TYPE ftype,
struct f2fs_node *node_blk,
u32 *blk_cnt,
struct node_info *ni)
{
int idx;
u32 child_cnt = 0, child_files = 0;
for (idx = 0; idx < ADDRS_PER_BLOCK; idx++) {
if (le32_to_cpu(node_blk->dn.addr[idx]) == 0x0)
continue;
*blk_cnt = *blk_cnt + 1;
fsck_chk_data_blk(sbi,
le32_to_cpu(node_blk->dn.addr[idx]),
&child_cnt,
&child_files,
le64_to_cpu(inode->i_blocks) == *blk_cnt,
ftype,
nid,
idx,
ni->version);
}
return 0;
}
int fsck_chk_idnode_blk(struct f2fs_sb_info *sbi,
struct f2fs_inode *inode,
enum FILE_TYPE ftype,
struct f2fs_node *node_blk,
u32 *blk_cnt)
{
int i = 0;
for (i = 0 ; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
continue;
*blk_cnt = *blk_cnt + 1;
fsck_chk_node_blk(sbi,
inode,
le32_to_cpu(node_blk->in.nid[i]),
ftype,
TYPE_DIRECT_NODE,
blk_cnt);
}
return 0;
}
int fsck_chk_didnode_blk(struct f2fs_sb_info *sbi,
struct f2fs_inode *inode,
enum FILE_TYPE ftype,
struct f2fs_node *node_blk,
u32 *blk_cnt)
{
int i = 0;
for (i = 0; i < NIDS_PER_BLOCK; i++) {
if (le32_to_cpu(node_blk->in.nid[i]) == 0x0)
continue;
*blk_cnt = *blk_cnt + 1;
fsck_chk_node_blk(sbi,
inode,
le32_to_cpu(node_blk->in.nid[i]),
ftype,
TYPE_INDIRECT_NODE,
blk_cnt);
}
return 0;
}
static void print_dentry(__u32 depth, __u8 *name,
struct f2fs_dentry_block *de_blk, int idx, int last_blk)
{
int last_de = 0;
int next_idx = 0;
int name_len;
unsigned int i;
int bit_offset;
if (config.dbg_lv != -1)
return;
name_len = le16_to_cpu(de_blk->dentry[idx].name_len);
next_idx = idx + (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
bit_offset = find_next_bit((unsigned long *)de_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK, next_idx);
if (bit_offset >= NR_DENTRY_IN_BLOCK && last_blk)
last_de = 1;
if (tree_mark_size <= depth) {
tree_mark_size *= 2;
tree_mark = realloc(tree_mark, tree_mark_size);
}
if (last_de)
tree_mark[depth] = '`';
else
tree_mark[depth] = '|';
if (tree_mark[depth - 1] == '`')
tree_mark[depth - 1] = ' ';
for (i = 1; i < depth; i++)
printf("%c ", tree_mark[i]);
printf("%c-- %s\n", last_de ? '`' : '|', name);
}
int fsck_chk_dentry_blk(struct f2fs_sb_info *sbi,
u32 blk_addr,
u32 *child_cnt,
u32 *child_files,
int last_blk)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
int i;
int ret = 0;
int dentries = 0;
u8 *name;
u32 hash_code;
u32 blk_cnt;
u16 name_len;;
enum FILE_TYPE ftype;
struct f2fs_dentry_block *de_blk;
de_blk = (struct f2fs_dentry_block *)calloc(BLOCK_SZ, 1);
ASSERT(de_blk != NULL);
ret = dev_read_block(de_blk, blk_addr);
ASSERT(ret >= 0);
fsck->dentry_depth++;
for (i = 0; i < NR_DENTRY_IN_BLOCK;) {
if (test_bit(i, (unsigned long *)de_blk->dentry_bitmap) == 0x0) {
i++;
continue;
}
name_len = le32_to_cpu(de_blk->dentry[i].name_len);
name = calloc(name_len + 1, 1);
memcpy(name, de_blk->filename[i], name_len);
hash_code = f2fs_dentry_hash((const char *)name, name_len);
ASSERT(le32_to_cpu(de_blk->dentry[i].hash_code) == hash_code);
ftype = de_blk->dentry[i].file_type;
/* Becareful. 'dentry.file_type' is not imode. */
if (ftype == F2FS_FT_DIR) {
*child_cnt = *child_cnt + 1;
if ((name[0] == '.' && name[1] == '.' && name_len == 2) ||
(name[0] == '.' && name_len == 1)) {
i++;
free(name);
continue;
}
}
DBG(2, "[%3u] - no[0x%x] name[%s] len[0x%x] ino[0x%x] type[0x%x]\n",
fsck->dentry_depth, i, name, name_len,
le32_to_cpu(de_blk->dentry[i].ino),
de_blk->dentry[i].file_type);
