HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Lollipop
|
5.0.1_r1
下载
查看原文件
收藏
根目录
external
clang
lib
Serialization
ASTReader.cpp
//===--- ASTReader.cpp - AST File Reader ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ASTReader class, which reads AST files. // //===----------------------------------------------------------------------===// #include "clang/Serialization/ASTReader.h" #include "ASTCommon.h" #include "ASTReaderInternals.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLocVisitor.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/SourceManagerInternals.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "clang/Basic/Version.h" #include "clang/Basic/VersionTuple.h" #include "clang/Frontend/Utils.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/Scope.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTDeserializationListener.h" #include "clang/Serialization/GlobalModuleIndex.h" #include "clang/Serialization/ModuleManager.h" #include "clang/Serialization/SerializationDiagnostic.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include
#include
#include
#include
using namespace clang; using namespace clang::serialization; using namespace clang::serialization::reader; using llvm::BitstreamCursor; //===----------------------------------------------------------------------===// // ChainedASTReaderListener implementation //===----------------------------------------------------------------------===// bool ChainedASTReaderListener::ReadFullVersionInformation(StringRef FullVersion) { return First->ReadFullVersionInformation(FullVersion) || Second->ReadFullVersionInformation(FullVersion); } void ChainedASTReaderListener::ReadModuleName(StringRef ModuleName) { First->ReadModuleName(ModuleName); Second->ReadModuleName(ModuleName); } void ChainedASTReaderListener::ReadModuleMapFile(StringRef ModuleMapPath) { First->ReadModuleMapFile(ModuleMapPath); Second->ReadModuleMapFile(ModuleMapPath); } bool ChainedASTReaderListener::ReadLanguageOptions(const LangOptions &LangOpts, bool Complain) { return First->ReadLanguageOptions(LangOpts, Complain) || Second->ReadLanguageOptions(LangOpts, Complain); } bool ChainedASTReaderListener::ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain) { return First->ReadTargetOptions(TargetOpts, Complain) || Second->ReadTargetOptions(TargetOpts, Complain); } bool ChainedASTReaderListener::ReadDiagnosticOptions( IntrusiveRefCntPtr
DiagOpts, bool Complain) { return First->ReadDiagnosticOptions(DiagOpts, Complain) || Second->ReadDiagnosticOptions(DiagOpts, Complain); } bool ChainedASTReaderListener::ReadFileSystemOptions(const FileSystemOptions &FSOpts, bool Complain) { return First->ReadFileSystemOptions(FSOpts, Complain) || Second->ReadFileSystemOptions(FSOpts, Complain); } bool ChainedASTReaderListener::ReadHeaderSearchOptions( const HeaderSearchOptions &HSOpts, bool Complain) { return First->ReadHeaderSearchOptions(HSOpts, Complain) || Second->ReadHeaderSearchOptions(HSOpts, Complain); } bool ChainedASTReaderListener::ReadPreprocessorOptions( const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) { return First->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines) || Second->ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines); } void ChainedASTReaderListener::ReadCounter(const serialization::ModuleFile &M, unsigned Value) { First->ReadCounter(M, Value); Second->ReadCounter(M, Value); } bool ChainedASTReaderListener::needsInputFileVisitation() { return First->needsInputFileVisitation() || Second->needsInputFileVisitation(); } bool ChainedASTReaderListener::needsSystemInputFileVisitation() { return First->needsSystemInputFileVisitation() || Second->needsSystemInputFileVisitation(); } void ChainedASTReaderListener::visitModuleFile(StringRef Filename) { First->visitModuleFile(Filename); Second->visitModuleFile(Filename); } bool ChainedASTReaderListener::visitInputFile(StringRef Filename, bool isSystem, bool isOverridden) { bool Continue = false; if (First->needsInputFileVisitation() && (!isSystem || First->needsSystemInputFileVisitation())) Continue |= First->visitInputFile(Filename, isSystem, isOverridden); if (Second->needsInputFileVisitation() && (!isSystem || Second->needsSystemInputFileVisitation())) Continue |= Second->visitInputFile(Filename, isSystem, isOverridden); return Continue; } //===----------------------------------------------------------------------===// // PCH validator implementation //===----------------------------------------------------------------------===// ASTReaderListener::~ASTReaderListener() {} /// \brief Compare the given set of language options against an existing set of /// language options. /// /// \param Diags If non-NULL, diagnostics will be emitted via this engine. /// /// \returns true if the languagae options mis-match, false otherwise. static bool checkLanguageOptions(const LangOptions &LangOpts, const LangOptions &ExistingLangOpts, DiagnosticsEngine *Diags) { #define LANGOPT(Name, Bits, Default, Description) \ if (ExistingLangOpts.Name != LangOpts.Name) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_mismatch) \ << Description << LangOpts.Name << ExistingLangOpts.Name; \ return true; \ } #define VALUE_LANGOPT(Name, Bits, Default, Description) \ if (ExistingLangOpts.Name != LangOpts.Name) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ if (ExistingLangOpts.get##Name() != LangOpts.get##Name()) { \ if (Diags) \ Diags->Report(diag::err_pch_langopt_value_mismatch) \ << Description; \ return true; \ } #define BENIGN_LANGOPT(Name, Bits, Default, Description) #define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description) #include "clang/Basic/LangOptions.def" if (ExistingLangOpts.ObjCRuntime != LangOpts.ObjCRuntime) { if (Diags) Diags->Report(diag::err_pch_langopt_value_mismatch) << "target Objective-C runtime"; return true; } if (ExistingLangOpts.CommentOpts.BlockCommandNames != LangOpts.CommentOpts.BlockCommandNames) { if (Diags) Diags->Report(diag::err_pch_langopt_value_mismatch) << "block command names"; return true; } return false; } /// \brief Compare the given set of target options against an existing set of /// target options. /// /// \param Diags If non-NULL, diagnostics will be emitted via this engine. /// /// \returns true if the target options mis-match, false otherwise. static bool checkTargetOptions(const TargetOptions &TargetOpts, const TargetOptions &ExistingTargetOpts, DiagnosticsEngine *Diags) { #define CHECK_TARGET_OPT(Field, Name) \ if (TargetOpts.Field != ExistingTargetOpts.Field) { \ if (Diags) \ Diags->Report(diag::err_pch_targetopt_mismatch) \ << Name << TargetOpts.Field << ExistingTargetOpts.Field; \ return true; \ } CHECK_TARGET_OPT(Triple, "target"); CHECK_TARGET_OPT(CPU, "target CPU"); CHECK_TARGET_OPT(ABI, "target ABI"); #undef CHECK_TARGET_OPT // Compare feature sets. SmallVector
ExistingFeatures( ExistingTargetOpts.FeaturesAsWritten.begin(), ExistingTargetOpts.FeaturesAsWritten.end()); SmallVector
ReadFeatures(TargetOpts.FeaturesAsWritten.begin(), TargetOpts.FeaturesAsWritten.end()); std::sort(ExistingFeatures.begin(), ExistingFeatures.end()); std::sort(ReadFeatures.begin(), ReadFeatures.end()); unsigned ExistingIdx = 0, ExistingN = ExistingFeatures.size(); unsigned ReadIdx = 0, ReadN = ReadFeatures.size(); while (ExistingIdx < ExistingN && ReadIdx < ReadN) { if (ExistingFeatures[ExistingIdx] == ReadFeatures[ReadIdx]) { ++ExistingIdx; ++ReadIdx; continue; } if (ReadFeatures[ReadIdx] < ExistingFeatures[ExistingIdx]) { if (Diags) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << false << ReadFeatures[ReadIdx]; return true; } if (Diags) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << true << ExistingFeatures[ExistingIdx]; return true; } if (ExistingIdx < ExistingN) { if (Diags) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << true << ExistingFeatures[ExistingIdx]; return true; } if (ReadIdx < ReadN) { if (Diags) Diags->Report(diag::err_pch_targetopt_feature_mismatch) << false << ReadFeatures[ReadIdx]; return true; } return false; } bool PCHValidator::ReadLanguageOptions(const LangOptions &LangOpts, bool Complain) { const LangOptions &ExistingLangOpts = PP.getLangOpts(); return checkLanguageOptions(LangOpts, ExistingLangOpts, Complain? &Reader.Diags : nullptr); } bool PCHValidator::ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain) { const TargetOptions &ExistingTargetOpts = PP.getTargetInfo().getTargetOpts(); return checkTargetOptions(TargetOpts, ExistingTargetOpts, Complain? &Reader.Diags : nullptr); } namespace { typedef llvm::StringMap
> MacroDefinitionsMap; typedef llvm::DenseMap
> DeclsMap; } static bool checkDiagnosticGroupMappings(DiagnosticsEngine &StoredDiags, DiagnosticsEngine &Diags, bool Complain) { typedef DiagnosticsEngine::Level Level; // Check current mappings for new -Werror mappings, and the stored mappings // for cases that were explicitly mapped to *not* be errors that are now // errors because of options like -Werror. DiagnosticsEngine *MappingSources[] = { &Diags, &StoredDiags }; for (DiagnosticsEngine *MappingSource : MappingSources) { for (auto DiagIDMappingPair : MappingSource->getDiagnosticMappings()) { diag::kind DiagID = DiagIDMappingPair.first; Level CurLevel = Diags.getDiagnosticLevel(DiagID, SourceLocation()); if (CurLevel < DiagnosticsEngine::Error) continue; // not significant Level StoredLevel = StoredDiags.getDiagnosticLevel(DiagID, SourceLocation()); if (StoredLevel < DiagnosticsEngine::Error) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror=" + Diags.getDiagnosticIDs()->getWarningOptionForDiag(DiagID).str(); return true; } } } return false; } static bool isExtHandlingFromDiagsError(DiagnosticsEngine &Diags) { diag::Severity Ext = Diags.getExtensionHandlingBehavior(); if (Ext == diag::Severity::Warning && Diags.getWarningsAsErrors()) return true; return Ext >= diag::Severity::Error; } static bool checkDiagnosticMappings(DiagnosticsEngine &StoredDiags, DiagnosticsEngine &Diags, bool IsSystem, bool Complain) { // Top-level options if (IsSystem) { if (Diags.getSuppressSystemWarnings()) return false; // If -Wsystem-headers was not enabled before, be conservative if (StoredDiags.getSuppressSystemWarnings()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Wsystem-headers"; return true; } } if (Diags.getWarningsAsErrors() && !StoredDiags.getWarningsAsErrors()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Werror"; return true; } if (Diags.getWarningsAsErrors() && Diags.getEnableAllWarnings() && !StoredDiags.getEnableAllWarnings()) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-Weverything -Werror"; return true; } if (isExtHandlingFromDiagsError(Diags) && !isExtHandlingFromDiagsError(StoredDiags)) { if (Complain) Diags.Report(diag::err_pch_diagopt_mismatch) << "-pedantic-errors"; return true; } return checkDiagnosticGroupMappings(StoredDiags, Diags, Complain); } bool PCHValidator::ReadDiagnosticOptions( IntrusiveRefCntPtr
DiagOpts, bool Complain) { DiagnosticsEngine &ExistingDiags = PP.getDiagnostics(); IntrusiveRefCntPtr
DiagIDs(ExistingDiags.getDiagnosticIDs()); IntrusiveRefCntPtr
Diags( new DiagnosticsEngine(DiagIDs, DiagOpts.get())); // This should never fail, because we would have processed these options // before writing them to an ASTFile. ProcessWarningOptions(*Diags, *DiagOpts, /*Report*/false); ModuleManager &ModuleMgr = Reader.getModuleManager(); assert(ModuleMgr.size() >= 1 && "what ASTFile is this then"); // If the original import came from a file explicitly generated by the user, // don't check the diagnostic mappings. // FIXME: currently this is approximated by checking whether this is not a // module import. // Note: ModuleMgr.rbegin() may not be the current module, but it must be in // the transitive closure of its imports, since unrelated modules cannot be // imported until after this module finishes validation. ModuleFile *TopImport = *ModuleMgr.rbegin(); while (!TopImport->ImportedBy.empty()) TopImport = TopImport->ImportedBy[0]; if (TopImport->Kind != MK_Module) return false; StringRef ModuleName = TopImport->ModuleName; assert(!ModuleName.empty() && "diagnostic options read before module name"); Module *M = PP.getHeaderSearchInfo().lookupModule(ModuleName); assert(M && "missing module"); // FIXME: if the diagnostics are incompatible, save a DiagnosticOptions that // contains the union of their flags. return checkDiagnosticMappings(*Diags, ExistingDiags, M->IsSystem, Complain); } /// \brief Collect the macro definitions provided by the given preprocessor /// options. static void collectMacroDefinitions(const PreprocessorOptions &PPOpts, MacroDefinitionsMap &Macros, SmallVectorImpl
*MacroNames = nullptr) { for (unsigned I = 0, N = PPOpts.Macros.size(); I != N; ++I) { StringRef Macro = PPOpts.Macros[I].first; bool IsUndef = PPOpts.Macros[I].second; std::pair
MacroPair = Macro.split('='); StringRef MacroName = MacroPair.first; StringRef MacroBody = MacroPair.second; // For an #undef'd macro, we only care about the name. if (IsUndef) { if (MacroNames && !Macros.count(MacroName)) MacroNames->push_back(MacroName); Macros[MacroName] = std::make_pair("", true); continue; } // For a #define'd macro, figure out the actual definition. if (MacroName.size() == Macro.size()) MacroBody = "1"; else { // Note: GCC drops anything following an end-of-line character. StringRef::size_type End = MacroBody.find_first_of("\n\r"); MacroBody = MacroBody.substr(0, End); } if (MacroNames && !Macros.count(MacroName)) MacroNames->push_back(MacroName); Macros[MacroName] = std::make_pair(MacroBody, false); } } /// \brief Check the preprocessor options deserialized from the control block /// against the preprocessor options in an existing preprocessor. /// /// \param Diags If non-null, produce diagnostics for any mismatches incurred. static bool checkPreprocessorOptions(const PreprocessorOptions &PPOpts, const PreprocessorOptions &ExistingPPOpts, DiagnosticsEngine *Diags, FileManager &FileMgr, std::string &SuggestedPredefines, const LangOptions &LangOpts) { // Check macro definitions. MacroDefinitionsMap ASTFileMacros; collectMacroDefinitions(PPOpts, ASTFileMacros); MacroDefinitionsMap ExistingMacros; SmallVector
ExistingMacroNames; collectMacroDefinitions(ExistingPPOpts, ExistingMacros, &ExistingMacroNames); for (unsigned I = 0, N = ExistingMacroNames.size(); I != N; ++I) { // Dig out the macro definition in the existing preprocessor options. StringRef MacroName = ExistingMacroNames[I]; std::pair
Existing = ExistingMacros[MacroName]; // Check whether we know anything about this macro name or not. llvm::StringMap
>::iterator Known = ASTFileMacros.find(MacroName); if (Known == ASTFileMacros.end()) { // FIXME: Check whether this identifier was referenced anywhere in the // AST file. If so, we should reject the AST file. Unfortunately, this // information isn't in the control block. What shall we do about it? if (Existing.second) { SuggestedPredefines += "#undef "; SuggestedPredefines += MacroName.str(); SuggestedPredefines += '\n'; } else { SuggestedPredefines += "#define "; SuggestedPredefines += MacroName.str(); SuggestedPredefines += ' '; SuggestedPredefines += Existing.first.str(); SuggestedPredefines += '\n'; } continue; } // If the macro was defined in one but undef'd in the other, we have a // conflict. if (Existing.second != Known->second.second) { if (Diags) { Diags->Report(diag::err_pch_macro_def_undef) << MacroName << Known->second.second; } return true; } // If the macro was #undef'd in both, or if the macro bodies are identical, // it's fine. if (Existing.second || Existing.first == Known->second.first) continue; // The macro bodies differ; complain. if (Diags) { Diags->Report(diag::err_pch_macro_def_conflict) << MacroName << Known->second.first << Existing.first; } return true; } // Check whether we're using predefines. if (PPOpts.UsePredefines != ExistingPPOpts.UsePredefines) { if (Diags) { Diags->Report(diag::err_pch_undef) << ExistingPPOpts.UsePredefines; } return true; } // Detailed record is important since it is used for the module cache hash. if (LangOpts.Modules && PPOpts.DetailedRecord != ExistingPPOpts.DetailedRecord) { if (Diags) { Diags->Report(diag::err_pch_pp_detailed_record) << PPOpts.DetailedRecord; } return true; } // Compute the #include and #include_macros lines we need. for (unsigned I = 0, N = ExistingPPOpts.Includes.size(); I != N; ++I) { StringRef File = ExistingPPOpts.Includes[I]; if (File == ExistingPPOpts.ImplicitPCHInclude) continue; if (std::find(PPOpts.Includes.begin(), PPOpts.Includes.end(), File) != PPOpts.Includes.end()) continue; SuggestedPredefines += "#include \""; SuggestedPredefines += HeaderSearch::NormalizeDashIncludePath(File, FileMgr); SuggestedPredefines += "\"\n"; } for (unsigned I = 0, N = ExistingPPOpts.MacroIncludes.size(); I != N; ++I) { StringRef File = ExistingPPOpts.MacroIncludes[I]; if (std::find(PPOpts.MacroIncludes.begin(), PPOpts.MacroIncludes.end(), File) != PPOpts.MacroIncludes.end()) continue; SuggestedPredefines += "#__include_macros \""; SuggestedPredefines += HeaderSearch::NormalizeDashIncludePath(File, FileMgr); SuggestedPredefines += "\"\n##\n"; } return false; } bool PCHValidator::ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) { const PreprocessorOptions &ExistingPPOpts = PP.getPreprocessorOpts(); return checkPreprocessorOptions(PPOpts, ExistingPPOpts, Complain? &Reader.Diags : nullptr, PP.getFileManager(), SuggestedPredefines, PP.getLangOpts()); } void PCHValidator::ReadCounter(const ModuleFile &M, unsigned Value) { PP.setCounterValue(Value); } //===----------------------------------------------------------------------===// // AST reader implementation //===----------------------------------------------------------------------===// void ASTReader::setDeserializationListener(ASTDeserializationListener *Listener, bool TakeOwnership) { DeserializationListener = Listener; OwnsDeserializationListener = TakeOwnership; } unsigned ASTSelectorLookupTrait::ComputeHash(Selector Sel) { return serialization::ComputeHash(Sel); } std::pair
ASTSelectorLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned KeyLen = endian::readNext
(d); unsigned DataLen = endian::readNext
(d); return std::make_pair(KeyLen, DataLen); } ASTSelectorLookupTrait::internal_key_type ASTSelectorLookupTrait::ReadKey(const unsigned char* d, unsigned) { using namespace llvm::support; SelectorTable &SelTable = Reader.getContext().Selectors; unsigned N = endian::readNext
(d); IdentifierInfo *FirstII = Reader.getLocalIdentifier( F, endian::readNext
(d)); if (N == 0) return SelTable.getNullarySelector(FirstII); else if (N == 1) return SelTable.getUnarySelector(FirstII); SmallVector
Args; Args.push_back(FirstII); for (unsigned I = 1; I != N; ++I) Args.push_back(Reader.getLocalIdentifier( F, endian::readNext
(d))); return SelTable.getSelector(N, Args.data()); } ASTSelectorLookupTrait::data_type ASTSelectorLookupTrait::ReadData(Selector, const unsigned char* d, unsigned DataLen) { using namespace llvm::support; data_type Result; Result.ID = Reader.getGlobalSelectorID( F, endian::readNext
(d)); unsigned NumInstanceMethodsAndBits = endian::readNext
(d); unsigned NumFactoryMethodsAndBits = endian::readNext
(d); Result.InstanceBits = NumInstanceMethodsAndBits & 0x3; Result.FactoryBits = NumFactoryMethodsAndBits & 0x3; unsigned NumInstanceMethods = NumInstanceMethodsAndBits >> 2; unsigned NumFactoryMethods = NumFactoryMethodsAndBits >> 2; // Load instance methods for (unsigned I = 0; I != NumInstanceMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs
( F, endian::readNext
(d))) Result.Instance.push_back(Method); } // Load factory methods for (unsigned I = 0; I != NumFactoryMethods; ++I) { if (ObjCMethodDecl *Method = Reader.GetLocalDeclAs
( F, endian::readNext
(d))) Result.Factory.push_back(Method); } return Result; } unsigned ASTIdentifierLookupTraitBase::ComputeHash(const internal_key_type& a) { return llvm::HashString(a); } std::pair
ASTIdentifierLookupTraitBase::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned DataLen = endian::readNext
(d); unsigned KeyLen = endian::readNext
(d); return std::make_pair(KeyLen, DataLen); } ASTIdentifierLookupTraitBase::internal_key_type ASTIdentifierLookupTraitBase::ReadKey(const unsigned char* d, unsigned n) { assert(n >= 2 && d[n-1] == '\0'); return StringRef((const char*) d, n-1); } /// \brief Whether the given identifier is "interesting". static bool isInterestingIdentifier(IdentifierInfo &II) { return II.isPoisoned() || II.isExtensionToken() || II.getObjCOrBuiltinID() || II.hasRevertedTokenIDToIdentifier() || II.hadMacroDefinition() || II.getFETokenInfo
(); } IdentifierInfo *ASTIdentifierLookupTrait::ReadData(const internal_key_type& k, const unsigned char* d, unsigned DataLen) { using namespace llvm::support; unsigned RawID = endian::readNext
(d); bool IsInteresting = RawID & 0x01; // Wipe out the "is interesting" bit. RawID = RawID >> 1; IdentID ID = Reader.getGlobalIdentifierID(F, RawID); if (!IsInteresting) { // For uninteresting identifiers, just build the IdentifierInfo // and associate it with the persistent ID. IdentifierInfo *II = KnownII; if (!II) { II = &Reader.getIdentifierTable().getOwn(k); KnownII = II; } Reader.SetIdentifierInfo(ID, II); if (!II->isFromAST()) { bool WasInteresting = isInterestingIdentifier(*II); II->setIsFromAST(); if (WasInteresting) II->setChangedSinceDeserialization(); } Reader.markIdentifierUpToDate(II); return II; } unsigned ObjCOrBuiltinID = endian::readNext
(d); unsigned Bits = endian::readNext
(d); bool CPlusPlusOperatorKeyword = Bits & 0x01; Bits >>= 1; bool HasRevertedTokenIDToIdentifier = Bits & 0x01; Bits >>= 1; bool Poisoned = Bits & 0x01; Bits >>= 1; bool ExtensionToken = Bits & 0x01; Bits >>= 1; bool hasSubmoduleMacros = Bits & 0x01; Bits >>= 1; bool hadMacroDefinition = Bits & 0x01; Bits >>= 1; assert(Bits == 0 && "Extra bits in the identifier?"); DataLen -= 8; // Build the IdentifierInfo itself and link the identifier ID with // the new IdentifierInfo. IdentifierInfo *II = KnownII; if (!II) { II = &Reader.getIdentifierTable().getOwn(StringRef(k)); KnownII = II; } Reader.markIdentifierUpToDate(II); if (!II->isFromAST()) { bool WasInteresting = isInterestingIdentifier(*II); II->setIsFromAST(); if (WasInteresting) II->setChangedSinceDeserialization(); } // Set or check the various bits in the IdentifierInfo structure. // Token IDs are read-only. if (HasRevertedTokenIDToIdentifier && II->getTokenID() != tok::identifier) II->RevertTokenIDToIdentifier(); II->setObjCOrBuiltinID(ObjCOrBuiltinID); assert(II->isExtensionToken() == ExtensionToken && "Incorrect extension token flag"); (void)ExtensionToken; if (Poisoned) II->setIsPoisoned(true); assert(II->isCPlusPlusOperatorKeyword() == CPlusPlusOperatorKeyword && "Incorrect C++ operator keyword flag"); (void)CPlusPlusOperatorKeyword; // If this identifier is a macro, deserialize the macro // definition. if (hadMacroDefinition) { uint32_t MacroDirectivesOffset = endian::readNext
(d); DataLen -= 4; SmallVector
LocalMacroIDs; if (hasSubmoduleMacros) { while (uint32_t LocalMacroID = endian::readNext
(d)) { DataLen -= 4; LocalMacroIDs.push_back(LocalMacroID); } DataLen -= 4; } if (F.Kind == MK_Module) { // Macro definitions are stored from newest to oldest, so reverse them // before registering them. llvm::SmallVector
MacroSizes; for (SmallVectorImpl
::iterator I = LocalMacroIDs.begin(), E = LocalMacroIDs.end(); I != E; /**/) { unsigned Size = 1; static const uint32_t HasOverridesFlag = 0x80000000U; if (I + 1 != E && (I[1] & HasOverridesFlag)) Size += 1 + (I[1] & ~HasOverridesFlag); MacroSizes.push_back(Size); I += Size; } SmallVectorImpl
::iterator I = LocalMacroIDs.end(); for (SmallVectorImpl
::reverse_iterator SI = MacroSizes.rbegin(), SE = MacroSizes.rend(); SI != SE; ++SI) { I -= *SI; uint32_t LocalMacroID = *I; ArrayRef
Overrides; if (*SI != 1) Overrides = llvm::makeArrayRef(&I[2], *SI - 2); Reader.addPendingMacroFromModule(II, &F, LocalMacroID, Overrides); } assert(I == LocalMacroIDs.begin()); } else { Reader.addPendingMacroFromPCH(II, &F, MacroDirectivesOffset); } } Reader.SetIdentifierInfo(ID, II); // Read all of the declarations visible at global scope with this // name. if (DataLen > 0) { SmallVector
DeclIDs; for (; DataLen > 0; DataLen -= 4) DeclIDs.push_back(Reader.getGlobalDeclID( F, endian::readNext
(d))); Reader.SetGloballyVisibleDecls(II, DeclIDs); } return II; } unsigned ASTDeclContextNameLookupTrait::ComputeHash(const DeclNameKey &Key) const { llvm::FoldingSetNodeID ID; ID.AddInteger(Key.Kind); switch (Key.Kind) { case DeclarationName::Identifier: case DeclarationName::CXXLiteralOperatorName: ID.AddString(((IdentifierInfo*)Key.Data)->getName()); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: ID.AddInteger(serialization::ComputeHash(Selector(Key.Data))); break; case DeclarationName::CXXOperatorName: ID.AddInteger((OverloadedOperatorKind)Key.Data); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: break; } return ID.ComputeHash(); } ASTDeclContextNameLookupTrait::internal_key_type ASTDeclContextNameLookupTrait::GetInternalKey( const external_key_type& Name) const { DeclNameKey Key; Key.Kind = Name.getNameKind(); switch (Name.getNameKind()) { case DeclarationName::Identifier: Key.Data = (uint64_t)Name.getAsIdentifierInfo(); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Name.getObjCSelector().getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Key.Data = Name.getCXXOverloadedOperator(); break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Name.getCXXLiteralIdentifier(); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Key.Data = 0; break; } return Key; } std::pair
ASTDeclContextNameLookupTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned KeyLen = endian::readNext
(d); unsigned DataLen = endian::readNext
(d); return std::make_pair(KeyLen, DataLen); } ASTDeclContextNameLookupTrait::internal_key_type ASTDeclContextNameLookupTrait::ReadKey(const unsigned char* d, unsigned) { using namespace llvm::support; DeclNameKey Key; Key.Kind = (DeclarationName::NameKind)*d++; switch (Key.Kind) { case DeclarationName::Identifier: Key.Data = (uint64_t)Reader.getLocalIdentifier( F, endian::readNext
(d)); break; case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: Key.Data = (uint64_t)Reader.getLocalSelector( F, endian::readNext
( d)).getAsOpaquePtr(); break; case DeclarationName::CXXOperatorName: Key.Data = *d++; // OverloadedOperatorKind break; case DeclarationName::CXXLiteralOperatorName: Key.Data = (uint64_t)Reader.getLocalIdentifier( F, endian::readNext
(d)); break; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: case DeclarationName::CXXUsingDirective: Key.Data = 0; break; } return Key; } ASTDeclContextNameLookupTrait::data_type ASTDeclContextNameLookupTrait::ReadData(internal_key_type, const unsigned char* d, unsigned DataLen) { using namespace llvm::support; unsigned NumDecls = endian::readNext
(d); LE32DeclID *Start = reinterpret_cast
( const_cast
(d)); return std::make_pair(Start, Start + NumDecls); } bool ASTReader::ReadDeclContextStorage(ModuleFile &M, BitstreamCursor &Cursor, const std::pair
&Offsets, DeclContextInfo &Info) { SavedStreamPosition SavedPosition(Cursor); // First the lexical decls. if (Offsets.first != 0) { Cursor.JumpToBit(Offsets.first); RecordData Record; StringRef Blob; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record, &Blob); if (RecCode != DECL_CONTEXT_LEXICAL) { Error("Expected lexical block"); return true; } Info.LexicalDecls = reinterpret_cast
(Blob.data()); Info.NumLexicalDecls = Blob.size() / sizeof(KindDeclIDPair); } // Now the lookup table. if (Offsets.second != 0) { Cursor.JumpToBit(Offsets.second); RecordData Record; StringRef Blob; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record, &Blob); if (RecCode != DECL_CONTEXT_VISIBLE) { Error("Expected visible lookup table block"); return true; } Info.NameLookupTableData = ASTDeclContextNameLookupTable::Create( (const unsigned char *)Blob.data() + Record[0], (const unsigned char *)Blob.data() + sizeof(uint32_t), (const unsigned char *)Blob.data(), ASTDeclContextNameLookupTrait(*this, M)); } return false; } void ASTReader::Error(StringRef Msg) { Error(diag::err_fe_pch_malformed, Msg); if (Context.getLangOpts().Modules && !Diags.isDiagnosticInFlight()) { Diag(diag::note_module_cache_path) << PP.getHeaderSearchInfo().getModuleCachePath(); } } void ASTReader::Error(unsigned DiagID, StringRef Arg1, StringRef Arg2) { if (Diags.isDiagnosticInFlight()) Diags.SetDelayedDiagnostic(DiagID, Arg1, Arg2); else Diag(DiagID) << Arg1 << Arg2; } //===----------------------------------------------------------------------===// // Source Manager Deserialization //===----------------------------------------------------------------------===// /// \brief Read the line table in the source manager block. /// \returns true if there was an error. bool ASTReader::ParseLineTable(ModuleFile &F, SmallVectorImpl
&Record) { unsigned Idx = 0; LineTableInfo &LineTable = SourceMgr.getLineTable(); // Parse the file names std::map
FileIDs; for (int I = 0, N = Record[Idx++]; I != N; ++I) { // Extract the file name unsigned FilenameLen = Record[Idx++]; std::string Filename(&Record[Idx], &Record[Idx] + FilenameLen); Idx += FilenameLen; MaybeAddSystemRootToFilename(F, Filename); FileIDs[I] = LineTable.getLineTableFilenameID(Filename); } // Parse the line entries std::vector
Entries; while (Idx < Record.size()) { int FID = Record[Idx++]; assert(FID >= 0 && "Serialized line entries for non-local file."); // Remap FileID from 1-based old view. FID += F.SLocEntryBaseID - 1; // Extract the line entries unsigned NumEntries = Record[Idx++]; assert(NumEntries && "Numentries is 00000"); Entries.clear(); Entries.reserve(NumEntries); for (unsigned I = 0; I != NumEntries; ++I) { unsigned FileOffset = Record[Idx++]; unsigned LineNo = Record[Idx++]; int FilenameID = FileIDs[Record[Idx++]]; SrcMgr::CharacteristicKind FileKind = (SrcMgr::CharacteristicKind)Record[Idx++]; unsigned IncludeOffset = Record[Idx++]; Entries.push_back(LineEntry::get(FileOffset, LineNo, FilenameID, FileKind, IncludeOffset)); } LineTable.AddEntry(FileID::get(FID), Entries); } return false; } /// \brief Read a source manager block bool ASTReader::ReadSourceManagerBlock(ModuleFile &F) { using namespace SrcMgr; BitstreamCursor &SLocEntryCursor = F.SLocEntryCursor; // Set the source-location entry cursor to the current position in // the stream. This cursor will be used to read the contents of the // source manager block initially, and then lazily read // source-location entries as needed. SLocEntryCursor = F.Stream; // The stream itself is going to skip over the source manager block. if (F.Stream.SkipBlock()) { Error("malformed block record in AST file"); return true; } // Enter the source manager block. if (SLocEntryCursor.EnterSubBlock(SOURCE_MANAGER_BLOCK_ID)) { Error("malformed source manager block record in AST file"); return true; } RecordData Record; while (true) { llvm::BitstreamEntry E = SLocEntryCursor.advanceSkippingSubblocks(); switch (E.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return true; case llvm::BitstreamEntry::EndBlock: return false; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); StringRef Blob; switch (SLocEntryCursor.readRecord(E.ID, Record, &Blob)) { default: // Default behavior: ignore. break; case SM_SLOC_FILE_ENTRY: case SM_SLOC_BUFFER_ENTRY: case SM_SLOC_EXPANSION_ENTRY: // Once we hit one of the source location entries, we're done. return false; } } } /// \brief If a header file is not found at the path that we expect it to be /// and the PCH file was moved from its original location, try to resolve the /// file by assuming that header+PCH were moved together and the header is in /// the same place relative to the PCH. static std::string resolveFileRelativeToOriginalDir(const std::string &Filename, const std::string &OriginalDir, const std::string &CurrDir) { assert(OriginalDir != CurrDir && "No point trying to resolve the file if the PCH dir didn't change"); using namespace llvm::sys; SmallString<128> filePath(Filename); fs::make_absolute(filePath); assert(path::is_absolute(OriginalDir)); SmallString<128> currPCHPath(CurrDir); path::const_iterator fileDirI = path::begin(path::parent_path(filePath)), fileDirE = path::end(path::parent_path(filePath)); path::const_iterator origDirI = path::begin(OriginalDir), origDirE = path::end(OriginalDir); // Skip the common path components from filePath and OriginalDir. while (fileDirI != fileDirE && origDirI != origDirE && *fileDirI == *origDirI) { ++fileDirI; ++origDirI; } for (; origDirI != origDirE; ++origDirI) path::append(currPCHPath, ".."); path::append(currPCHPath, fileDirI, fileDirE); path::append(currPCHPath, path::filename(Filename)); return currPCHPath.str(); } bool ASTReader::ReadSLocEntry(int ID) { if (ID == 0) return false; if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) { Error("source location entry ID out-of-range for AST file"); return true; } ModuleFile *F = GlobalSLocEntryMap.find(-ID)->second; F->SLocEntryCursor.JumpToBit(F->SLocEntryOffsets[ID - F->SLocEntryBaseID]); BitstreamCursor &SLocEntryCursor = F->SLocEntryCursor; unsigned BaseOffset = F->SLocEntryBaseOffset; ++NumSLocEntriesRead; llvm::BitstreamEntry Entry = SLocEntryCursor.advance(); if (Entry.Kind != llvm::BitstreamEntry::Record) { Error("incorrectly-formatted source location entry in AST file"); return true; } RecordData Record; StringRef Blob; switch (SLocEntryCursor.readRecord(Entry.ID, Record, &Blob)) { default: Error("incorrectly-formatted source location entry in AST file"); return true; case SM_SLOC_FILE_ENTRY: { // We will detect whether a file changed and return 'Failure' for it, but // we will also try to fail gracefully by setting up the SLocEntry. unsigned InputID = Record[4]; InputFile IF = getInputFile(*F, InputID); const FileEntry *File = IF.getFile(); bool OverriddenBuffer = IF.isOverridden(); // Note that we only check if a File was returned. If it was out-of-date // we have complained but we will continue creating a FileID to recover // gracefully. if (!File) return true; SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]); if (IncludeLoc.isInvalid() && F->Kind != MK_MainFile) { // This is the module's main file. IncludeLoc = getImportLocation(F); } SrcMgr::CharacteristicKind FileCharacter = (SrcMgr::CharacteristicKind)Record[2]; FileID FID = SourceMgr.createFileID(File, IncludeLoc, FileCharacter, ID, BaseOffset + Record[0]); SrcMgr::FileInfo &FileInfo = const_cast
