//===-- tsan_interface_atomic.cc ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
// ThreadSanitizer atomic operations are based on C++11/C1x standards.
// For background see C++11 standard. A slightly older, publicly
// available draft of the standard (not entirely up-to-date, but close enough
// for casual browsing) is available here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
// The following page contains more background information:
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "tsan_flags.h"
#include "tsan_rtl.h"
using namespace __tsan; // NOLINT
#define SCOPED_ATOMIC(func, ...) \
const uptr callpc = (uptr)__builtin_return_address(0); \
uptr pc = __sanitizer::StackTrace::GetCurrentPc(); \
mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
ThreadState *const thr = cur_thread(); \
if (thr->ignore_interceptors) \
return NoTsanAtomic##func(__VA_ARGS__); \
AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
ScopedAtomic sa(thr, callpc, a, mo, __func__); \
return Atomic##func(thr, pc, __VA_ARGS__); \
/**/
// These should match declarations from public tsan_interface_atomic.h header.
typedef unsigned char a8;
typedef unsigned short a16; // NOLINT
typedef unsigned int a32;
typedef unsigned long long a64; // NOLINT
#if defined(__SIZEOF_INT128__) \
|| (__clang_major__ * 100 + __clang_minor__ >= 302)
__extension__ typedef __int128 a128;
# define __TSAN_HAS_INT128 1
#else
# define __TSAN_HAS_INT128 0
#endif
// Protects emulation of 128-bit atomic operations.
static StaticSpinMutex mutex128;
// Part of ABI, do not change.
// http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup
typedef enum {
mo_relaxed,
mo_consume,
mo_acquire,
mo_release,
mo_acq_rel,
mo_seq_cst
} morder;
class ScopedAtomic {
public:
ScopedAtomic(ThreadState *thr, uptr pc, const volatile void *a,
morder mo, const char *func)
: thr_(thr) {
FuncEntry(thr_, pc);
DPrintf("#%d: %s(%p, %d)\n", thr_->tid, func, a, mo);
}
~ScopedAtomic() {
ProcessPendingSignals(thr_);
FuncExit(thr_);
}
private:
ThreadState *thr_;
};
static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
StatInc(thr, StatAtomic);
StatInc(thr, t);
StatInc(thr, size == 1 ? StatAtomic1
: size == 2 ? StatAtomic2
: size == 4 ? StatAtomic4
: size == 8 ? StatAtomic8
: StatAtomic16);
StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
: mo == mo_consume ? StatAtomicConsume
: mo == mo_acquire ? StatAtomicAcquire
: mo == mo_release ? StatAtomicRelease
: mo == mo_acq_rel ? StatAtomicAcq_Rel
: StatAtomicSeq_Cst);
}
static bool IsLoadOrder(morder mo) {
return mo == mo_relaxed || mo == mo_consume
|| mo == mo_acquire || mo == mo_seq_cst;
}
static bool IsStoreOrder(morder mo) {
return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
}
static bool IsReleaseOrder(morder mo) {
return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
}
static bool IsAcquireOrder(morder mo) {
return mo == mo_consume || mo == mo_acquire
|| mo == mo_acq_rel || mo == mo_seq_cst;
}
static bool IsAcqRelOrder(morder mo) {
return mo == mo_acq_rel || mo == mo_seq_cst;
}
template<typename T> T func_xchg(volatile T *v, T op) {
T res = __sync_lock_test_and_set(v, op);
// __sync_lock_test_and_set does not contain full barrier.
__sync_synchronize();
return res;
}
template<typename T> T func_add(volatile T *v, T op) {
return __sync_fetch_and_add(v, op);
}
template<typename T> T func_sub(volatile T *v, T op) {
return __sync_fetch_and_sub(v, op);
}
template<typename T> T func_and(volatile T *v, T op) {
return __sync_fetch_and_and(v, op);
}
template<typename T> T func_or(volatile T *v, T op) {
return __sync_fetch_and_or(v, op);
}
template<typename T> T func_xor(volatile T *v, T op) {
return __sync_fetch_and_xor(v, op);
}
template<typename T> T func_nand(volatile T *v, T op) {
// clang does not support __sync_fetch_and_nand.
T cmp = *v;
for (;;) {
T newv = ~(cmp & op);
T cur = __sync_val_compare_and_swap(v, cmp, newv);
if (cmp == cur)
return cmp;
cmp = cur;
}
}
template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
return __sync_val_compare_and_swap(v, cmp, xch);
}
// clang does not support 128-bit atomic ops.
// Atomic ops are executed under tsan internal mutex,
// here we assume that the atomic variables are not accessed
// from non-instrumented code.
#ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16
a128 func_xchg(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = op;
return cmp;
}
a128 func_add(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = cmp + op;
return cmp;
}
a128 func_sub(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = cmp - op;
return cmp;
}
a128 func_and(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = cmp & op;
return cmp;
}
a128 func_or(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = cmp | op;
return cmp;
}
a128 func_xor(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = cmp ^ op;
return cmp;
}
a128 func_nand(volatile a128 *v, a128 op) {
SpinMutexLock lock(&mutex128);
a128 cmp = *v;
*v = ~(cmp & op);
return cmp;
}
a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
SpinMutexLock lock(&mutex128);
a128 cur = *v;
if (cur == cmp)
*v = xch;
return cur;
}
#endif
template<typename T>
static int SizeLog() {
if (sizeof(T) <= 1)
return kSizeLog1;
else if (sizeof(T) <= 2)
return kSizeLog2;
else if (sizeof(T) <= 4)
return kSizeLog4;
else
return kSizeLog8;
// For 16-byte atomics we also use 8-byte memory access,
// this leads to false negatives only in very obscure cases.