print_dentry(fsck->dentry_depth, name, de_blk, i, last_blk);
blk_cnt = 1;
ret = fsck_chk_node_blk(sbi,
NULL,
le32_to_cpu(de_blk->dentry[i].ino),
ftype,
TYPE_INODE,
&blk_cnt);
ASSERT(ret >= 0);
i += (name_len + F2FS_SLOT_LEN - 1) / F2FS_SLOT_LEN;
dentries++;
*child_files = *child_files + 1;
free(name);
}
DBG(1, "[%3d] Dentry Block [0x%x] Done : dentries:%d in %d slots (len:%d)\n\n",
fsck->dentry_depth, blk_addr, dentries, NR_DENTRY_IN_BLOCK, F2FS_NAME_LEN);
fsck->dentry_depth--;
free(de_blk);
return 0;
}
int fsck_chk_data_blk(struct f2fs_sb_info *sbi,
u32 blk_addr,
u32 *child_cnt,
u32 *child_files,
int last_blk,
enum FILE_TYPE ftype,
u32 parent_nid,
u16 idx_in_node,
u8 ver)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
/* Is it reserved block? */
if (blk_addr == NEW_ADDR) {
fsck->chk.valid_blk_cnt++;
return 0;
}
IS_VALID_BLK_ADDR(sbi, blk_addr);
is_valid_ssa_data_blk(sbi, blk_addr, parent_nid, idx_in_node, ver);
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->sit_area_bitmap) == 0x0) {
ASSERT_MSG(0, "SIT bitmap is 0x0. blk_addr[0x%x]\n", blk_addr);
}
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->main_area_bitmap) != 0) {
ASSERT_MSG(0, "Duplicated data block. pnid[0x%x] idx[0x%x] blk_addr[0x%x]\n",
parent_nid, idx_in_node, blk_addr);
}
f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, blk_addr), fsck->main_area_bitmap);
fsck->chk.valid_blk_cnt++;
if (ftype == F2FS_FT_DIR) {
fsck_chk_dentry_blk(sbi,
blk_addr,
child_cnt,
child_files,
last_blk);
}
return 0;
}
int fsck_chk_orphan_node(struct f2fs_sb_info *sbi)
{
int ret = 0;
u32 blk_cnt = 0;
block_t start_blk, orphan_blkaddr, i, j;
struct f2fs_orphan_block *orphan_blk;
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
if (!is_set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG))
return 0;
start_blk = __start_cp_addr(sbi) + 1 +
le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
orphan_blkaddr = __start_sum_addr(sbi) - 1;
orphan_blk = calloc(BLOCK_SZ, 1);
for (i = 0; i < orphan_blkaddr; i++) {
dev_read_block(orphan_blk, start_blk + i);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
DBG(1, "[%3d] ino [0x%x]\n", i, ino);
blk_cnt = 1;
ret = fsck_chk_node_blk(sbi,
NULL,
ino,
F2FS_FT_ORPHAN,
TYPE_INODE,
&blk_cnt);
ASSERT(ret >= 0);
}
memset(orphan_blk, 0, BLOCK_SZ);
}
free(orphan_blk);
return 0;
}
int fsck_chk_xattr_blk(struct f2fs_sb_info *sbi, u32 ino, u32 x_nid, u32 *blk_cnt)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct node_info ni;
if (x_nid == 0x0)
return 0;
if (f2fs_test_bit(x_nid, fsck->nat_area_bitmap) != 0x0) {
f2fs_clear_bit(x_nid, fsck->nat_area_bitmap);
} else {
ASSERT_MSG(0, "xattr_nid duplicated [0x%x]\n", x_nid);
}
*blk_cnt = *blk_cnt + 1;
fsck->chk.valid_blk_cnt++;
fsck->chk.valid_node_cnt++;
ASSERT(get_node_info(sbi, x_nid, &ni) >= 0);
if (f2fs_test_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap) != 0) {
ASSERT_MSG(0, "Duplicated node block for x_attr. "
"x_nid[0x%x] block addr[0x%x]\n",
x_nid, ni.blk_addr);
}
f2fs_set_bit(BLKOFF_FROM_MAIN(sbi, ni.blk_addr), fsck->main_area_bitmap);
DBG(2, "ino[0x%x] x_nid[0x%x]\n", ino, x_nid);
return 0;
}
int fsck_init(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct f2fs_sm_info *sm_i = SM_I(sbi);
/*
* We build three bitmap for main/sit/nat so that may check consistency of filesystem.