(SourceMgr.getSLocEntry(FID).getFile()); FileInfo.NumCreatedFIDs = Record[5]; if (Record[3]) FileInfo.setHasLineDirectives(); const DeclID *FirstDecl = F->FileSortedDecls + Record[6]; unsigned NumFileDecls = Record[7]; if (NumFileDecls) { assert(F->FileSortedDecls && "FILE_SORTED_DECLS not encountered yet ?"); FileDeclIDs[FID] = FileDeclsInfo(F, llvm::makeArrayRef(FirstDecl, NumFileDecls)); } const SrcMgr::ContentCache *ContentCache = SourceMgr.getOrCreateContentCache(File, /*isSystemFile=*/FileCharacter != SrcMgr::C_User); if (OverriddenBuffer && !ContentCache->BufferOverridden && ContentCache->ContentsEntry == ContentCache->OrigEntry) { unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return true; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), File->getName()); SourceMgr.overrideFileContents(File, Buffer); } break; } case SM_SLOC_BUFFER_ENTRY: { const char *Name = Blob.data(); unsigned Offset = Record[0]; SrcMgr::CharacteristicKind FileCharacter = (SrcMgr::CharacteristicKind)Record[2]; SourceLocation IncludeLoc = ReadSourceLocation(*F, Record[1]); if (IncludeLoc.isInvalid() && F->Kind == MK_Module) { IncludeLoc = getImportLocation(F); } unsigned Code = SLocEntryCursor.ReadCode(); Record.clear(); unsigned RecCode = SLocEntryCursor.readRecord(Code, Record, &Blob); if (RecCode != SM_SLOC_BUFFER_BLOB) { Error("AST record has invalid code"); return true; } llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(Blob.drop_back(1), Name); SourceMgr.createFileID(Buffer, FileCharacter, ID, BaseOffset + Offset, IncludeLoc); break; } case SM_SLOC_EXPANSION_ENTRY: { SourceLocation SpellingLoc = ReadSourceLocation(*F, Record[1]); SourceMgr.createExpansionLoc(SpellingLoc, ReadSourceLocation(*F, Record[2]), ReadSourceLocation(*F, Record[3]), Record[4], ID, BaseOffset + Record[0]); break; } } return false; } std::pair
ASTReader::getModuleImportLoc(int ID) { if (ID == 0) return std::make_pair(SourceLocation(), ""); if (unsigned(-ID) - 2 >= getTotalNumSLocs() || ID > 0) { Error("source location entry ID out-of-range for AST file"); return std::make_pair(SourceLocation(), ""); } // Find which module file this entry lands in. ModuleFile *M = GlobalSLocEntryMap.find(-ID)->second; if (M->Kind != MK_Module) return std::make_pair(SourceLocation(), ""); // FIXME: Can we map this down to a particular submodule? That would be // ideal. return std::make_pair(M->ImportLoc, StringRef(M->ModuleName)); } /// \brief Find the location where the module F is imported. SourceLocation ASTReader::getImportLocation(ModuleFile *F) { if (F->ImportLoc.isValid()) return F->ImportLoc; // Otherwise we have a PCH. It's considered to be "imported" at the first // location of its includer. if (F->ImportedBy.empty() || !F->ImportedBy[0]) { // Main file is the importer. assert(!SourceMgr.getMainFileID().isInvalid() && "missing main file"); return SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); } return F->ImportedBy[0]->FirstLoc; } /// ReadBlockAbbrevs - Enter a subblock of the specified BlockID with the /// specified cursor. Read the abbreviations that are at the top of the block /// and then leave the cursor pointing into the block. bool ASTReader::ReadBlockAbbrevs(BitstreamCursor &Cursor, unsigned BlockID) { if (Cursor.EnterSubBlock(BlockID)) { Error("malformed block record in AST file"); return Failure; } while (true) { uint64_t Offset = Cursor.GetCurrentBitNo(); unsigned Code = Cursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) { Cursor.JumpToBit(Offset); return false; } Cursor.ReadAbbrevRecord(); } } Token ASTReader::ReadToken(ModuleFile &F, const RecordDataImpl &Record, unsigned &Idx) { Token Tok; Tok.startToken(); Tok.setLocation(ReadSourceLocation(F, Record, Idx)); Tok.setLength(Record[Idx++]); if (IdentifierInfo *II = getLocalIdentifier(F, Record[Idx++])) Tok.setIdentifierInfo(II); Tok.setKind((tok::TokenKind)Record[Idx++]); Tok.setFlag((Token::TokenFlags)Record[Idx++]); return Tok; } MacroInfo *ASTReader::ReadMacroRecord(ModuleFile &F, uint64_t Offset) { BitstreamCursor &Stream = F.MacroCursor; // Keep track of where we are in the stream, then jump back there // after reading this macro. SavedStreamPosition SavedPosition(Stream); Stream.JumpToBit(Offset); RecordData Record; SmallVector
MacroArgs; MacroInfo *Macro = nullptr; while (true) { // Advance to the next record, but if we get to the end of the block, don't // pop it (removing all the abbreviations from the cursor) since we want to // be able to reseek within the block and read entries. unsigned Flags = BitstreamCursor::AF_DontPopBlockAtEnd; llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(Flags); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Macro; case llvm::BitstreamEntry::EndBlock: return Macro; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. Record.clear(); PreprocessorRecordTypes RecType = (PreprocessorRecordTypes)Stream.readRecord(Entry.ID, Record); switch (RecType) { case PP_MACRO_DIRECTIVE_HISTORY: return Macro; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: { // If we already have a macro, that means that we've hit the end // of the definition of the macro we were looking for. We're // done. if (Macro) return Macro; unsigned NextIndex = 1; // Skip identifier ID. SubmoduleID SubModID = getGlobalSubmoduleID(F, Record[NextIndex++]); SourceLocation Loc = ReadSourceLocation(F, Record, NextIndex); MacroInfo *MI = PP.AllocateDeserializedMacroInfo(Loc, SubModID); MI->setDefinitionEndLoc(ReadSourceLocation(F, Record, NextIndex)); MI->setIsUsed(Record[NextIndex++]); MI->setUsedForHeaderGuard(Record[NextIndex++]); if (RecType == PP_MACRO_FUNCTION_LIKE) { // Decode function-like macro info. bool isC99VarArgs = Record[NextIndex++]; bool isGNUVarArgs = Record[NextIndex++]; bool hasCommaPasting = Record[NextIndex++]; MacroArgs.clear(); unsigned NumArgs = Record[NextIndex++]; for (unsigned i = 0; i != NumArgs; ++i) MacroArgs.push_back(getLocalIdentifier(F, Record[NextIndex++])); // Install function-like macro info. MI->setIsFunctionLike(); if (isC99VarArgs) MI->setIsC99Varargs(); if (isGNUVarArgs) MI->setIsGNUVarargs(); if (hasCommaPasting) MI->setHasCommaPasting(); MI->setArgumentList(MacroArgs.data(), MacroArgs.size(), PP.getPreprocessorAllocator()); } // Remember that we saw this macro last so that we add the tokens that // form its body to it. Macro = MI; if (NextIndex + 1 == Record.size() && PP.getPreprocessingRecord() && Record[NextIndex]) { // We have a macro definition. Register the association PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(F, Record[NextIndex]); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); PreprocessingRecord::PPEntityID PPID = PPRec.getPPEntityID(GlobalID-1, /*isLoaded=*/true); MacroDefinition *PPDef = cast_or_null
(PPRec.getPreprocessedEntity(PPID)); if (PPDef) PPRec.RegisterMacroDefinition(Macro, PPDef); } ++NumMacrosRead; break; } case PP_TOKEN: { // If we see a TOKEN before a PP_MACRO_*, then the file is // erroneous, just pretend we didn't see this. if (!Macro) break; unsigned Idx = 0; Token Tok = ReadToken(F, Record, Idx); Macro->AddTokenToBody(Tok); break; } } } } PreprocessedEntityID ASTReader::getGlobalPreprocessedEntityID(ModuleFile &M, unsigned LocalID) const { ContinuousRangeMap
::const_iterator I = M.PreprocessedEntityRemap.find(LocalID - NUM_PREDEF_PP_ENTITY_IDS); assert(I != M.PreprocessedEntityRemap.end() && "Invalid index into preprocessed entity index remap"); return LocalID + I->second; } unsigned HeaderFileInfoTrait::ComputeHash(internal_key_ref ikey) { return llvm::hash_combine(ikey.Size, ikey.ModTime); } HeaderFileInfoTrait::internal_key_type HeaderFileInfoTrait::GetInternalKey(const FileEntry *FE) { internal_key_type ikey = { FE->getSize(), FE->getModificationTime(), FE->getName() }; return ikey; } bool HeaderFileInfoTrait::EqualKey(internal_key_ref a, internal_key_ref b) { if (a.Size != b.Size || a.ModTime != b.ModTime) return false; if (strcmp(a.Filename, b.Filename) == 0) return true; // Determine whether the actual files are equivalent. FileManager &FileMgr = Reader.getFileManager(); const FileEntry *FEA = FileMgr.getFile(a.Filename); const FileEntry *FEB = FileMgr.getFile(b.Filename); return (FEA && FEA == FEB); } std::pair
HeaderFileInfoTrait::ReadKeyDataLength(const unsigned char*& d) { using namespace llvm::support; unsigned KeyLen = (unsigned) endian::readNext
(d); unsigned DataLen = (unsigned) *d++; return std::make_pair(KeyLen, DataLen); } HeaderFileInfoTrait::internal_key_type HeaderFileInfoTrait::ReadKey(const unsigned char *d, unsigned) { using namespace llvm::support; internal_key_type ikey; ikey.Size = off_t(endian::readNext
(d)); ikey.ModTime = time_t(endian::readNext
(d)); ikey.Filename = (const char *)d; return ikey; } HeaderFileInfoTrait::data_type HeaderFileInfoTrait::ReadData(internal_key_ref key, const unsigned char *d, unsigned DataLen) { const unsigned char *End = d + DataLen; using namespace llvm::support; HeaderFileInfo HFI; unsigned Flags = *d++; HFI.HeaderRole = static_cast
((Flags >> 6) & 0x03); HFI.isImport = (Flags >> 5) & 0x01; HFI.isPragmaOnce = (Flags >> 4) & 0x01; HFI.DirInfo = (Flags >> 2) & 0x03; HFI.Resolved = (Flags >> 1) & 0x01; HFI.IndexHeaderMapHeader = Flags & 0x01; HFI.NumIncludes = endian::readNext
(d); HFI.ControllingMacroID = Reader.getGlobalIdentifierID( M, endian::readNext
(d)); if (unsigned FrameworkOffset = endian::readNext
(d)) { // The framework offset is 1 greater than the actual offset, // since 0 is used as an indicator for "no framework name". StringRef FrameworkName(FrameworkStrings + FrameworkOffset - 1); HFI.Framework = HS->getUniqueFrameworkName(FrameworkName); } if (d != End) { uint32_t LocalSMID = endian::readNext
(d); if (LocalSMID) { // This header is part of a module. Associate it with the module to enable // implicit module import. SubmoduleID GlobalSMID = Reader.getGlobalSubmoduleID(M, LocalSMID); Module *Mod = Reader.getSubmodule(GlobalSMID); HFI.isModuleHeader = true; FileManager &FileMgr = Reader.getFileManager(); ModuleMap &ModMap = Reader.getPreprocessor().getHeaderSearchInfo().getModuleMap(); ModMap.addHeader(Mod, FileMgr.getFile(key.Filename), HFI.getHeaderRole()); } } assert(End == d && "Wrong data length in HeaderFileInfo deserialization"); (void)End; // This HeaderFileInfo was externally loaded. HFI.External = true; return HFI; } void ASTReader::addPendingMacroFromModule(IdentifierInfo *II, ModuleFile *M, GlobalMacroID GMacID, ArrayRef
Overrides) { assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard"); SubmoduleID *OverrideData = nullptr; if (!Overrides.empty()) { OverrideData = new (Context) SubmoduleID[Overrides.size() + 1]; OverrideData[0] = Overrides.size(); for (unsigned I = 0; I != Overrides.size(); ++I) OverrideData[I + 1] = getGlobalSubmoduleID(*M, Overrides[I]); } PendingMacroIDs[II].push_back(PendingMacroInfo(M, GMacID, OverrideData)); } void ASTReader::addPendingMacroFromPCH(IdentifierInfo *II, ModuleFile *M, uint64_t MacroDirectivesOffset) { assert(NumCurrentElementsDeserializing > 0 &&"Missing deserialization guard"); PendingMacroIDs[II].push_back(PendingMacroInfo(M, MacroDirectivesOffset)); } void ASTReader::ReadDefinedMacros() { // Note that we are loading defined macros. Deserializing Macros(this); for (ModuleReverseIterator I = ModuleMgr.rbegin(), E = ModuleMgr.rend(); I != E; ++I) { BitstreamCursor &MacroCursor = (*I)->MacroCursor; // If there was no preprocessor block, skip this file. if (!MacroCursor.getBitStreamReader()) continue; BitstreamCursor Cursor = MacroCursor; Cursor.JumpToBit((*I)->MacroStartOffset); RecordData Record; while (true) { llvm::BitstreamEntry E = Cursor.advanceSkippingSubblocks(); switch (E.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return; case llvm::BitstreamEntry::EndBlock: goto NextCursor; case llvm::BitstreamEntry::Record: Record.clear(); switch (Cursor.readRecord(E.ID, Record)) { default: // Default behavior: ignore. break; case PP_MACRO_OBJECT_LIKE: case PP_MACRO_FUNCTION_LIKE: getLocalIdentifier(**I, Record[0]); break; case PP_TOKEN: // Ignore tokens. break; } break; } } NextCursor: ; } } namespace { /// \brief Visitor class used to look up identifirs in an AST file. class IdentifierLookupVisitor { StringRef Name; unsigned PriorGeneration; unsigned &NumIdentifierLookups; unsigned &NumIdentifierLookupHits; IdentifierInfo *Found; public: IdentifierLookupVisitor(StringRef Name, unsigned PriorGeneration, unsigned &NumIdentifierLookups, unsigned &NumIdentifierLookupHits) : Name(Name), PriorGeneration(PriorGeneration), NumIdentifierLookups(NumIdentifierLookups), NumIdentifierLookupHits(NumIdentifierLookupHits), Found() { } static bool visit(ModuleFile &M, void *UserData) { IdentifierLookupVisitor *This = static_cast
(UserData); // If we've already searched this module file, skip it now. if (M.Generation <= This->PriorGeneration) return true; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)M.IdentifierLookupTable; if (!IdTable) return false; ASTIdentifierLookupTrait Trait(IdTable->getInfoObj().getReader(), M, This->Found); ++This->NumIdentifierLookups; ASTIdentifierLookupTable::iterator Pos = IdTable->find(This->Name,&Trait); if (Pos == IdTable->end()) return false; // Dereferencing the iterator has the effect of building the // IdentifierInfo node and populating it with the various // declarations it needs. ++This->NumIdentifierLookupHits; This->Found = *Pos; return true; } // \brief Retrieve the identifier info found within the module // files. IdentifierInfo *getIdentifierInfo() const { return Found; } }; } void ASTReader::updateOutOfDateIdentifier(IdentifierInfo &II) { // Note that we are loading an identifier. Deserializing AnIdentifier(this); unsigned PriorGeneration = 0; if (getContext().getLangOpts().Modules) PriorGeneration = IdentifierGeneration[&II]; // If there is a global index, look there first to determine which modules // provably do not have any results for this identifier. GlobalModuleIndex::HitSet Hits; GlobalModuleIndex::HitSet *HitsPtr = nullptr; if (!loadGlobalIndex()) { if (GlobalIndex->lookupIdentifier(II.getName(), Hits)) { HitsPtr = &Hits; } } IdentifierLookupVisitor Visitor(II.getName(), PriorGeneration, NumIdentifierLookups, NumIdentifierLookupHits); ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr); markIdentifierUpToDate(&II); } void ASTReader::markIdentifierUpToDate(IdentifierInfo *II) { if (!II) return; II->setOutOfDate(false); // Update the generation for this identifier. if (getContext().getLangOpts().Modules) IdentifierGeneration[II] = getGeneration(); } struct ASTReader::ModuleMacroInfo { SubmoduleID SubModID; MacroInfo *MI; SubmoduleID *Overrides; // FIXME: Remove this. ModuleFile *F; bool isDefine() const { return MI; } SubmoduleID getSubmoduleID() const { return SubModID; } ArrayRef
getOverriddenSubmodules() const { if (!Overrides) return None; return llvm::makeArrayRef(Overrides + 1, *Overrides); } DefMacroDirective *import(Preprocessor &PP, SourceLocation ImportLoc) const { if (!MI) return nullptr; return PP.AllocateDefMacroDirective(MI, ImportLoc, /*isImported=*/true); } }; ASTReader::ModuleMacroInfo * ASTReader::getModuleMacro(const PendingMacroInfo &PMInfo) { ModuleMacroInfo Info; uint32_t ID = PMInfo.ModuleMacroData.MacID; if (ID & 1) { // Macro undefinition. Info.SubModID = getGlobalSubmoduleID(*PMInfo.M, ID >> 1); Info.MI = nullptr; } else { // Macro definition. GlobalMacroID GMacID = getGlobalMacroID(*PMInfo.M, ID >> 1); assert(GMacID); // If this macro has already been loaded, don't do so again. // FIXME: This is highly dubious. Multiple macro definitions can have the // same MacroInfo (and hence the same GMacID) due to #pragma push_macro etc. if (MacrosLoaded[GMacID - NUM_PREDEF_MACRO_IDS]) return nullptr; Info.MI = getMacro(GMacID); Info.SubModID = Info.MI->getOwningModuleID(); } Info.Overrides = PMInfo.ModuleMacroData.Overrides; Info.F = PMInfo.M; return new (Context) ModuleMacroInfo(Info); } void ASTReader::resolvePendingMacro(IdentifierInfo *II, const PendingMacroInfo &PMInfo) { assert(II); if (PMInfo.M->Kind != MK_Module) { installPCHMacroDirectives(II, *PMInfo.M, PMInfo.PCHMacroData.MacroDirectivesOffset); return; } // Module Macro. ModuleMacroInfo *MMI = getModuleMacro(PMInfo); if (!MMI) return; Module *Owner = getSubmodule(MMI->getSubmoduleID()); if (Owner && Owner->NameVisibility == Module::Hidden) { // Macros in the owning module are hidden. Just remember this macro to // install if we make this module visible. HiddenNamesMap[Owner].HiddenMacros.insert(std::make_pair(II, MMI)); } else { installImportedMacro(II, MMI, Owner); } } void ASTReader::installPCHMacroDirectives(IdentifierInfo *II, ModuleFile &M, uint64_t Offset) { assert(M.Kind != MK_Module); BitstreamCursor &Cursor = M.MacroCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Offset); llvm::BitstreamEntry Entry = Cursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd); if (Entry.Kind != llvm::BitstreamEntry::Record) { Error("malformed block record in AST file"); return; } RecordData Record; PreprocessorRecordTypes RecType = (PreprocessorRecordTypes)Cursor.readRecord(Entry.ID, Record); if (RecType != PP_MACRO_DIRECTIVE_HISTORY) { Error("malformed block record in AST file"); return; } // Deserialize the macro directives history in reverse source-order. MacroDirective *Latest = nullptr, *Earliest = nullptr; unsigned Idx = 0, N = Record.size(); while (Idx < N) { MacroDirective *MD = nullptr; SourceLocation Loc = ReadSourceLocation(M, Record, Idx); MacroDirective::Kind K = (MacroDirective::Kind)Record[Idx++]; switch (K) { case MacroDirective::MD_Define: { GlobalMacroID GMacID = getGlobalMacroID(M, Record[Idx++]); MacroInfo *MI = getMacro(GMacID); bool isImported = Record[Idx++]; bool isAmbiguous = Record[Idx++]; DefMacroDirective *DefMD = PP.AllocateDefMacroDirective(MI, Loc, isImported); DefMD->setAmbiguous(isAmbiguous); MD = DefMD; break; } case MacroDirective::MD_Undefine: MD = PP.AllocateUndefMacroDirective(Loc); break; case MacroDirective::MD_Visibility: { bool isPublic = Record[Idx++]; MD = PP.AllocateVisibilityMacroDirective(Loc, isPublic); break; } } if (!Latest) Latest = MD; if (Earliest) Earliest->setPrevious(MD); Earliest = MD; } PP.setLoadedMacroDirective(II, Latest); } /// \brief For the given macro definitions, check if they are both in system /// modules. static bool areDefinedInSystemModules(MacroInfo *PrevMI, MacroInfo *NewMI, Module *NewOwner, ASTReader &Reader) { assert(PrevMI && NewMI); Module *PrevOwner = nullptr; if (SubmoduleID PrevModID = PrevMI->getOwningModuleID()) PrevOwner = Reader.getSubmodule(PrevModID); SourceManager &SrcMgr = Reader.getSourceManager(); bool PrevInSystem = PrevOwner? PrevOwner->IsSystem : SrcMgr.isInSystemHeader(PrevMI->getDefinitionLoc()); bool NewInSystem = NewOwner? NewOwner->IsSystem : SrcMgr.isInSystemHeader(NewMI->getDefinitionLoc()); if (PrevOwner && PrevOwner == NewOwner) return false; return PrevInSystem && NewInSystem; } void ASTReader::removeOverriddenMacros(IdentifierInfo *II, AmbiguousMacros &Ambig, ArrayRef