}
static atomic_uint8_t *to_atomic(const volatile a8 *a) {
return (atomic_uint8_t*)a;
}
static atomic_uint16_t *to_atomic(const volatile a16 *a) {
return (atomic_uint16_t*)a;
}
static atomic_uint32_t *to_atomic(const volatile a32 *a) {
return (atomic_uint32_t*)a;
}
static atomic_uint64_t *to_atomic(const volatile a64 *a) {
return (atomic_uint64_t*)a;
}
static memory_order to_mo(morder mo) {
switch (mo) {
case mo_relaxed: return memory_order_relaxed;
case mo_consume: return memory_order_consume;
case mo_acquire: return memory_order_acquire;
case mo_release: return memory_order_release;
case mo_acq_rel: return memory_order_acq_rel;
case mo_seq_cst: return memory_order_seq_cst;
}
CHECK(0);
return memory_order_seq_cst;
}
template<typename T>
static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
return atomic_load(to_atomic(a), to_mo(mo));
}
#if __TSAN_HAS_INT128
static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
SpinMutexLock lock(&mutex128);
return *a;
}
#endif
template<typename T>
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
morder mo) {
CHECK(IsLoadOrder(mo));
// This fast-path is critical for performance.
// Assume the access is atomic.
if (!IsAcquireOrder(mo)) {
MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
return NoTsanAtomicLoad(a, mo);
}
SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, false);
AcquireImpl(thr, pc, &s->clock);
T v = NoTsanAtomicLoad(a, mo);
s->mtx.ReadUnlock();
MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>());
return v;
}
template<typename T>
static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
atomic_store(to_atomic(a), v, to_mo(mo));
}
#if __TSAN_HAS_INT128
static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
SpinMutexLock lock(&mutex128);
*a = v;
}
#endif
template<typename T>
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
CHECK(IsStoreOrder(mo));
MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
// This fast-path is critical for performance.
// Assume the access is atomic.
// Strictly saying even relaxed store cuts off release sequence,
// so must reset the clock.
if (!IsReleaseOrder(mo)) {
NoTsanAtomicStore(a, v, mo);
return;
}
__sync_synchronize();
SyncVar *s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
ReleaseImpl(thr, pc, &s->clock);
NoTsanAtomicStore(a, v, mo);
s->mtx.Unlock();
}
template<typename T, T (*F)(volatile T *v, T op)>
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
SyncVar *s = 0;
if (mo != mo_relaxed) {
s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, true);
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
if (IsAcqRelOrder(mo))
AcquireReleaseImpl(thr, pc, &s->clock);
else if (IsReleaseOrder(mo))
ReleaseImpl(thr, pc, &s->clock);
else if (IsAcquireOrder(mo))
AcquireImpl(thr, pc, &s->clock);
}
v = F(a, v);
if (s)
s->mtx.Unlock();
return v;
}
template<typename T>
static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
return func_xchg(a, v);
}
template<typename T>
static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
return func_add(a, v);
}
template<typename T>
static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
return func_sub(a, v);
}
template<typename T>
static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
return func_and(a, v);
}
template<typename T>
static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
return func_or(a, v);
}
template<typename T>
static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
return func_xor(a, v);
}
template<typename T>
static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
return func_nand(a, v);
}
template<typename T>
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
}
template<typename T>
static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
}
#if __TSAN_HAS_INT128
static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
morder mo, morder fmo) {
a128 old = *c;
a128 cur = func_cas(a, old, v);
if (cur == old)
return true;
*c = cur;
return false;
}
#endif
template<typename T>
static bool NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
return NoTsanAtomicCAS(a, &c, v, mo, fmo);
}
template<typename T>
static bool AtomicCAS(ThreadState *thr, uptr pc,
volatile T *a, T *c, T v, morder mo, morder fmo) {
(void)fmo; // Unused because llvm does not pass it yet.
MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>());
SyncVar *s = 0;
bool write_lock = mo != mo_acquire && mo != mo_consume;
if (mo != mo_relaxed) {
s = ctx->metamap.GetOrCreateAndLock(thr, pc, (uptr)a, write_lock);
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
if (IsAcqRelOrder(mo))
AcquireReleaseImpl(thr, pc, &s->clock);
else if (IsReleaseOrder(mo))
ReleaseImpl(thr, pc, &s->clock);
else if (IsAcquireOrder(mo))
AcquireImpl(thr, pc, &s->clock);
}
T cc = *c;
T pr = func_cas(a, cc, v);
if (s) {
if (write_lock)
s->mtx.Unlock();
else
s->mtx.ReadUnlock();
}
if (pr == cc)
return true;
*c = pr;
return false;
}
template<typename T>
static T AtomicCAS(ThreadState *thr, uptr pc,
volatile T *a, T c, T v, morder mo, morder fmo) {
AtomicCAS(thr, pc, a, &c, v, mo, fmo);
return c;
}
static void NoTsanAtomicFence(morder mo) {
__sync_synchronize();
}
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
// FIXME(dvyukov): not implemented.
__sync_synchronize();
}
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
SANITIZER_INTERFACE_ATTRIBUTE
a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
SANITIZER_INTERFACE_ATTRIBUTE
a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic_thread_fence(morder mo) {
char* a = 0;
SCOPED_ATOMIC(Fence, mo);
}
SANITIZER_INTERFACE_ATTRIBUTE
void __tsan_atomic_signal_fence(morder mo) {
}
} // extern "C"