* 1. main_area_bitmap will be used to check whether all blocks of main area is used or not.
* 2. nat_area_bitmap has bitmap information of used nid in NAT.
* 3. sit_area_bitmap has bitmap information of used main block.
* At Last sequence, we compare main_area_bitmap with sit_area_bitmap.
*/
fsck->nr_main_blks = sm_i->main_segments << sbi->log_blocks_per_seg;
fsck->main_area_bitmap_sz = (fsck->nr_main_blks + 7) / 8;
fsck->main_area_bitmap = calloc(fsck->main_area_bitmap_sz, 1);
ASSERT(fsck->main_area_bitmap != NULL);
build_nat_area_bitmap(sbi);
build_sit_area_bitmap(sbi);
tree_mark = calloc(tree_mark_size, 1);
return 0;
}
int fsck_verify(struct f2fs_sb_info *sbi)
{
unsigned int i = 0;
int ret = 0;
u32 nr_unref_nid = 0;
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
struct hard_link_node *node = NULL;
printf("\n");
for (i = 0; i < fsck->nr_nat_entries; i++) {
if (f2fs_test_bit(i, fsck->nat_area_bitmap) != 0) {
printf("NID[0x%x] is unreachable\n", i);
nr_unref_nid++;
}
}
if (fsck->hard_link_list_head != NULL) {
node = fsck->hard_link_list_head;
while (node) {
printf("NID[0x%x] has [0x%x] more unreachable links\n",
node->nid, node->links);
node = node->next;
}
}
printf("[FSCK] Unreachable nat entries ");
if (nr_unref_nid == 0x0) {
printf(" [Ok..] [0x%x]\n", nr_unref_nid);
} else {
printf(" [Fail] [0x%x]\n", nr_unref_nid);
ret = EXIT_ERR_CODE;
}
printf("[FSCK] SIT valid block bitmap checking ");
if (memcmp(fsck->sit_area_bitmap, fsck->main_area_bitmap, fsck->sit_area_bitmap_sz) == 0x0) {
printf("[Ok..]\n");
} else {
printf("[Fail]\n");
ret = EXIT_ERR_CODE;
}
printf("[FSCK] Hard link checking for regular file ");
if (fsck->hard_link_list_head == NULL) {
printf(" [Ok..] [0x%x]\n", fsck->chk.multi_hard_link_files);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.multi_hard_link_files);
ret = EXIT_ERR_CODE;
}
printf("[FSCK] valid_block_count matching with CP ");
if (sbi->total_valid_block_count == fsck->chk.valid_blk_cnt) {
printf(" [Ok..] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
} else {
printf(" [Fail] [0x%x]\n", (u32)fsck->chk.valid_blk_cnt);
ret = EXIT_ERR_CODE;
}
printf("[FSCK] valid_node_count matcing with CP (de lookup) ");
if (sbi->total_valid_node_count == fsck->chk.valid_node_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_node_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_node_cnt);
ret = EXIT_ERR_CODE;
}
printf("[FSCK] valid_node_count matcing with CP (nat lookup) ");
if (sbi->total_valid_node_count == fsck->chk.valid_nat_entry_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_nat_entry_cnt);
ret = EXIT_ERR_CODE;
}
printf("[FSCK] valid_inode_count matched with CP ");
if (sbi->total_valid_inode_count == fsck->chk.valid_inode_cnt) {
printf(" [Ok..] [0x%x]\n", fsck->chk.valid_inode_cnt);
} else {
printf(" [Fail] [0x%x]\n", fsck->chk.valid_inode_cnt);
ret = EXIT_ERR_CODE;
}
return ret;
}
void fsck_free(struct f2fs_sb_info *sbi)
{
struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
if (fsck->main_area_bitmap)
free(fsck->main_area_bitmap);
if (fsck->nat_area_bitmap)
free(fsck->nat_area_bitmap);
if (fsck->sit_area_bitmap)
free(fsck->sit_area_bitmap);
if (tree_mark)
free(tree_mark);
}