Overrides) { for (unsigned OI = 0, ON = Overrides.size(); OI != ON; ++OI) { SubmoduleID OwnerID = Overrides[OI]; // If this macro is not yet visible, remove it from the hidden names list. Module *Owner = getSubmodule(OwnerID); HiddenNames &Hidden = HiddenNamesMap[Owner]; HiddenMacrosMap::iterator HI = Hidden.HiddenMacros.find(II); if (HI != Hidden.HiddenMacros.end()) { auto SubOverrides = HI->second->getOverriddenSubmodules(); Hidden.HiddenMacros.erase(HI); removeOverriddenMacros(II, Ambig, SubOverrides); } // If this macro is already in our list of conflicts, remove it from there. Ambig.erase( std::remove_if(Ambig.begin(), Ambig.end(), [&](DefMacroDirective *MD) { return MD->getInfo()->getOwningModuleID() == OwnerID; }), Ambig.end()); } } ASTReader::AmbiguousMacros * ASTReader::removeOverriddenMacros(IdentifierInfo *II, ArrayRef
Overrides) { MacroDirective *Prev = PP.getMacroDirective(II); if (!Prev && Overrides.empty()) return nullptr; DefMacroDirective *PrevDef = Prev ? Prev->getDefinition().getDirective() : nullptr; if (PrevDef && PrevDef->isAmbiguous()) { // We had a prior ambiguity. Check whether we resolve it (or make it worse). AmbiguousMacros &Ambig = AmbiguousMacroDefs[II]; Ambig.push_back(PrevDef); removeOverriddenMacros(II, Ambig, Overrides); if (!Ambig.empty()) return &Ambig; AmbiguousMacroDefs.erase(II); } else { // There's no ambiguity yet. Maybe we're introducing one. AmbiguousMacros Ambig; if (PrevDef) Ambig.push_back(PrevDef); removeOverriddenMacros(II, Ambig, Overrides); if (!Ambig.empty()) { AmbiguousMacros &Result = AmbiguousMacroDefs[II]; std::swap(Result, Ambig); return &Result; } } // We ended up with no ambiguity. return nullptr; } void ASTReader::installImportedMacro(IdentifierInfo *II, ModuleMacroInfo *MMI, Module *Owner) { assert(II && Owner); SourceLocation ImportLoc = Owner->MacroVisibilityLoc; if (ImportLoc.isInvalid()) { // FIXME: If we made macros from this module visible but didn't provide a // source location for the import, we don't have a location for the macro. // Use the location at which the containing module file was first imported // for now. ImportLoc = MMI->F->DirectImportLoc; assert(ImportLoc.isValid() && "no import location for a visible macro?"); } AmbiguousMacros *Prev = removeOverriddenMacros(II, MMI->getOverriddenSubmodules()); // Create a synthetic macro definition corresponding to the import (or null // if this was an undefinition of the macro). DefMacroDirective *MD = MMI->import(PP, ImportLoc); // If there's no ambiguity, just install the macro. if (!Prev) { if (MD) PP.appendMacroDirective(II, MD); else PP.appendMacroDirective(II, PP.AllocateUndefMacroDirective(ImportLoc)); return; } assert(!Prev->empty()); if (!MD) { // We imported a #undef that didn't remove all prior definitions. The most // recent prior definition remains, and we install it in the place of the // imported directive. MacroInfo *NewMI = Prev->back()->getInfo(); Prev->pop_back(); MD = PP.AllocateDefMacroDirective(NewMI, ImportLoc, /*Imported*/true); } // We're introducing a macro definition that creates or adds to an ambiguity. // We can resolve that ambiguity if this macro is token-for-token identical to // all of the existing definitions. MacroInfo *NewMI = MD->getInfo(); assert(NewMI && "macro definition with no MacroInfo?"); while (!Prev->empty()) { MacroInfo *PrevMI = Prev->back()->getInfo(); assert(PrevMI && "macro definition with no MacroInfo?"); // Before marking the macros as ambiguous, check if this is a case where // both macros are in system headers. If so, we trust that the system // did not get it wrong. This also handles cases where Clang's own // headers have a different spelling of certain system macros: // #define LONG_MAX __LONG_MAX__ (clang's limits.h) // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) // // FIXME: Remove the defined-in-system-headers check. clang's limits.h // overrides the system limits.h's macros, so there's no conflict here. if (NewMI != PrevMI && !PrevMI->isIdenticalTo(*NewMI, PP, /*Syntactically=*/true) && !areDefinedInSystemModules(PrevMI, NewMI, Owner, *this)) break; // The previous definition is the same as this one (or both are defined in // system modules so we can assume they're equivalent); we don't need to // track it any more. Prev->pop_back(); } if (!Prev->empty()) MD->setAmbiguous(true); PP.appendMacroDirective(II, MD); } ASTReader::InputFileInfo ASTReader::readInputFileInfo(ModuleFile &F, unsigned ID) { // Go find this input file. BitstreamCursor &Cursor = F.InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(F.InputFileOffsets[ID-1]); unsigned Code = Cursor.ReadCode(); RecordData Record; StringRef Blob; unsigned Result = Cursor.readRecord(Code, Record, &Blob); assert(static_cast
(Result) == INPUT_FILE && "invalid record type for input file"); (void)Result; std::string Filename; off_t StoredSize; time_t StoredTime; bool Overridden; assert(Record[0] == ID && "Bogus stored ID or offset"); StoredSize = static_cast
(Record[1]); StoredTime = static_cast
(Record[2]); Overridden = static_cast
(Record[3]); Filename = Blob; MaybeAddSystemRootToFilename(F, Filename); InputFileInfo R = { std::move(Filename), StoredSize, StoredTime, Overridden }; return R; } std::string ASTReader::getInputFileName(ModuleFile &F, unsigned int ID) { return readInputFileInfo(F, ID).Filename; } InputFile ASTReader::getInputFile(ModuleFile &F, unsigned ID, bool Complain) { // If this ID is bogus, just return an empty input file. if (ID == 0 || ID > F.InputFilesLoaded.size()) return InputFile(); // If we've already loaded this input file, return it. if (F.InputFilesLoaded[ID-1].getFile()) return F.InputFilesLoaded[ID-1]; if (F.InputFilesLoaded[ID-1].isNotFound()) return InputFile(); // Go find this input file. BitstreamCursor &Cursor = F.InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(F.InputFileOffsets[ID-1]); InputFileInfo FI = readInputFileInfo(F, ID); off_t StoredSize = FI.StoredSize; time_t StoredTime = FI.StoredTime; bool Overridden = FI.Overridden; StringRef Filename = FI.Filename; const FileEntry *File = Overridden? FileMgr.getVirtualFile(Filename, StoredSize, StoredTime) : FileMgr.getFile(Filename, /*OpenFile=*/false); // If we didn't find the file, resolve it relative to the // original directory from which this AST file was created. if (File == nullptr && !F.OriginalDir.empty() && !CurrentDir.empty() && F.OriginalDir != CurrentDir) { std::string Resolved = resolveFileRelativeToOriginalDir(Filename, F.OriginalDir, CurrentDir); if (!Resolved.empty()) File = FileMgr.getFile(Resolved); } // For an overridden file, create a virtual file with the stored // size/timestamp. if (Overridden && File == nullptr) { File = FileMgr.getVirtualFile(Filename, StoredSize, StoredTime); } if (File == nullptr) { if (Complain) { std::string ErrorStr = "could not find file '"; ErrorStr += Filename; ErrorStr += "' referenced by AST file"; Error(ErrorStr.c_str()); } // Record that we didn't find the file. F.InputFilesLoaded[ID-1] = InputFile::getNotFound(); return InputFile(); } // Check if there was a request to override the contents of the file // that was part of the precompiled header. Overridding such a file // can lead to problems when lexing using the source locations from the // PCH. SourceManager &SM = getSourceManager(); if (!Overridden && SM.isFileOverridden(File)) { if (Complain) Error(diag::err_fe_pch_file_overridden, Filename); // After emitting the diagnostic, recover by disabling the override so // that the original file will be used. SM.disableFileContentsOverride(File); // The FileEntry is a virtual file entry with the size of the contents // that would override the original contents. Set it to the original's // size/time. FileMgr.modifyFileEntry(const_cast
(File), StoredSize, StoredTime); } bool IsOutOfDate = false; // For an overridden file, there is nothing to validate. if (!Overridden && (StoredSize != File->getSize() #if !defined(LLVM_ON_WIN32) // In our regression testing, the Windows file system seems to // have inconsistent modification times that sometimes // erroneously trigger this error-handling path. || StoredTime != File->getModificationTime() #endif )) { if (Complain) { // Build a list of the PCH imports that got us here (in reverse). SmallVector
ImportStack(1, &F); while (ImportStack.back()->ImportedBy.size() > 0) ImportStack.push_back(ImportStack.back()->ImportedBy[0]); // The top-level PCH is stale. StringRef TopLevelPCHName(ImportStack.back()->FileName); Error(diag::err_fe_pch_file_modified, Filename, TopLevelPCHName); // Print the import stack. if (ImportStack.size() > 1 && !Diags.isDiagnosticInFlight()) { Diag(diag::note_pch_required_by) << Filename << ImportStack[0]->FileName; for (unsigned I = 1; I < ImportStack.size(); ++I) Diag(diag::note_pch_required_by) << ImportStack[I-1]->FileName << ImportStack[I]->FileName; } if (!Diags.isDiagnosticInFlight()) Diag(diag::note_pch_rebuild_required) << TopLevelPCHName; } IsOutOfDate = true; } InputFile IF = InputFile(File, Overridden, IsOutOfDate); // Note that we've loaded this input file. F.InputFilesLoaded[ID-1] = IF; return IF; } const FileEntry *ASTReader::getFileEntry(StringRef filenameStrRef) { ModuleFile &M = ModuleMgr.getPrimaryModule(); std::string Filename = filenameStrRef; MaybeAddSystemRootToFilename(M, Filename); const FileEntry *File = FileMgr.getFile(Filename); if (File == nullptr && !M.OriginalDir.empty() && !CurrentDir.empty() && M.OriginalDir != CurrentDir) { std::string resolved = resolveFileRelativeToOriginalDir(Filename, M.OriginalDir, CurrentDir); if (!resolved.empty()) File = FileMgr.getFile(resolved); } return File; } /// \brief If we are loading a relocatable PCH file, and the filename is /// not an absolute path, add the system root to the beginning of the file /// name. void ASTReader::MaybeAddSystemRootToFilename(ModuleFile &M, std::string &Filename) { // If this is not a relocatable PCH file, there's nothing to do. if (!M.RelocatablePCH) return; if (Filename.empty() || llvm::sys::path::is_absolute(Filename)) return; if (isysroot.empty()) { // If no system root was given, default to '/' Filename.insert(Filename.begin(), '/'); return; } unsigned Length = isysroot.size(); if (isysroot[Length - 1] != '/') Filename.insert(Filename.begin(), '/'); Filename.insert(Filename.begin(), isysroot.begin(), isysroot.end()); } ASTReader::ASTReadResult ASTReader::ReadControlBlock(ModuleFile &F, SmallVectorImpl
&Loaded, const ModuleFile *ImportedBy, unsigned ClientLoadCapabilities) { BitstreamCursor &Stream = F.Stream; if (Stream.EnterSubBlock(CONTROL_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks in the control block. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: { // Validate input files. const HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); // All user input files reside at the index range [0, Record[1]), and // system input files reside at [Record[1], Record[0]). // Record is the one from INPUT_FILE_OFFSETS. unsigned NumInputs = Record[0]; unsigned NumUserInputs = Record[1]; if (!DisableValidation && (ValidateSystemInputs || !HSOpts.ModulesValidateOncePerBuildSession || F.InputFilesValidationTimestamp <= HSOpts.BuildSessionTimestamp)) { bool Complain = (ClientLoadCapabilities & ARR_OutOfDate) == 0; // If we are reading a module, we will create a verification timestamp, // so we verify all input files. Otherwise, verify only user input // files. unsigned N = NumUserInputs; if (ValidateSystemInputs || (HSOpts.ModulesValidateOncePerBuildSession && F.Kind == MK_Module)) N = NumInputs; for (unsigned I = 0; I < N; ++I) { InputFile IF = getInputFile(F, I+1, Complain); if (!IF.getFile() || IF.isOutOfDate()) return OutOfDate; } } if (Listener) Listener->visitModuleFile(F.FileName); if (Listener && Listener->needsInputFileVisitation()) { unsigned N = Listener->needsSystemInputFileVisitation() ? NumInputs : NumUserInputs; for (unsigned I = 0; I < N; ++I) { bool IsSystem = I >= NumUserInputs; InputFileInfo FI = readInputFileInfo(F, I+1); Listener->visitInputFile(FI.Filename, IsSystem, FI.Overridden); } } return Success; } case llvm::BitstreamEntry::SubBlock: switch (Entry.ID) { case INPUT_FILES_BLOCK_ID: F.InputFilesCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor // Read the abbreviations ReadBlockAbbrevs(F.InputFilesCursor, INPUT_FILES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } continue; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } continue; } case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read and process a record. Record.clear(); StringRef Blob; switch ((ControlRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) { case METADATA: { if (Record[0] != VERSION_MAJOR && !DisableValidation) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(Record[0] < VERSION_MAJOR? diag::err_pch_version_too_old : diag::err_pch_version_too_new); return VersionMismatch; } bool hasErrors = Record[5]; if (hasErrors && !DisableValidation && !AllowASTWithCompilerErrors) { Diag(diag::err_pch_with_compiler_errors); return HadErrors; } F.RelocatablePCH = Record[4]; const std::string &CurBranch = getClangFullRepositoryVersion(); StringRef ASTBranch = Blob; if (StringRef(CurBranch) != ASTBranch && !DisableValidation) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(diag::err_pch_different_branch) << ASTBranch << CurBranch; return VersionMismatch; } break; } case IMPORTS: { // Load each of the imported PCH files. unsigned Idx = 0, N = Record.size(); while (Idx < N) { // Read information about the AST file. ModuleKind ImportedKind = (ModuleKind)Record[Idx++]; // The import location will be the local one for now; we will adjust // all import locations of module imports after the global source // location info are setup. SourceLocation ImportLoc = SourceLocation::getFromRawEncoding(Record[Idx++]); off_t StoredSize = (off_t)Record[Idx++]; time_t StoredModTime = (time_t)Record[Idx++]; unsigned Length = Record[Idx++]; SmallString<128> ImportedFile(Record.begin() + Idx, Record.begin() + Idx + Length); Idx += Length; // Load the AST file. switch(ReadASTCore(ImportedFile, ImportedKind, ImportLoc, &F, Loaded, StoredSize, StoredModTime, ClientLoadCapabilities)) { case Failure: return Failure; // If we have to ignore the dependency, we'll have to ignore this too. case Missing: case OutOfDate: return OutOfDate; case VersionMismatch: return VersionMismatch; case ConfigurationMismatch: return ConfigurationMismatch; case HadErrors: return HadErrors; case Success: break; } } break; } case LANGUAGE_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch) == 0; if (Listener && &F == *ModuleMgr.begin() && ParseLanguageOptions(Record, Complain, *Listener) && !DisableValidation && !AllowConfigurationMismatch) return ConfigurationMismatch; break; } case TARGET_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0; if (Listener && &F == *ModuleMgr.begin() && ParseTargetOptions(Record, Complain, *Listener) && !DisableValidation && !AllowConfigurationMismatch) return ConfigurationMismatch; break; } case DIAGNOSTIC_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_OutOfDate)==0; if (Listener && &F == *ModuleMgr.begin() && ParseDiagnosticOptions(Record, Complain, *Listener) && !DisableValidation) return OutOfDate; break; } case FILE_SYSTEM_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0; if (Listener && &F == *ModuleMgr.begin() && ParseFileSystemOptions(Record, Complain, *Listener) && !DisableValidation && !AllowConfigurationMismatch) return ConfigurationMismatch; break; } case HEADER_SEARCH_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0; if (Listener && &F == *ModuleMgr.begin() && ParseHeaderSearchOptions(Record, Complain, *Listener) && !DisableValidation && !AllowConfigurationMismatch) return ConfigurationMismatch; break; } case PREPROCESSOR_OPTIONS: { bool Complain = (ClientLoadCapabilities & ARR_ConfigurationMismatch)==0; if (Listener && &F == *ModuleMgr.begin() && ParsePreprocessorOptions(Record, Complain, *Listener, SuggestedPredefines) && !DisableValidation && !AllowConfigurationMismatch) return ConfigurationMismatch; break; } case ORIGINAL_FILE: F.OriginalSourceFileID = FileID::get(Record[0]); F.ActualOriginalSourceFileName = Blob; F.OriginalSourceFileName = F.ActualOriginalSourceFileName; MaybeAddSystemRootToFilename(F, F.OriginalSourceFileName); break; case ORIGINAL_FILE_ID: F.OriginalSourceFileID = FileID::get(Record[0]); break; case ORIGINAL_PCH_DIR: F.OriginalDir = Blob; break; case MODULE_NAME: F.ModuleName = Blob; if (Listener) Listener->ReadModuleName(F.ModuleName); break; case MODULE_MAP_FILE: F.ModuleMapPath = Blob; // Try to resolve ModuleName in the current header search context and // verify that it is found in the same module map file as we saved. If the // top-level AST file is a main file, skip this check because there is no // usable header search context. assert(!F.ModuleName.empty() && "MODULE_NAME should come before MOUDLE_MAP_FILE"); if (F.Kind == MK_Module && (*ModuleMgr.begin())->Kind != MK_MainFile) { Module *M = PP.getHeaderSearchInfo().lookupModule(F.ModuleName); if (!M) { assert(ImportedBy && "top-level import should be verified"); if ((ClientLoadCapabilities & ARR_Missing) == 0) Diag(diag::err_imported_module_not_found) << F.ModuleName << ImportedBy->FileName; return Missing; } const FileEntry *StoredModMap = FileMgr.getFile(F.ModuleMapPath); if (StoredModMap == nullptr || StoredModMap != M->ModuleMap) { assert(M->ModuleMap && "found module is missing module map file"); assert(M->Name == F.ModuleName && "found module with different name"); assert(ImportedBy && "top-level import should be verified"); if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Diag(diag::err_imported_module_modmap_changed) << F.ModuleName << ImportedBy->FileName << M->ModuleMap->getName() << F.ModuleMapPath; return OutOfDate; } } if (Listener) Listener->ReadModuleMapFile(F.ModuleMapPath); break; case INPUT_FILE_OFFSETS: F.InputFileOffsets = (const uint32_t *)Blob.data(); F.InputFilesLoaded.resize(Record[0]); break; } } } ASTReader::ASTReadResult ASTReader::ReadASTBlock(ModuleFile &F, unsigned ClientLoadCapabilities) { BitstreamCursor &Stream = F.Stream; if (Stream.EnterSubBlock(AST_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } // Read all of the records and blocks for the AST file. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: Error("error at end of module block in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: { // Outside of C++, we do not store a lookup map for the translation unit. // Instead, mark it as needing a lookup map to be built if this module // contains any declarations lexically within it (which it always does!). // This usually has no cost, since we very rarely need the lookup map for // the translation unit outside C++. DeclContext *DC = Context.getTranslationUnitDecl(); if (DC->hasExternalLexicalStorage() && !getContext().getLangOpts().CPlusPlus) DC->setMustBuildLookupTable(); return Success; } case llvm::BitstreamEntry::SubBlock: switch (Entry.ID) { case DECLTYPES_BLOCK_ID: // We lazily load the decls block, but we want to set up the // DeclsCursor cursor to point into it. Clone our current bitcode // cursor to it, enter the block and read the abbrevs in that block. // With the main cursor, we just skip over it. F.DeclsCursor = Stream; if (Stream.SkipBlock() || // Skip with the main cursor. // Read the abbrevs. ReadBlockAbbrevs(F.DeclsCursor, DECLTYPES_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } break; case PREPROCESSOR_BLOCK_ID: F.MacroCursor = Stream; if (!PP.getExternalSource()) PP.setExternalSource(this); if (Stream.SkipBlock() || ReadBlockAbbrevs(F.MacroCursor, PREPROCESSOR_BLOCK_ID)) { Error("malformed block record in AST file"); return Failure; } F.MacroStartOffset = F.MacroCursor.GetCurrentBitNo(); break; case PREPROCESSOR_DETAIL_BLOCK_ID: F.PreprocessorDetailCursor = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(F.PreprocessorDetailCursor, PREPROCESSOR_DETAIL_BLOCK_ID)) { Error("malformed preprocessor detail record in AST file"); return Failure; } F.PreprocessorDetailStartOffset = F.PreprocessorDetailCursor.GetCurrentBitNo(); if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); break; case SOURCE_MANAGER_BLOCK_ID: if (ReadSourceManagerBlock(F)) return Failure; break; case SUBMODULE_BLOCK_ID: if (ASTReadResult Result = ReadSubmoduleBlock(F, ClientLoadCapabilities)) return Result; break; case COMMENTS_BLOCK_ID: { BitstreamCursor C = Stream; if (Stream.SkipBlock() || ReadBlockAbbrevs(C, COMMENTS_BLOCK_ID)) { Error("malformed comments block in AST file"); return Failure; } CommentsCursors.push_back(std::make_pair(C, &F)); break; } default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } continue; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read and process a record. Record.clear(); StringRef Blob; switch ((ASTRecordTypes)Stream.readRecord(Entry.ID, Record, &Blob)) { default: // Default behavior: ignore. break; case TYPE_OFFSET: { if (F.LocalNumTypes != 0) { Error("duplicate TYPE_OFFSET record in AST file"); return Failure; } F.TypeOffsets = (const uint32_t *)Blob.data(); F.LocalNumTypes = Record[0]; unsigned LocalBaseTypeIndex = Record[1]; F.BaseTypeIndex = getTotalNumTypes(); if (F.LocalNumTypes > 0) { // Introduce the global -> local mapping for types within this module. GlobalTypeMap.insert(std::make_pair(getTotalNumTypes(), &F)); // Introduce the local -> global mapping for types within this module. F.TypeRemap.insertOrReplace( std::make_pair(LocalBaseTypeIndex, F.BaseTypeIndex - LocalBaseTypeIndex)); TypesLoaded.resize(TypesLoaded.size() + F.LocalNumTypes); } break; } case DECL_OFFSET: { if (F.LocalNumDecls != 0) { Error("duplicate DECL_OFFSET record in AST file"); return Failure; } F.DeclOffsets = (const DeclOffset *)Blob.data(); F.LocalNumDecls = Record[0]; unsigned LocalBaseDeclID = Record[1]; F.BaseDeclID = getTotalNumDecls(); if (F.LocalNumDecls > 0) { // Introduce the global -> local mapping for declarations within this // module. GlobalDeclMap.insert( std::make_pair(getTotalNumDecls() + NUM_PREDEF_DECL_IDS, &F)); // Introduce the local -> global mapping for declarations within this // module. F.DeclRemap.insertOrReplace( std::make_pair(LocalBaseDeclID, F.BaseDeclID - LocalBaseDeclID)); // Introduce the global -> local mapping for declarations within this // module. F.GlobalToLocalDeclIDs[&F] = LocalBaseDeclID; DeclsLoaded.resize(DeclsLoaded.size() + F.LocalNumDecls); } break; } case TU_UPDATE_LEXICAL: { DeclContext *TU = Context.getTranslationUnitDecl(); DeclContextInfo &Info = F.DeclContextInfos[TU]; Info.LexicalDecls = reinterpret_cast
(Blob.data()); Info.NumLexicalDecls = static_cast
(Blob.size() / sizeof(KindDeclIDPair)); TU->setHasExternalLexicalStorage(true); break; } case UPDATE_VISIBLE: { unsigned Idx = 0; serialization::DeclID ID = ReadDeclID(F, Record, Idx); ASTDeclContextNameLookupTable *Table = ASTDeclContextNameLookupTable::Create( (const unsigned char *)Blob.data() + Record[Idx++], (const unsigned char *)Blob.data() + sizeof(uint32_t), (const unsigned char *)Blob.data(), ASTDeclContextNameLookupTrait(*this, F)); if (Decl *D = GetExistingDecl(ID)) { auto *DC = cast
(D); DC->getPrimaryContext()->setHasExternalVisibleStorage(true); auto *&LookupTable = F.DeclContextInfos[DC].NameLookupTableData; // FIXME: There should never be an existing lookup table. delete LookupTable; LookupTable = Table; } else PendingVisibleUpdates[ID].push_back(std::make_pair(Table, &F)); break; } case IDENTIFIER_TABLE: F.IdentifierTableData = Blob.data(); if (Record[0]) { F.IdentifierLookupTable = ASTIdentifierLookupTable::Create( (const unsigned char *)F.IdentifierTableData + Record[0], (const unsigned char *)F.IdentifierTableData + sizeof(uint32_t), (const unsigned char *)F.IdentifierTableData, ASTIdentifierLookupTrait(*this, F)); PP.getIdentifierTable().setExternalIdentifierLookup(this); } break; case IDENTIFIER_OFFSET: { if (F.LocalNumIdentifiers != 0) { Error("duplicate IDENTIFIER_OFFSET record in AST file"); return Failure; } F.IdentifierOffsets = (const uint32_t *)Blob.data(); F.LocalNumIdentifiers = Record[0]; unsigned LocalBaseIdentifierID = Record[1]; F.BaseIdentifierID = getTotalNumIdentifiers(); if (F.LocalNumIdentifiers > 0) { // Introduce the global -> local mapping for identifiers within this // module. GlobalIdentifierMap.insert(std::make_pair(getTotalNumIdentifiers() + 1, &F)); // Introduce the local -> global mapping for identifiers within this // module. F.IdentifierRemap.insertOrReplace( std::make_pair(LocalBaseIdentifierID, F.BaseIdentifierID - LocalBaseIdentifierID)); IdentifiersLoaded.resize(IdentifiersLoaded.size() + F.LocalNumIdentifiers); } break; } case EAGERLY_DESERIALIZED_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) EagerlyDeserializedDecls.push_back(getGlobalDeclID(F, Record[I])); break; case SPECIAL_TYPES: if (SpecialTypes.empty()) { for (unsigned I = 0, N = Record.size(); I != N; ++I) SpecialTypes.push_back(getGlobalTypeID(F, Record[I])); break; } if (SpecialTypes.size() != Record.size()) { Error("invalid special-types record"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; ++I) { serialization::TypeID ID = getGlobalTypeID(F, Record[I]); if (!SpecialTypes[I]) SpecialTypes[I] = ID; // FIXME: If ID && SpecialTypes[I] != ID, do we need a separate // merge step? } break; case STATISTICS: TotalNumStatements += Record[0]; TotalNumMacros += Record[1]; TotalLexicalDeclContexts += Record[2]; TotalVisibleDeclContexts += Record[3]; break; case UNUSED_FILESCOPED_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) UnusedFileScopedDecls.push_back(getGlobalDeclID(F, Record[I])); break; case DELEGATING_CTORS: for (unsigned I = 0, N = Record.size(); I != N; ++I) DelegatingCtorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case WEAK_UNDECLARED_IDENTIFIERS: if (Record.size() % 4 != 0) { Error("invalid weak identifiers record"); return Failure; } // FIXME: Ignore weak undeclared identifiers from non-original PCH // files. This isn't the way to do it :) WeakUndeclaredIdentifiers.clear(); // Translate the weak, undeclared identifiers into global IDs. for (unsigned I = 0, N = Record.size(); I < N; /* in loop */) { WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( getGlobalIdentifierID(F, Record[I++])); WeakUndeclaredIdentifiers.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); WeakUndeclaredIdentifiers.push_back(Record[I++]); } break; case LOCALLY_SCOPED_EXTERN_C_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) LocallyScopedExternCDecls.push_back(getGlobalDeclID(F, Record[I])); break; case SELECTOR_OFFSETS: { F.SelectorOffsets = (const uint32_t *)Blob.data(); F.LocalNumSelectors = Record[0]; unsigned LocalBaseSelectorID = Record[1]; F.BaseSelectorID = getTotalNumSelectors(); if (F.LocalNumSelectors > 0) { // Introduce the global -> local mapping for selectors within this // module. GlobalSelectorMap.insert(std::make_pair(getTotalNumSelectors()+1, &F)); // Introduce the local -> global mapping for selectors within this // module. F.SelectorRemap.insertOrReplace( std::make_pair(LocalBaseSelectorID, F.BaseSelectorID - LocalBaseSelectorID)); SelectorsLoaded.resize(SelectorsLoaded.size() + F.LocalNumSelectors); } break; } case METHOD_POOL: F.SelectorLookupTableData = (const unsigned char *)Blob.data(); if (Record[0]) F.SelectorLookupTable = ASTSelectorLookupTable::Create( F.SelectorLookupTableData + Record[0], F.SelectorLookupTableData, ASTSelectorLookupTrait(*this, F)); TotalNumMethodPoolEntries += Record[1]; break; case REFERENCED_SELECTOR_POOL: if (!Record.empty()) { for (unsigned Idx = 0, N = Record.size() - 1; Idx < N; /* in loop */) { ReferencedSelectorsData.push_back(getGlobalSelectorID(F, Record[Idx++])); ReferencedSelectorsData.push_back(ReadSourceLocation(F, Record, Idx). getRawEncoding()); } } break; case PP_COUNTER_VALUE: if (!Record.empty() && Listener) Listener->ReadCounter(F, Record[0]); break; case FILE_SORTED_DECLS: F.FileSortedDecls = (const DeclID *)Blob.data(); F.NumFileSortedDecls = Record[0]; break; case SOURCE_LOCATION_OFFSETS: { F.SLocEntryOffsets = (const uint32_t *)Blob.data(); F.LocalNumSLocEntries = Record[0]; unsigned SLocSpaceSize = Record[1]; std::tie(F.SLocEntryBaseID, F.SLocEntryBaseOffset) = SourceMgr.AllocateLoadedSLocEntries(F.LocalNumSLocEntries, SLocSpaceSize); // Make our entry in the range map. BaseID is negative and growing, so // we invert it. Because we invert it, though, we need the other end of // the range. unsigned RangeStart = unsigned(-F.SLocEntryBaseID) - F.LocalNumSLocEntries + 1; GlobalSLocEntryMap.insert(std::make_pair(RangeStart, &F)); F.FirstLoc = SourceLocation::getFromRawEncoding(F.SLocEntryBaseOffset); // SLocEntryBaseOffset is lower than MaxLoadedOffset and decreasing. assert((F.SLocEntryBaseOffset & (1U << 31U)) == 0); GlobalSLocOffsetMap.insert( std::make_pair(SourceManager::MaxLoadedOffset - F.SLocEntryBaseOffset - SLocSpaceSize,&F)); // Initialize the remapping table. // Invalid stays invalid. F.SLocRemap.insertOrReplace(std::make_pair(0U, 0)); // This module. Base was 2 when being compiled. F.SLocRemap.insertOrReplace(std::make_pair(2U, static_cast
(F.SLocEntryBaseOffset - 2))); TotalNumSLocEntries += F.LocalNumSLocEntries; break; } case MODULE_OFFSET_MAP: { // Additional remapping information. const unsigned char *Data = (const unsigned char*)Blob.data(); const unsigned char *DataEnd = Data + Blob.size(); // If we see this entry before SOURCE_LOCATION_OFFSETS, add placeholders. if (F.SLocRemap.find(0) == F.SLocRemap.end()) { F.SLocRemap.insert(std::make_pair(0U, 0)); F.SLocRemap.insert(std::make_pair(2U, 1)); } // Continuous range maps we may be updating in our module. ContinuousRangeMap
::Builder SLocRemap(F.SLocRemap); ContinuousRangeMap
::Builder IdentifierRemap(F.IdentifierRemap); ContinuousRangeMap
::Builder MacroRemap(F.MacroRemap); ContinuousRangeMap
::Builder PreprocessedEntityRemap(F.PreprocessedEntityRemap); ContinuousRangeMap
::Builder SubmoduleRemap(F.SubmoduleRemap); ContinuousRangeMap
::Builder SelectorRemap(F.SelectorRemap); ContinuousRangeMap
::Builder DeclRemap(F.DeclRemap); ContinuousRangeMap
::Builder TypeRemap(F.TypeRemap); while(Data < DataEnd) { using namespace llvm::support; uint16_t Len = endian::readNext
(Data); StringRef Name = StringRef((const char*)Data, Len); Data += Len; ModuleFile *OM = ModuleMgr.lookup(Name); if (!OM) { Error("SourceLocation remap refers to unknown module"); return Failure; } uint32_t SLocOffset = endian::readNext
(Data); uint32_t IdentifierIDOffset = endian::readNext
(Data); uint32_t MacroIDOffset = endian::readNext
(Data); uint32_t PreprocessedEntityIDOffset = endian::readNext
(Data); uint32_t SubmoduleIDOffset = endian::readNext
(Data); uint32_t SelectorIDOffset = endian::readNext
(Data); uint32_t DeclIDOffset = endian::readNext
(Data); uint32_t TypeIndexOffset = endian::readNext
(Data); // Source location offset is mapped to OM->SLocEntryBaseOffset. SLocRemap.insert(std::make_pair(SLocOffset, static_cast
(OM->SLocEntryBaseOffset - SLocOffset))); IdentifierRemap.insert( std::make_pair(IdentifierIDOffset, OM->BaseIdentifierID - IdentifierIDOffset)); MacroRemap.insert(std::make_pair(MacroIDOffset, OM->BaseMacroID - MacroIDOffset)); PreprocessedEntityRemap.insert( std::make_pair(PreprocessedEntityIDOffset, OM->BasePreprocessedEntityID - PreprocessedEntityIDOffset)); SubmoduleRemap.insert(std::make_pair(SubmoduleIDOffset, OM->BaseSubmoduleID - SubmoduleIDOffset)); SelectorRemap.insert(std::make_pair(SelectorIDOffset, OM->BaseSelectorID - SelectorIDOffset)); DeclRemap.insert(std::make_pair(DeclIDOffset, OM->BaseDeclID - DeclIDOffset)); TypeRemap.insert(std::make_pair(TypeIndexOffset, OM->BaseTypeIndex - TypeIndexOffset)); // Global -> local mappings. F.GlobalToLocalDeclIDs[OM] = DeclIDOffset; } break; } case SOURCE_MANAGER_LINE_TABLE: if (ParseLineTable(F, Record)) return Failure; break; case SOURCE_LOCATION_PRELOADS: { // Need to transform from the local view (1-based IDs) to the global view, // which is based off F.SLocEntryBaseID. if (!F.PreloadSLocEntries.empty()) { Error("Multiple SOURCE_LOCATION_PRELOADS records in AST file"); return Failure; } F.PreloadSLocEntries.swap(Record); break; } case EXT_VECTOR_DECLS: for (unsigned I = 0, N = Record.size(); I != N; ++I) ExtVectorDecls.push_back(getGlobalDeclID(F, Record[I])); break; case VTABLE_USES: if (Record.size() % 3 != 0) { Error("Invalid VTABLE_USES record"); return Failure; } // Later tables overwrite earlier ones. // FIXME: Modules will have some trouble with this. This is clearly not // the right way to do this. VTableUses.clear(); for (unsigned Idx = 0, N = Record.size(); Idx != N; /* In loop */) { VTableUses.push_back(getGlobalDeclID(F, Record[Idx++])); VTableUses.push_back( ReadSourceLocation(F, Record, Idx).getRawEncoding()); VTableUses.push_back(Record[Idx++]); } break; case DYNAMIC_CLASSES: for (unsigned I = 0, N = Record.size(); I != N; ++I) DynamicClasses.push_back(getGlobalDeclID(F, Record[I])); break; case PENDING_IMPLICIT_INSTANTIATIONS: if (PendingInstantiations.size() % 2 != 0) { Error("Invalid existing PendingInstantiations"); return Failure; } if (Record.size() % 2 != 0) { Error("Invalid PENDING_IMPLICIT_INSTANTIATIONS block"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) { PendingInstantiations.push_back(getGlobalDeclID(F, Record[I++])); PendingInstantiations.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); } break; case SEMA_DECL_REFS: if (Record.size() != 2) { Error("Invalid SEMA_DECL_REFS block"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; ++I) SemaDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case PPD_ENTITIES_OFFSETS: { F.PreprocessedEntityOffsets = (const PPEntityOffset *)Blob.data(); assert(Blob.size() % sizeof(PPEntityOffset) == 0); F.NumPreprocessedEntities = Blob.size() / sizeof(PPEntityOffset); unsigned LocalBasePreprocessedEntityID = Record[0]; unsigned StartingID; if (!PP.getPreprocessingRecord()) PP.createPreprocessingRecord(); if (!PP.getPreprocessingRecord()->getExternalSource()) PP.getPreprocessingRecord()->SetExternalSource(*this); StartingID = PP.getPreprocessingRecord() ->allocateLoadedEntities(F.NumPreprocessedEntities); F.BasePreprocessedEntityID = StartingID; if (F.NumPreprocessedEntities > 0) { // Introduce the global -> local mapping for preprocessed entities in // this module. GlobalPreprocessedEntityMap.insert(std::make_pair(StartingID, &F)); // Introduce the local -> global mapping for preprocessed entities in // this module. F.PreprocessedEntityRemap.insertOrReplace( std::make_pair(LocalBasePreprocessedEntityID, F.BasePreprocessedEntityID - LocalBasePreprocessedEntityID)); } break; } case DECL_UPDATE_OFFSETS: { if (Record.size() % 2 != 0) { Error("invalid DECL_UPDATE_OFFSETS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 2) { GlobalDeclID ID = getGlobalDeclID(F, Record[I]); DeclUpdateOffsets[ID].push_back(std::make_pair(&F, Record[I + 1])); // If we've already loaded the decl, perform the updates when we finish // loading this block. if (Decl *D = GetExistingDecl(ID)) PendingUpdateRecords.push_back(std::make_pair(ID, D)); } break; } case DECL_REPLACEMENTS: { if (Record.size() % 3 != 0) { Error("invalid DECL_REPLACEMENTS block in AST file"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; I += 3) ReplacedDecls[getGlobalDeclID(F, Record[I])] = ReplacedDeclInfo(&F, Record[I+1], Record[I+2]); break; } case OBJC_CATEGORIES_MAP: { if (F.LocalNumObjCCategoriesInMap != 0) { Error("duplicate OBJC_CATEGORIES_MAP record in AST file"); return Failure; } F.LocalNumObjCCategoriesInMap = Record[0]; F.ObjCCategoriesMap = (const ObjCCategoriesInfo *)Blob.data(); break; } case OBJC_CATEGORIES: F.ObjCCategories.swap(Record); break; case CXX_BASE_SPECIFIER_OFFSETS: { if (F.LocalNumCXXBaseSpecifiers != 0) { Error("duplicate CXX_BASE_SPECIFIER_OFFSETS record in AST file"); return Failure; } F.LocalNumCXXBaseSpecifiers = Record[0]; F.CXXBaseSpecifiersOffsets = (const uint32_t *)Blob.data(); NumCXXBaseSpecifiersLoaded += F.LocalNumCXXBaseSpecifiers; break; } case DIAG_PRAGMA_MAPPINGS: if (F.PragmaDiagMappings.empty()) F.PragmaDiagMappings.swap(Record); else F.PragmaDiagMappings.insert(F.PragmaDiagMappings.end(), Record.begin(), Record.end()); break; case CUDA_SPECIAL_DECL_REFS: // Later tables overwrite earlier ones. // FIXME: Modules will have trouble with this. CUDASpecialDeclRefs.clear(); for (unsigned I = 0, N = Record.size(); I != N; ++I) CUDASpecialDeclRefs.push_back(getGlobalDeclID(F, Record[I])); break; case HEADER_SEARCH_TABLE: { F.HeaderFileInfoTableData = Blob.data(); F.LocalNumHeaderFileInfos = Record[1]; if (Record[0]) { F.HeaderFileInfoTable = HeaderFileInfoLookupTable::Create( (const unsigned char *)F.HeaderFileInfoTableData + Record[0], (const unsigned char *)F.HeaderFileInfoTableData, HeaderFileInfoTrait(*this, F, &PP.getHeaderSearchInfo(), Blob.data() + Record[2])); PP.getHeaderSearchInfo().SetExternalSource(this); if (!PP.getHeaderSearchInfo().getExternalLookup()) PP.getHeaderSearchInfo().SetExternalLookup(this); } break; } case FP_PRAGMA_OPTIONS: // Later tables overwrite earlier ones. FPPragmaOptions.swap(Record); break; case OPENCL_EXTENSIONS: // Later tables overwrite earlier ones. OpenCLExtensions.swap(Record); break; case TENTATIVE_DEFINITIONS: for (unsigned I = 0, N = Record.size(); I != N; ++I) TentativeDefinitions.push_back(getGlobalDeclID(F, Record[I])); break; case KNOWN_NAMESPACES: for (unsigned I = 0, N = Record.size(); I != N; ++I) KnownNamespaces.push_back(getGlobalDeclID(F, Record[I])); break; case UNDEFINED_BUT_USED: if (UndefinedButUsed.size() % 2 != 0) { Error("Invalid existing UndefinedButUsed"); return Failure; } if (Record.size() % 2 != 0) { Error("invalid undefined-but-used record"); return Failure; } for (unsigned I = 0, N = Record.size(); I != N; /* in loop */) { UndefinedButUsed.push_back(getGlobalDeclID(F, Record[I++])); UndefinedButUsed.push_back( ReadSourceLocation(F, Record, I).getRawEncoding()); } break; case IMPORTED_MODULES: { if (F.Kind != MK_Module) { // If we aren't loading a module (which has its own exports), make // all of the imported modules visible. // FIXME: Deal with macros-only imports. for (unsigned I = 0, N = Record.size(); I != N; /**/) { unsigned GlobalID = getGlobalSubmoduleID(F, Record[I++]); SourceLocation Loc = ReadSourceLocation(F, Record, I); if (GlobalID) ImportedModules.push_back(ImportedSubmodule(GlobalID, Loc)); } } break; } case LOCAL_REDECLARATIONS: { F.RedeclarationChains.swap(Record); break; } case LOCAL_REDECLARATIONS_MAP: { if (F.LocalNumRedeclarationsInMap != 0) { Error("duplicate LOCAL_REDECLARATIONS_MAP record in AST file"); return Failure; } F.LocalNumRedeclarationsInMap = Record[0]; F.RedeclarationsMap = (const LocalRedeclarationsInfo *)Blob.data(); break; } case MERGED_DECLARATIONS: { for (unsigned Idx = 0; Idx < Record.size(); /* increment in loop */) { GlobalDeclID CanonID = getGlobalDeclID(F, Record[Idx++]); SmallVectorImpl
&Decls = StoredMergedDecls[CanonID]; for (unsigned N = Record[Idx++]; N > 0; --N) Decls.push_back(getGlobalDeclID(F, Record[Idx++])); } break; } case MACRO_OFFSET: { if (F.LocalNumMacros != 0) { Error("duplicate MACRO_OFFSET record in AST file"); return Failure; } F.MacroOffsets = (const uint32_t *)Blob.data(); F.LocalNumMacros = Record[0]; unsigned LocalBaseMacroID = Record[1]; F.BaseMacroID = getTotalNumMacros(); if (F.LocalNumMacros > 0) { // Introduce the global -> local mapping for macros within this module. GlobalMacroMap.insert(std::make_pair(getTotalNumMacros() + 1, &F)); // Introduce the local -> global mapping for macros within this module. F.MacroRemap.insertOrReplace( std::make_pair(LocalBaseMacroID, F.BaseMacroID - LocalBaseMacroID)); MacrosLoaded.resize(MacrosLoaded.size() + F.LocalNumMacros); } break; } case MACRO_TABLE: { // FIXME: Not used yet. break; } case LATE_PARSED_TEMPLATE: { LateParsedTemplates.append(Record.begin(), Record.end()); break; } case OPTIMIZE_PRAGMA_OPTIONS: if (Record.size() != 1) { Error("invalid pragma optimize record"); return Failure; } OptimizeOffPragmaLocation = ReadSourceLocation(F, Record[0]); break; } } } /// \brief Move the given method to the back of the global list of methods. static void moveMethodToBackOfGlobalList(Sema &S, ObjCMethodDecl *Method) { // Find the entry for this selector in the method pool. Sema::GlobalMethodPool::iterator Known = S.MethodPool.find(Method->getSelector()); if (Known == S.MethodPool.end()) return; // Retrieve the appropriate method list. ObjCMethodList &Start = Method->isInstanceMethod()? Known->second.first : Known->second.second; bool Found = false; for (ObjCMethodList *List = &Start; List; List = List->getNext()) { if (!Found) { if (List->Method == Method) { Found = true; } else { // Keep searching. continue; } } if (List->getNext()) List->Method = List->getNext()->Method; else List->Method = Method; } } void ASTReader::makeNamesVisible(const HiddenNames &Names, Module *Owner) { for (unsigned I = 0, N = Names.HiddenDecls.size(); I != N; ++I) { Decl *D = Names.HiddenDecls[I]; bool wasHidden = D->Hidden; D->Hidden = false; if (wasHidden && SemaObj) { if (ObjCMethodDecl *Method = dyn_cast
(D)) { moveMethodToBackOfGlobalList(*SemaObj, Method); } } } for (HiddenMacrosMap::const_iterator I = Names.HiddenMacros.begin(), E = Names.HiddenMacros.end(); I != E; ++I) installImportedMacro(I->first, I->second, Owner); } void ASTReader::makeModuleVisible(Module *Mod, Module::NameVisibilityKind NameVisibility, SourceLocation ImportLoc, bool Complain) { llvm::SmallPtrSet
Visited; SmallVector
Stack; Stack.push_back(Mod); while (!Stack.empty()) { Mod = Stack.pop_back_val(); if (NameVisibility <= Mod->NameVisibility) { // This module already has this level of visibility (or greater), so // there is nothing more to do. continue; } if (!Mod->isAvailable()) { // Modules that aren't available cannot be made visible. continue; } // Update the module's name visibility. if (NameVisibility >= Module::MacrosVisible && Mod->NameVisibility < Module::MacrosVisible) Mod->MacroVisibilityLoc = ImportLoc; Mod->NameVisibility = NameVisibility; // If we've already deserialized any names from this module, // mark them as visible. HiddenNamesMapType::iterator Hidden = HiddenNamesMap.find(Mod); if (Hidden != HiddenNamesMap.end()) { makeNamesVisible(Hidden->second, Hidden->first); HiddenNamesMap.erase(Hidden); } // Push any exported modules onto the stack to be marked as visible. SmallVector
Exports; Mod->getExportedModules(Exports); for (SmallVectorImpl
::iterator I = Exports.begin(), E = Exports.end(); I != E; ++I) { Module *Exported = *I; if (Visited.insert(Exported)) Stack.push_back(Exported); } // Detect any conflicts. if (Complain) { assert(ImportLoc.isValid() && "Missing import location"); for (unsigned I = 0, N = Mod->Conflicts.size(); I != N; ++I) { if (Mod->Conflicts[I].Other->NameVisibility >= NameVisibility) { Diag(ImportLoc, diag::warn_module_conflict) << Mod->getFullModuleName() << Mod->Conflicts[I].Other->getFullModuleName() << Mod->Conflicts[I].Message; // FIXME: Need note where the other module was imported. } } } } } bool ASTReader::loadGlobalIndex() { if (GlobalIndex) return false; if (TriedLoadingGlobalIndex || !UseGlobalIndex || !Context.getLangOpts().Modules) return true; // Try to load the global index. TriedLoadingGlobalIndex = true; StringRef ModuleCachePath = getPreprocessor().getHeaderSearchInfo().getModuleCachePath(); std::pair
Result = GlobalModuleIndex::readIndex(ModuleCachePath); if (!Result.first) return true; GlobalIndex.reset(Result.first); ModuleMgr.setGlobalIndex(GlobalIndex.get()); return false; } bool ASTReader::isGlobalIndexUnavailable() const { return Context.getLangOpts().Modules && UseGlobalIndex && !hasGlobalIndex() && TriedLoadingGlobalIndex; } static void updateModuleTimestamp(ModuleFile &MF) { // Overwrite the timestamp file contents so that file's mtime changes. std::string TimestampFilename = MF.getTimestampFilename(); std::string ErrorInfo; llvm::raw_fd_ostream OS(TimestampFilename.c_str(), ErrorInfo, llvm::sys::fs::F_Text); if (!ErrorInfo.empty()) return; OS << "Timestamp file\n"; } ASTReader::ASTReadResult ASTReader::ReadAST(const std::string &FileName, ModuleKind Type, SourceLocation ImportLoc, unsigned ClientLoadCapabilities) { llvm::SaveAndRestore
SetCurImportLocRAII(CurrentImportLoc, ImportLoc); // Defer any pending actions until we get to the end of reading the AST file. Deserializing AnASTFile(this); // Bump the generation number. unsigned PreviousGeneration = incrementGeneration(Context); unsigned NumModules = ModuleMgr.size(); SmallVector
Loaded; switch(ASTReadResult ReadResult = ReadASTCore(FileName, Type, ImportLoc, /*ImportedBy=*/nullptr, Loaded, 0, 0, ClientLoadCapabilities)) { case Failure: case Missing: case OutOfDate: case VersionMismatch: case ConfigurationMismatch: case HadErrors: { llvm::SmallPtrSet
LoadedSet; for (const ImportedModule &IM : Loaded) LoadedSet.insert(IM.Mod); ModuleMgr.removeModules(ModuleMgr.begin() + NumModules, ModuleMgr.end(), LoadedSet, Context.getLangOpts().Modules ? &PP.getHeaderSearchInfo().getModuleMap() : nullptr); // If we find that any modules are unusable, the global index is going // to be out-of-date. Just remove it. GlobalIndex.reset(); ModuleMgr.setGlobalIndex(nullptr); return ReadResult; } case Success: break; } // Here comes stuff that we only do once the entire chain is loaded. // Load the AST blocks of all of the modules that we loaded. for (SmallVectorImpl
::iterator M = Loaded.begin(), MEnd = Loaded.end(); M != MEnd; ++M) { ModuleFile &F = *M->Mod; // Read the AST block. if (ASTReadResult Result = ReadASTBlock(F, ClientLoadCapabilities)) return Result; // Once read, set the ModuleFile bit base offset and update the size in // bits of all files we've seen. F.GlobalBitOffset = TotalModulesSizeInBits; TotalModulesSizeInBits += F.SizeInBits; GlobalBitOffsetsMap.insert(std::make_pair(F.GlobalBitOffset, &F)); // Preload SLocEntries. for (unsigned I = 0, N = F.PreloadSLocEntries.size(); I != N; ++I) { int Index = int(F.PreloadSLocEntries[I] - 1) + F.SLocEntryBaseID; // Load it through the SourceManager and don't call ReadSLocEntry() // directly because the entry may have already been loaded in which case // calling ReadSLocEntry() directly would trigger an assertion in // SourceManager. SourceMgr.getLoadedSLocEntryByID(Index); } } // Setup the import locations and notify the module manager that we've // committed to these module files. for (SmallVectorImpl
::iterator M = Loaded.begin(), MEnd = Loaded.end(); M != MEnd; ++M) { ModuleFile &F = *M->Mod; ModuleMgr.moduleFileAccepted(&F); // Set the import location. F.DirectImportLoc = ImportLoc; if (!M->ImportedBy) F.ImportLoc = M->ImportLoc; else F.ImportLoc = ReadSourceLocation(*M->ImportedBy, M->ImportLoc.getRawEncoding()); } // Mark all of the identifiers in the identifier table as being out of date, // so that various accessors know to check the loaded modules when the // identifier is used. for (IdentifierTable::iterator Id = PP.getIdentifierTable().begin(), IdEnd = PP.getIdentifierTable().end(); Id != IdEnd; ++Id) Id->second->setOutOfDate(true); // Resolve any unresolved module exports. for (unsigned I = 0, N = UnresolvedModuleRefs.size(); I != N; ++I) { UnresolvedModuleRef &Unresolved = UnresolvedModuleRefs[I]; SubmoduleID GlobalID = getGlobalSubmoduleID(*Unresolved.File,Unresolved.ID); Module *ResolvedMod = getSubmodule(GlobalID); switch (Unresolved.Kind) { case UnresolvedModuleRef::Conflict: if (ResolvedMod) { Module::Conflict Conflict; Conflict.Other = ResolvedMod; Conflict.Message = Unresolved.String.str(); Unresolved.Mod->Conflicts.push_back(Conflict); } continue; case UnresolvedModuleRef::Import: if (ResolvedMod) Unresolved.Mod->Imports.push_back(ResolvedMod); continue; case UnresolvedModuleRef::Export: if (ResolvedMod || Unresolved.IsWildcard) Unresolved.Mod->Exports.push_back( Module::ExportDecl(ResolvedMod, Unresolved.IsWildcard)); continue; } } UnresolvedModuleRefs.clear(); // FIXME: How do we load the 'use'd modules? They may not be submodules. // Might be unnecessary as use declarations are only used to build the // module itself. InitializeContext(); if (SemaObj) UpdateSema(); if (DeserializationListener) DeserializationListener->ReaderInitialized(this); ModuleFile &PrimaryModule = ModuleMgr.getPrimaryModule(); if (!PrimaryModule.OriginalSourceFileID.isInvalid()) { PrimaryModule.OriginalSourceFileID = FileID::get(PrimaryModule.SLocEntryBaseID + PrimaryModule.OriginalSourceFileID.getOpaqueValue() - 1); // If this AST file is a precompiled preamble, then set the // preamble file ID of the source manager to the file source file // from which the preamble was built. if (Type == MK_Preamble) { SourceMgr.setPreambleFileID(PrimaryModule.OriginalSourceFileID); } else if (Type == MK_MainFile) { SourceMgr.setMainFileID(PrimaryModule.OriginalSourceFileID); } } // For any Objective-C class definitions we have already loaded, make sure // that we load any additional categories. for (unsigned I = 0, N = ObjCClassesLoaded.size(); I != N; ++I) { loadObjCCategories(ObjCClassesLoaded[I]->getGlobalID(), ObjCClassesLoaded[I], PreviousGeneration); } if (PP.getHeaderSearchInfo() .getHeaderSearchOpts() .ModulesValidateOncePerBuildSession) { // Now we are certain that the module and all modules it depends on are // up to date. Create or update timestamp files for modules that are // located in the module cache (not for PCH files that could be anywhere // in the filesystem). for (unsigned I = 0, N = Loaded.size(); I != N; ++I) { ImportedModule &M = Loaded[I]; if (M.Mod->Kind == MK_Module) { updateModuleTimestamp(*M.Mod); } } } return Success; } ASTReader::ASTReadResult ASTReader::ReadASTCore(StringRef FileName, ModuleKind Type, SourceLocation ImportLoc, ModuleFile *ImportedBy, SmallVectorImpl
&Loaded, off_t ExpectedSize, time_t ExpectedModTime, unsigned ClientLoadCapabilities) { ModuleFile *M; std::string ErrorStr; ModuleManager::AddModuleResult AddResult = ModuleMgr.addModule(FileName, Type, ImportLoc, ImportedBy, getGeneration(), ExpectedSize, ExpectedModTime, M, ErrorStr); switch (AddResult) { case ModuleManager::AlreadyLoaded: return Success; case ModuleManager::NewlyLoaded: // Load module file below. break; case ModuleManager::Missing: // The module file was missing; if the client handle handle, that, return // it. if (ClientLoadCapabilities & ARR_Missing) return Missing; // Otherwise, return an error. { std::string Msg = "Unable to load module \"" + FileName.str() + "\": " + ErrorStr; Error(Msg); } return Failure; case ModuleManager::OutOfDate: // We couldn't load the module file because it is out-of-date. If the // client can handle out-of-date, return it. if (ClientLoadCapabilities & ARR_OutOfDate) return OutOfDate; // Otherwise, return an error. { std::string Msg = "Unable to load module \"" + FileName.str() + "\": " + ErrorStr; Error(Msg); } return Failure; } assert(M && "Missing module file"); // FIXME: This seems rather a hack. Should CurrentDir be part of the // module? if (FileName != "-") { CurrentDir = llvm::sys::path::parent_path(FileName); if (CurrentDir.empty()) CurrentDir = "."; } ModuleFile &F = *M; BitstreamCursor &Stream = F.Stream; Stream.init(F.StreamFile); F.SizeInBits = F.Buffer->getBufferSize() * 8; // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diag(diag::err_not_a_pch_file) << FileName; return Failure; } // This is used for compatibility with older PCH formats. bool HaveReadControlBlock = false; while (1) { llvm::BitstreamEntry Entry = Stream.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: case llvm::BitstreamEntry::EndBlock: case llvm::BitstreamEntry::Record: Error("invalid record at top-level of AST file"); return Failure; case llvm::BitstreamEntry::SubBlock: break; } // We only know the control subblock ID. switch (Entry.ID) { case llvm::bitc::BLOCKINFO_BLOCK_ID: if (Stream.ReadBlockInfoBlock()) { Error("malformed BlockInfoBlock in AST file"); return Failure; } break; case CONTROL_BLOCK_ID: HaveReadControlBlock = true; switch (ReadControlBlock(F, Loaded, ImportedBy, ClientLoadCapabilities)) { case Success: break; case Failure: return Failure; case Missing: return Missing; case OutOfDate: return OutOfDate; case VersionMismatch: return VersionMismatch; case ConfigurationMismatch: return ConfigurationMismatch; case HadErrors: return HadErrors; } break; case AST_BLOCK_ID: if (!HaveReadControlBlock) { if ((ClientLoadCapabilities & ARR_VersionMismatch) == 0) Diag(diag::err_pch_version_too_old); return VersionMismatch; } // Record that we've loaded this module. Loaded.push_back(ImportedModule(M, ImportedBy, ImportLoc)); return Success; default: if (Stream.SkipBlock()) { Error("malformed block record in AST file"); return Failure; } break; } } return Success; } void ASTReader::InitializeContext() { // If there's a listener, notify them that we "read" the translation unit. if (DeserializationListener) DeserializationListener->DeclRead(PREDEF_DECL_TRANSLATION_UNIT_ID, Context.getTranslationUnitDecl()); // FIXME: Find a better way to deal with collisions between these // built-in types. Right now, we just ignore the problem. // Load the special types. if (SpecialTypes.size() >= NumSpecialTypeIDs) { if (unsigned String = SpecialTypes[SPECIAL_TYPE_CF_CONSTANT_STRING]) { if (!Context.CFConstantStringTypeDecl) Context.setCFConstantStringType(GetType(String)); } if (unsigned File = SpecialTypes[SPECIAL_TYPE_FILE]) { QualType FileType = GetType(File); if (FileType.isNull()) { Error("FILE type is NULL"); return; } if (!Context.FILEDecl) { if (const TypedefType *Typedef = FileType->getAs
()) Context.setFILEDecl(Typedef->getDecl()); else { const TagType *Tag = FileType->getAs
(); if (!Tag) { Error("Invalid FILE type in AST file"); return; } Context.setFILEDecl(Tag->getDecl()); } } } if (unsigned Jmp_buf = SpecialTypes[SPECIAL_TYPE_JMP_BUF]) { QualType Jmp_bufType = GetType(Jmp_buf); if (Jmp_bufType.isNull()) { Error("jmp_buf type is NULL"); return; } if (!Context.jmp_bufDecl) { if (const TypedefType *Typedef = Jmp_bufType->getAs
()) Context.setjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Jmp_bufType->getAs
(); if (!Tag) { Error("Invalid jmp_buf type in AST file"); return; } Context.setjmp_bufDecl(Tag->getDecl()); } } } if (unsigned Sigjmp_buf = SpecialTypes[SPECIAL_TYPE_SIGJMP_BUF]) { QualType Sigjmp_bufType = GetType(Sigjmp_buf); if (Sigjmp_bufType.isNull()) { Error("sigjmp_buf type is NULL"); return; } if (!Context.sigjmp_bufDecl) { if (const TypedefType *Typedef = Sigjmp_bufType->getAs
()) Context.setsigjmp_bufDecl(Typedef->getDecl()); else { const TagType *Tag = Sigjmp_bufType->getAs
(); assert(Tag && "Invalid sigjmp_buf type in AST file"); Context.setsigjmp_bufDecl(Tag->getDecl()); } } } if (unsigned ObjCIdRedef = SpecialTypes[SPECIAL_TYPE_OBJC_ID_REDEFINITION]) { if (Context.ObjCIdRedefinitionType.isNull()) Context.ObjCIdRedefinitionType = GetType(ObjCIdRedef); } if (unsigned ObjCClassRedef = SpecialTypes[SPECIAL_TYPE_OBJC_CLASS_REDEFINITION]) { if (Context.ObjCClassRedefinitionType.isNull()) Context.ObjCClassRedefinitionType = GetType(ObjCClassRedef); } if (unsigned ObjCSelRedef = SpecialTypes[SPECIAL_TYPE_OBJC_SEL_REDEFINITION]) { if (Context.ObjCSelRedefinitionType.isNull()) Context.ObjCSelRedefinitionType = GetType(ObjCSelRedef); } if (unsigned Ucontext_t = SpecialTypes[SPECIAL_TYPE_UCONTEXT_T]) { QualType Ucontext_tType = GetType(Ucontext_t); if (Ucontext_tType.isNull()) { Error("ucontext_t type is NULL"); return; } if (!Context.ucontext_tDecl) { if (const TypedefType *Typedef = Ucontext_tType->getAs
()) Context.setucontext_tDecl(Typedef->getDecl()); else { const TagType *Tag = Ucontext_tType->getAs
(); assert(Tag && "Invalid ucontext_t type in AST file"); Context.setucontext_tDecl(Tag->getDecl()); } } } } ReadPragmaDiagnosticMappings(Context.getDiagnostics()); // If there were any CUDA special declarations, deserialize them. if (!CUDASpecialDeclRefs.empty()) { assert(CUDASpecialDeclRefs.size() == 1 && "More decl refs than expected!"); Context.setcudaConfigureCallDecl( cast
(GetDecl(CUDASpecialDeclRefs[0]))); } // Re-export any modules that were imported by a non-module AST file. // FIXME: This does not make macro-only imports visible again. It also doesn't // make #includes mapped to module imports visible. for (auto &Import : ImportedModules) { if (Module *Imported = getSubmodule(Import.ID)) makeModuleVisible(Imported, Module::AllVisible, /*ImportLoc=*/Import.ImportLoc, /*Complain=*/false); } ImportedModules.clear(); } void ASTReader::finalizeForWriting() { for (HiddenNamesMapType::iterator Hidden = HiddenNamesMap.begin(), HiddenEnd = HiddenNamesMap.end(); Hidden != HiddenEnd; ++Hidden) { makeNamesVisible(Hidden->second, Hidden->first); } HiddenNamesMap.clear(); } /// \brief Given a cursor at the start of an AST file, scan ahead and drop the /// cursor into the start of the given block ID, returning false on success and /// true on failure. static bool SkipCursorToBlock(BitstreamCursor &Cursor, unsigned BlockID) { while (1) { llvm::BitstreamEntry Entry = Cursor.advance(); switch (Entry.Kind) { case llvm::BitstreamEntry::Error: case llvm::BitstreamEntry::EndBlock: return true; case llvm::BitstreamEntry::Record: // Ignore top-level records. Cursor.skipRecord(Entry.ID); break; case llvm::BitstreamEntry::SubBlock: if (Entry.ID == BlockID) { if (Cursor.EnterSubBlock(BlockID)) return true; // Found it! return false; } if (Cursor.SkipBlock()) return true; } } } /// \brief Retrieve the name of the original source file name /// directly from the AST file, without actually loading the AST /// file. std::string ASTReader::getOriginalSourceFile(const std::string &ASTFileName, FileManager &FileMgr, DiagnosticsEngine &Diags) { // Open the AST file. std::string ErrStr; std::unique_ptr
Buffer; Buffer.reset(FileMgr.getBufferForFile(ASTFileName, &ErrStr)); if (!Buffer) { Diags.Report(diag::err_fe_unable_to_read_pch_file) << ASTFileName << ErrStr; return std::string(); } // Initialize the stream llvm::BitstreamReader StreamFile; BitstreamCursor Stream; StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { Diags.Report(diag::err_fe_not_a_pch_file) << ASTFileName; return std::string(); } // Scan for the CONTROL_BLOCK_ID block. if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } // Scan for ORIGINAL_FILE inside the control block. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); if (Entry.Kind == llvm::BitstreamEntry::EndBlock) return std::string(); if (Entry.Kind != llvm::BitstreamEntry::Record) { Diags.Report(diag::err_fe_pch_malformed_block) << ASTFileName; return std::string(); } Record.clear(); StringRef Blob; if (Stream.readRecord(Entry.ID, Record, &Blob) == ORIGINAL_FILE) return Blob.str(); } } namespace { class SimplePCHValidator : public ASTReaderListener { const LangOptions &ExistingLangOpts; const TargetOptions &ExistingTargetOpts; const PreprocessorOptions &ExistingPPOpts; FileManager &FileMgr; public: SimplePCHValidator(const LangOptions &ExistingLangOpts, const TargetOptions &ExistingTargetOpts, const PreprocessorOptions &ExistingPPOpts, FileManager &FileMgr) : ExistingLangOpts(ExistingLangOpts), ExistingTargetOpts(ExistingTargetOpts), ExistingPPOpts(ExistingPPOpts), FileMgr(FileMgr) { } bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain) override { return checkLanguageOptions(ExistingLangOpts, LangOpts, nullptr); } bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain) override { return checkTargetOptions(ExistingTargetOpts, TargetOpts, nullptr); } bool ReadPreprocessorOptions(const PreprocessorOptions &PPOpts, bool Complain, std::string &SuggestedPredefines) override { return checkPreprocessorOptions(ExistingPPOpts, PPOpts, nullptr, FileMgr, SuggestedPredefines, ExistingLangOpts); } }; } bool ASTReader::readASTFileControlBlock(StringRef Filename, FileManager &FileMgr, ASTReaderListener &Listener) { // Open the AST file. std::string ErrStr; std::unique_ptr
Buffer; Buffer.reset(FileMgr.getBufferForFile(Filename, &ErrStr)); if (!Buffer) { return true; } // Initialize the stream llvm::BitstreamReader StreamFile; BitstreamCursor Stream; StreamFile.init((const unsigned char *)Buffer->getBufferStart(), (const unsigned char *)Buffer->getBufferEnd()); Stream.init(StreamFile); // Sniff for the signature. if (Stream.Read(8) != 'C' || Stream.Read(8) != 'P' || Stream.Read(8) != 'C' || Stream.Read(8) != 'H') { return true; } // Scan for the CONTROL_BLOCK_ID block. if (SkipCursorToBlock(Stream, CONTROL_BLOCK_ID)) return true; bool NeedsInputFiles = Listener.needsInputFileVisitation(); bool NeedsSystemInputFiles = Listener.needsSystemInputFileVisitation(); BitstreamCursor InputFilesCursor; if (NeedsInputFiles) { InputFilesCursor = Stream; if (SkipCursorToBlock(InputFilesCursor, INPUT_FILES_BLOCK_ID)) return true; // Read the abbreviations while (true) { uint64_t Offset = InputFilesCursor.GetCurrentBitNo(); unsigned Code = InputFilesCursor.ReadCode(); // We expect all abbrevs to be at the start of the block. if (Code != llvm::bitc::DEFINE_ABBREV) { InputFilesCursor.JumpToBit(Offset); break; } InputFilesCursor.ReadAbbrevRecord(); } } // Scan for ORIGINAL_FILE inside the control block. RecordData Record; while (1) { llvm::BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); if (Entry.Kind == llvm::BitstreamEntry::EndBlock) return false; if (Entry.Kind != llvm::BitstreamEntry::Record) return true; Record.clear(); StringRef Blob; unsigned RecCode = Stream.readRecord(Entry.ID, Record, &Blob); switch ((ControlRecordTypes)RecCode) { case METADATA: { if (Record[0] != VERSION_MAJOR) return true; if (Listener.ReadFullVersionInformation(Blob)) return true; break; } case MODULE_NAME: Listener.ReadModuleName(Blob); break; case MODULE_MAP_FILE: Listener.ReadModuleMapFile(Blob); break; case LANGUAGE_OPTIONS: if (ParseLanguageOptions(Record, false, Listener)) return true; break; case TARGET_OPTIONS: if (ParseTargetOptions(Record, false, Listener)) return true; break; case DIAGNOSTIC_OPTIONS: if (ParseDiagnosticOptions(Record, false, Listener)) return true; break; case FILE_SYSTEM_OPTIONS: if (ParseFileSystemOptions(Record, false, Listener)) return true; break; case HEADER_SEARCH_OPTIONS: if (ParseHeaderSearchOptions(Record, false, Listener)) return true; break; case PREPROCESSOR_OPTIONS: { std::string IgnoredSuggestedPredefines; if (ParsePreprocessorOptions(Record, false, Listener, IgnoredSuggestedPredefines)) return true; break; } case INPUT_FILE_OFFSETS: { if (!NeedsInputFiles) break; unsigned NumInputFiles = Record[0]; unsigned NumUserFiles = Record[1]; const uint32_t *InputFileOffs = (const uint32_t *)Blob.data(); for (unsigned I = 0; I != NumInputFiles; ++I) { // Go find this input file. bool isSystemFile = I >= NumUserFiles; if (isSystemFile && !NeedsSystemInputFiles) break; // the rest are system input files BitstreamCursor &Cursor = InputFilesCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(InputFileOffs[I]); unsigned Code = Cursor.ReadCode(); RecordData Record; StringRef Blob; bool shouldContinue = false; switch ((InputFileRecordTypes)Cursor.readRecord(Code, Record, &Blob)) { case INPUT_FILE: bool Overridden = static_cast
(Record[3]); shouldContinue = Listener.visitInputFile(Blob, isSystemFile, Overridden); break; } if (!shouldContinue) break; } break; } default: // No other validation to perform. break; } } } bool ASTReader::isAcceptableASTFile(StringRef Filename, FileManager &FileMgr, const LangOptions &LangOpts, const TargetOptions &TargetOpts, const PreprocessorOptions &PPOpts) { SimplePCHValidator validator(LangOpts, TargetOpts, PPOpts, FileMgr); return !readASTFileControlBlock(Filename, FileMgr, validator); } ASTReader::ASTReadResult ASTReader::ReadSubmoduleBlock(ModuleFile &F, unsigned ClientLoadCapabilities) { // Enter the submodule block. if (F.Stream.EnterSubBlock(SUBMODULE_BLOCK_ID)) { Error("malformed submodule block record in AST file"); return Failure; } ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); bool First = true; Module *CurrentModule = nullptr; RecordData Record; while (true) { llvm::BitstreamEntry Entry = F.Stream.advanceSkippingSubblocks(); switch (Entry.Kind) { case llvm::BitstreamEntry::SubBlock: // Handled for us already. case llvm::BitstreamEntry::Error: Error("malformed block record in AST file"); return Failure; case llvm::BitstreamEntry::EndBlock: return Success; case llvm::BitstreamEntry::Record: // The interesting case. break; } // Read a record. StringRef Blob; Record.clear(); switch (F.Stream.readRecord(Entry.ID, Record, &Blob)) { default: // Default behavior: ignore. break; case SUBMODULE_DEFINITION: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (Record.size() < 8) { Error("malformed module definition"); return Failure; } StringRef Name = Blob; unsigned Idx = 0; SubmoduleID GlobalID = getGlobalSubmoduleID(F, Record[Idx++]); SubmoduleID Parent = getGlobalSubmoduleID(F, Record[Idx++]); bool IsFramework = Record[Idx++]; bool IsExplicit = Record[Idx++]; bool IsSystem = Record[Idx++]; bool IsExternC = Record[Idx++]; bool InferSubmodules = Record[Idx++]; bool InferExplicitSubmodules = Record[Idx++]; bool InferExportWildcard = Record[Idx++]; bool ConfigMacrosExhaustive = Record[Idx++]; Module *ParentModule = nullptr; const FileEntry *ModuleMap = nullptr; if (Parent) { ParentModule = getSubmodule(Parent); ModuleMap = ParentModule->ModuleMap; } if (!F.ModuleMapPath.empty()) ModuleMap = FileMgr.getFile(F.ModuleMapPath); // Retrieve this (sub)module from the module map, creating it if // necessary. CurrentModule = ModMap.findOrCreateModule(Name, ParentModule, ModuleMap, IsFramework, IsExplicit).first; SubmoduleID GlobalIndex = GlobalID - NUM_PREDEF_SUBMODULE_IDS; if (GlobalIndex >= SubmodulesLoaded.size() || SubmodulesLoaded[GlobalIndex]) { Error("too many submodules"); return Failure; } if (!ParentModule) { if (const FileEntry *CurFile = CurrentModule->getASTFile()) { if (CurFile != F.File) { if (!Diags.isDiagnosticInFlight()) { Diag(diag::err_module_file_conflict) << CurrentModule->getTopLevelModuleName() << CurFile->getName() << F.File->getName(); } return Failure; } } CurrentModule->setASTFile(F.File); } CurrentModule->IsFromModuleFile = true; CurrentModule->IsSystem = IsSystem || CurrentModule->IsSystem; CurrentModule->IsExternC = IsExternC; CurrentModule->InferSubmodules = InferSubmodules; CurrentModule->InferExplicitSubmodules = InferExplicitSubmodules; CurrentModule->InferExportWildcard = InferExportWildcard; CurrentModule->ConfigMacrosExhaustive = ConfigMacrosExhaustive; if (DeserializationListener) DeserializationListener->ModuleRead(GlobalID, CurrentModule); SubmodulesLoaded[GlobalIndex] = CurrentModule; // Clear out data that will be replaced by what is the module file. CurrentModule->LinkLibraries.clear(); CurrentModule->ConfigMacros.clear(); CurrentModule->UnresolvedConflicts.clear(); CurrentModule->Conflicts.clear(); break; } case SUBMODULE_UMBRELLA_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; if (const FileEntry *Umbrella = PP.getFileManager().getFile(Blob)) { if (!CurrentModule->getUmbrellaHeader()) ModMap.setUmbrellaHeader(CurrentModule, Umbrella); else if (CurrentModule->getUmbrellaHeader() != Umbrella) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Error("mismatched umbrella headers in submodule"); return OutOfDate; } } break; } case SUBMODULE_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; // We lazily associate headers with their modules via the HeaderInfoTable. // FIXME: Re-evaluate this section; maybe only store InputFile IDs instead // of complete filenames or remove it entirely. break; } case SUBMODULE_EXCLUDED_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; // We lazily associate headers with their modules via the HeaderInfoTable. // FIXME: Re-evaluate this section; maybe only store InputFile IDs instead // of complete filenames or remove it entirely. break; } case SUBMODULE_PRIVATE_HEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; // We lazily associate headers with their modules via the HeaderInfoTable. // FIXME: Re-evaluate this section; maybe only store InputFile IDs instead // of complete filenames or remove it entirely. break; } case SUBMODULE_TOPHEADER: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; CurrentModule->addTopHeaderFilename(Blob); break; } case SUBMODULE_UMBRELLA_DIR: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; if (const DirectoryEntry *Umbrella = PP.getFileManager().getDirectory(Blob)) { if (!CurrentModule->getUmbrellaDir()) ModMap.setUmbrellaDir(CurrentModule, Umbrella); else if (CurrentModule->getUmbrellaDir() != Umbrella) { if ((ClientLoadCapabilities & ARR_OutOfDate) == 0) Error("mismatched umbrella directories in submodule"); return OutOfDate; } } break; } case SUBMODULE_METADATA: { if (!First) { Error("submodule metadata record not at beginning of block"); return Failure; } First = false; F.BaseSubmoduleID = getTotalNumSubmodules(); F.LocalNumSubmodules = Record[0]; unsigned LocalBaseSubmoduleID = Record[1]; if (F.LocalNumSubmodules > 0) { // Introduce the global -> local mapping for submodules within this // module. GlobalSubmoduleMap.insert(std::make_pair(getTotalNumSubmodules()+1,&F)); // Introduce the local -> global mapping for submodules within this // module. F.SubmoduleRemap.insertOrReplace( std::make_pair(LocalBaseSubmoduleID, F.BaseSubmoduleID - LocalBaseSubmoduleID)); SubmodulesLoaded.resize(SubmodulesLoaded.size() + F.LocalNumSubmodules); } break; } case SUBMODULE_IMPORTS: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; for (unsigned Idx = 0; Idx != Record.size(); ++Idx) { UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.Kind = UnresolvedModuleRef::Import; Unresolved.IsWildcard = false; UnresolvedModuleRefs.push_back(Unresolved); } break; } case SUBMODULE_EXPORTS: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; for (unsigned Idx = 0; Idx + 1 < Record.size(); Idx += 2) { UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[Idx]; Unresolved.Kind = UnresolvedModuleRef::Export; Unresolved.IsWildcard = Record[Idx + 1]; UnresolvedModuleRefs.push_back(Unresolved); } // Once we've loaded the set of exports, there's no reason to keep // the parsed, unresolved exports around. CurrentModule->UnresolvedExports.clear(); break; } case SUBMODULE_REQUIRES: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; CurrentModule->addRequirement(Blob, Record[0], Context.getLangOpts(), Context.getTargetInfo()); break; } case SUBMODULE_LINK_LIBRARY: if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; CurrentModule->LinkLibraries.push_back( Module::LinkLibrary(Blob, Record[0])); break; case SUBMODULE_CONFIG_MACRO: if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; CurrentModule->ConfigMacros.push_back(Blob.str()); break; case SUBMODULE_CONFLICT: { if (First) { Error("missing submodule metadata record at beginning of block"); return Failure; } if (!CurrentModule) break; UnresolvedModuleRef Unresolved; Unresolved.File = &F; Unresolved.Mod = CurrentModule; Unresolved.ID = Record[0]; Unresolved.Kind = UnresolvedModuleRef::Conflict; Unresolved.IsWildcard = false; Unresolved.String = Blob; UnresolvedModuleRefs.push_back(Unresolved); break; } } } } /// \brief Parse the record that corresponds to a LangOptions data /// structure. /// /// This routine parses the language options from the AST file and then gives /// them to the AST listener if one is set. /// /// \returns true if the listener deems the file unacceptable, false otherwise. bool ASTReader::ParseLanguageOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { LangOptions LangOpts; unsigned Idx = 0; #define LANGOPT(Name, Bits, Default, Description) \ LangOpts.Name = Record[Idx++]; #define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \ LangOpts.set##Name(static_cast
(Record[Idx++])); #include "clang/Basic/LangOptions.def" #define SANITIZER(NAME, ID) LangOpts.Sanitize.ID = Record[Idx++]; #include "clang/Basic/Sanitizers.def" ObjCRuntime::Kind runtimeKind = (ObjCRuntime::Kind) Record[Idx++]; VersionTuple runtimeVersion = ReadVersionTuple(Record, Idx); LangOpts.ObjCRuntime = ObjCRuntime(runtimeKind, runtimeVersion); unsigned Length = Record[Idx++]; LangOpts.CurrentModule.assign(Record.begin() + Idx, Record.begin() + Idx + Length); Idx += Length; // Comment options. for (unsigned N = Record[Idx++]; N; --N) { LangOpts.CommentOpts.BlockCommandNames.push_back( ReadString(Record, Idx)); } LangOpts.CommentOpts.ParseAllComments = Record[Idx++]; return Listener.ReadLanguageOptions(LangOpts, Complain); } bool ASTReader::ParseTargetOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { unsigned Idx = 0; TargetOptions TargetOpts; TargetOpts.Triple = ReadString(Record, Idx); TargetOpts.CPU = ReadString(Record, Idx); TargetOpts.ABI = ReadString(Record, Idx); for (unsigned N = Record[Idx++]; N; --N) { TargetOpts.FeaturesAsWritten.push_back(ReadString(Record, Idx)); } for (unsigned N = Record[Idx++]; N; --N) { TargetOpts.Features.push_back(ReadString(Record, Idx)); } return Listener.ReadTargetOptions(TargetOpts, Complain); } bool ASTReader::ParseDiagnosticOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { IntrusiveRefCntPtr
DiagOpts(new DiagnosticOptions); unsigned Idx = 0; #define DIAGOPT(Name, Bits, Default) DiagOpts->Name = Record[Idx++]; #define ENUM_DIAGOPT(Name, Type, Bits, Default) \ DiagOpts->set##Name(static_cast
(Record[Idx++])); #include "clang/Basic/DiagnosticOptions.def" for (unsigned N = Record[Idx++]; N; --N) { DiagOpts->Warnings.push_back(ReadString(Record, Idx)); } return Listener.ReadDiagnosticOptions(DiagOpts, Complain); } bool ASTReader::ParseFileSystemOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { FileSystemOptions FSOpts; unsigned Idx = 0; FSOpts.WorkingDir = ReadString(Record, Idx); return Listener.ReadFileSystemOptions(FSOpts, Complain); } bool ASTReader::ParseHeaderSearchOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener) { HeaderSearchOptions HSOpts; unsigned Idx = 0; HSOpts.Sysroot = ReadString(Record, Idx); // Include entries. for (unsigned N = Record[Idx++]; N; --N) { std::string Path = ReadString(Record, Idx); frontend::IncludeDirGroup Group = static_cast
(Record[Idx++]); bool IsFramework = Record[Idx++]; bool IgnoreSysRoot = Record[Idx++]; HSOpts.UserEntries.push_back( HeaderSearchOptions::Entry(Path, Group, IsFramework, IgnoreSysRoot)); } // System header prefixes. for (unsigned N = Record[Idx++]; N; --N) { std::string Prefix = ReadString(Record, Idx); bool IsSystemHeader = Record[Idx++]; HSOpts.SystemHeaderPrefixes.push_back( HeaderSearchOptions::SystemHeaderPrefix(Prefix, IsSystemHeader)); } HSOpts.ResourceDir = ReadString(Record, Idx); HSOpts.ModuleCachePath = ReadString(Record, Idx); HSOpts.ModuleUserBuildPath = ReadString(Record, Idx); HSOpts.DisableModuleHash = Record[Idx++]; HSOpts.UseBuiltinIncludes = Record[Idx++]; HSOpts.UseStandardSystemIncludes = Record[Idx++]; HSOpts.UseStandardCXXIncludes = Record[Idx++]; HSOpts.UseLibcxx = Record[Idx++]; return Listener.ReadHeaderSearchOptions(HSOpts, Complain); } bool ASTReader::ParsePreprocessorOptions(const RecordData &Record, bool Complain, ASTReaderListener &Listener, std::string &SuggestedPredefines) { PreprocessorOptions PPOpts; unsigned Idx = 0; // Macro definitions/undefs for (unsigned N = Record[Idx++]; N; --N) { std::string Macro = ReadString(Record, Idx); bool IsUndef = Record[Idx++]; PPOpts.Macros.push_back(std::make_pair(Macro, IsUndef)); } // Includes for (unsigned N = Record[Idx++]; N; --N) { PPOpts.Includes.push_back(ReadString(Record, Idx)); } // Macro Includes for (unsigned N = Record[Idx++]; N; --N) { PPOpts.MacroIncludes.push_back(ReadString(Record, Idx)); } PPOpts.UsePredefines = Record[Idx++]; PPOpts.DetailedRecord = Record[Idx++]; PPOpts.ImplicitPCHInclude = ReadString(Record, Idx); PPOpts.ImplicitPTHInclude = ReadString(Record, Idx); PPOpts.ObjCXXARCStandardLibrary = static_cast
(Record[Idx++]); SuggestedPredefines.clear(); return Listener.ReadPreprocessorOptions(PPOpts, Complain, SuggestedPredefines); } std::pair
ASTReader::getModulePreprocessedEntity(unsigned GlobalIndex) { GlobalPreprocessedEntityMapType::iterator I = GlobalPreprocessedEntityMap.find(GlobalIndex); assert(I != GlobalPreprocessedEntityMap.end() && "Corrupted global preprocessed entity map"); ModuleFile *M = I->second; unsigned LocalIndex = GlobalIndex - M->BasePreprocessedEntityID; return std::make_pair(M, LocalIndex); } std::pair
ASTReader::getModulePreprocessedEntities(ModuleFile &Mod) const { if (PreprocessingRecord *PPRec = PP.getPreprocessingRecord()) return PPRec->getIteratorsForLoadedRange(Mod.BasePreprocessedEntityID, Mod.NumPreprocessedEntities); return std::make_pair(PreprocessingRecord::iterator(), PreprocessingRecord::iterator()); } std::pair
ASTReader::getModuleFileLevelDecls(ModuleFile &Mod) { return std::make_pair(ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls), ModuleDeclIterator(this, &Mod, Mod.FileSortedDecls + Mod.NumFileSortedDecls)); } PreprocessedEntity *ASTReader::ReadPreprocessedEntity(unsigned Index) { PreprocessedEntityID PPID = Index+1; std::pair
PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; if (!PP.getPreprocessingRecord()) { Error("no preprocessing record"); return nullptr; } SavedStreamPosition SavedPosition(M.PreprocessorDetailCursor); M.PreprocessorDetailCursor.JumpToBit(PPOffs.BitOffset); llvm::BitstreamEntry Entry = M.PreprocessorDetailCursor.advance(BitstreamCursor::AF_DontPopBlockAtEnd); if (Entry.Kind != llvm::BitstreamEntry::Record) return nullptr; // Read the record. SourceRange Range(ReadSourceLocation(M, PPOffs.Begin), ReadSourceLocation(M, PPOffs.End)); PreprocessingRecord &PPRec = *PP.getPreprocessingRecord(); StringRef Blob; RecordData Record; PreprocessorDetailRecordTypes RecType = (PreprocessorDetailRecordTypes)M.PreprocessorDetailCursor.readRecord( Entry.ID, Record, &Blob); switch (RecType) { case PPD_MACRO_EXPANSION: { bool isBuiltin = Record[0]; IdentifierInfo *Name = nullptr; MacroDefinition *Def = nullptr; if (isBuiltin) Name = getLocalIdentifier(M, Record[1]); else { PreprocessedEntityID GlobalID = getGlobalPreprocessedEntityID(M, Record[1]); Def =cast
(PPRec.getLoadedPreprocessedEntity(GlobalID-1)); } MacroExpansion *ME; if (isBuiltin) ME = new (PPRec) MacroExpansion(Name, Range); else ME = new (PPRec) MacroExpansion(Def, Range); return ME; } case PPD_MACRO_DEFINITION: { // Decode the identifier info and then check again; if the macro is // still defined and associated with the identifier, IdentifierInfo *II = getLocalIdentifier(M, Record[0]); MacroDefinition *MD = new (PPRec) MacroDefinition(II, Range); if (DeserializationListener) DeserializationListener->MacroDefinitionRead(PPID, MD); return MD; } case PPD_INCLUSION_DIRECTIVE: { const char *FullFileNameStart = Blob.data() + Record[0]; StringRef FullFileName(FullFileNameStart, Blob.size() - Record[0]); const FileEntry *File = nullptr; if (!FullFileName.empty()) File = PP.getFileManager().getFile(FullFileName); // FIXME: Stable encoding InclusionDirective::InclusionKind Kind = static_cast
(Record[2]); InclusionDirective *ID = new (PPRec) InclusionDirective(PPRec, Kind, StringRef(Blob.data(), Record[0]), Record[1], Record[3], File, Range); return ID; } } llvm_unreachable("Invalid PreprocessorDetailRecordTypes"); } /// \brief \arg SLocMapI points at a chunk of a module that contains no /// preprocessed entities or the entities it contains are not the ones we are /// looking for. Find the next module that contains entities and return the ID /// of the first entry. PreprocessedEntityID ASTReader::findNextPreprocessedEntity( GlobalSLocOffsetMapType::const_iterator SLocMapI) const { ++SLocMapI; for (GlobalSLocOffsetMapType::const_iterator EndI = GlobalSLocOffsetMap.end(); SLocMapI != EndI; ++SLocMapI) { ModuleFile &M = *SLocMapI->second; if (M.NumPreprocessedEntities) return M.BasePreprocessedEntityID; } return getTotalNumPreprocessedEntities(); } namespace { template
struct PPEntityComp { const ASTReader &Reader; ModuleFile &M; PPEntityComp(const ASTReader &Reader, ModuleFile &M) : Reader(Reader), M(M) { } bool operator()(const PPEntityOffset &L, const PPEntityOffset &R) const { SourceLocation LHS = getLoc(L); SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(const PPEntityOffset &L, SourceLocation RHS) const { SourceLocation LHS = getLoc(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, const PPEntityOffset &R) const { SourceLocation RHS = getLoc(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLoc(const PPEntityOffset &PPE) const { return Reader.ReadSourceLocation(M, PPE.*PPLoc); } }; } PreprocessedEntityID ASTReader::findPreprocessedEntity(SourceLocation Loc, bool EndsAfter) const { if (SourceMgr.isLocalSourceLocation(Loc)) return getTotalNumPreprocessedEntities(); GlobalSLocOffsetMapType::const_iterator SLocMapI = GlobalSLocOffsetMap.find( SourceManager::MaxLoadedOffset - Loc.getOffset() - 1); assert(SLocMapI != GlobalSLocOffsetMap.end() && "Corrupted global sloc offset map"); if (SLocMapI->second->NumPreprocessedEntities == 0) return findNextPreprocessedEntity(SLocMapI); ModuleFile &M = *SLocMapI->second; typedef const PPEntityOffset *pp_iterator; pp_iterator pp_begin = M.PreprocessedEntityOffsets; pp_iterator pp_end = pp_begin + M.NumPreprocessedEntities; size_t Count = M.NumPreprocessedEntities; size_t Half; pp_iterator First = pp_begin; pp_iterator PPI; if (EndsAfter) { PPI = std::upper_bound(pp_begin, pp_end, Loc, PPEntityComp<&PPEntityOffset::Begin>(*this, M)); } else { // Do a binary search manually instead of using std::lower_bound because // The end locations of entities may be unordered (when a macro expansion // is inside another macro argument), but for this case it is not important // whether we get the first macro expansion or its containing macro. while (Count > 0) { Half = Count / 2; PPI = First; std::advance(PPI, Half); if (SourceMgr.isBeforeInTranslationUnit(ReadSourceLocation(M, PPI->End), Loc)) { First = PPI; ++First; Count = Count - Half - 1; } else Count = Half; } } if (PPI == pp_end) return findNextPreprocessedEntity(SLocMapI); return M.BasePreprocessedEntityID + (PPI - pp_begin); } /// \brief Returns a pair of [Begin, End) indices of preallocated /// preprocessed entities that \arg Range encompasses. std::pair
ASTReader::findPreprocessedEntitiesInRange(SourceRange Range) { if (Range.isInvalid()) return std::make_pair(0,0); assert(!SourceMgr.isBeforeInTranslationUnit(Range.getEnd(),Range.getBegin())); PreprocessedEntityID BeginID = findPreprocessedEntity(Range.getBegin(), false); PreprocessedEntityID EndID = findPreprocessedEntity(Range.getEnd(), true); return std::make_pair(BeginID, EndID); } /// \brief Optionally returns true or false if the preallocated preprocessed /// entity with index \arg Index came from file \arg FID. Optional
ASTReader::isPreprocessedEntityInFileID(unsigned Index, FileID FID) { if (FID.isInvalid()) return false; std::pair
PPInfo = getModulePreprocessedEntity(Index); ModuleFile &M = *PPInfo.first; unsigned LocalIndex = PPInfo.second; const PPEntityOffset &PPOffs = M.PreprocessedEntityOffsets[LocalIndex]; SourceLocation Loc = ReadSourceLocation(M, PPOffs.Begin); if (Loc.isInvalid()) return false; if (SourceMgr.isInFileID(SourceMgr.getFileLoc(Loc), FID)) return true; else return false; } namespace { /// \brief Visitor used to search for information about a header file. class HeaderFileInfoVisitor { const FileEntry *FE; Optional
HFI; public: explicit HeaderFileInfoVisitor(const FileEntry *FE) : FE(FE) { } static bool visit(ModuleFile &M, void *UserData) { HeaderFileInfoVisitor *This = static_cast
(UserData); HeaderFileInfoLookupTable *Table = static_cast
(M.HeaderFileInfoTable); if (!Table) return false; // Look in the on-disk hash table for an entry for this file name. HeaderFileInfoLookupTable::iterator Pos = Table->find(This->FE); if (Pos == Table->end()) return false; This->HFI = *Pos; return true; } Optional
getHeaderFileInfo() const { return HFI; } }; } HeaderFileInfo ASTReader::GetHeaderFileInfo(const FileEntry *FE) { HeaderFileInfoVisitor Visitor(FE); ModuleMgr.visit(&HeaderFileInfoVisitor::visit, &Visitor); if (Optional
HFI = Visitor.getHeaderFileInfo()) return *HFI; return HeaderFileInfo(); } void ASTReader::ReadPragmaDiagnosticMappings(DiagnosticsEngine &Diag) { // FIXME: Make it work properly with modules. SmallVector
DiagStates; for (ModuleIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { ModuleFile &F = *(*I); unsigned Idx = 0; DiagStates.clear(); assert(!Diag.DiagStates.empty()); DiagStates.push_back(&Diag.DiagStates.front()); // the command-line one. while (Idx < F.PragmaDiagMappings.size()) { SourceLocation Loc = ReadSourceLocation(F, F.PragmaDiagMappings[Idx++]); unsigned DiagStateID = F.PragmaDiagMappings[Idx++]; if (DiagStateID != 0) { Diag.DiagStatePoints.push_back( DiagnosticsEngine::DiagStatePoint(DiagStates[DiagStateID-1], FullSourceLoc(Loc, SourceMgr))); continue; } assert(DiagStateID == 0); // A new DiagState was created here. Diag.DiagStates.push_back(*Diag.GetCurDiagState()); DiagnosticsEngine::DiagState *NewState = &Diag.DiagStates.back(); DiagStates.push_back(NewState); Diag.DiagStatePoints.push_back( DiagnosticsEngine::DiagStatePoint(NewState, FullSourceLoc(Loc, SourceMgr))); while (1) { assert(Idx < F.PragmaDiagMappings.size() && "Invalid data, didn't find '-1' marking end of diag/map pairs"); if (Idx >= F.PragmaDiagMappings.size()) { break; // Something is messed up but at least avoid infinite loop in // release build. } unsigned DiagID = F.PragmaDiagMappings[Idx++]; if (DiagID == (unsigned)-1) { break; // no more diag/map pairs for this location. } diag::Severity Map = (diag::Severity)F.PragmaDiagMappings[Idx++]; DiagnosticMapping Mapping = Diag.makeUserMapping(Map, Loc); Diag.GetCurDiagState()->setMapping(DiagID, Mapping); } } } } /// \brief Get the correct cursor and offset for loading a type. ASTReader::RecordLocation ASTReader::TypeCursorForIndex(unsigned Index) { GlobalTypeMapType::iterator I = GlobalTypeMap.find(Index); assert(I != GlobalTypeMap.end() && "Corrupted global type map"); ModuleFile *M = I->second; return RecordLocation(M, M->TypeOffsets[Index - M->BaseTypeIndex]); } /// \brief Read and return the type with the given index.. /// /// The index is the type ID, shifted and minus the number of predefs. This /// routine actually reads the record corresponding to the type at the given /// location. It is a helper routine for GetType, which deals with reading type /// IDs. QualType ASTReader::readTypeRecord(unsigned Index) { RecordLocation Loc = TypeCursorForIndex(Index); BitstreamCursor &DeclsCursor = Loc.F->DeclsCursor; // Keep track of where we are in the stream, then jump back there // after reading this type. SavedStreamPosition SavedPosition(DeclsCursor); ReadingKindTracker ReadingKind(Read_Type, *this); // Note that we are loading a type record. Deserializing AType(this); unsigned Idx = 0; DeclsCursor.JumpToBit(Loc.Offset); RecordData Record; unsigned Code = DeclsCursor.ReadCode(); switch ((TypeCode)DeclsCursor.readRecord(Code, Record)) { case TYPE_EXT_QUAL: { if (Record.size() != 2) { Error("Incorrect encoding of extended qualifier type"); return QualType(); } QualType Base = readType(*Loc.F, Record, Idx); Qualifiers Quals = Qualifiers::fromOpaqueValue(Record[Idx++]); return Context.getQualifiedType(Base, Quals); } case TYPE_COMPLEX: { if (Record.size() != 1) { Error("Incorrect encoding of complex type"); return QualType(); } QualType ElemType = readType(*Loc.F, Record, Idx); return Context.getComplexType(ElemType); } case TYPE_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getPointerType(PointeeType); } case TYPE_DECAYED: { if (Record.size() != 1) { Error("Incorrect encoding of decayed type"); return QualType(); } QualType OriginalType = readType(*Loc.F, Record, Idx); QualType DT = Context.getAdjustedParameterType(OriginalType); if (!isa
(DT)) Error("Decayed type does not decay"); return DT; } case TYPE_ADJUSTED: { if (Record.size() != 2) { Error("Incorrect encoding of adjusted type"); return QualType(); } QualType OriginalTy = readType(*Loc.F, Record, Idx); QualType AdjustedTy = readType(*Loc.F, Record, Idx); return Context.getAdjustedType(OriginalTy, AdjustedTy); } case TYPE_BLOCK_POINTER: { if (Record.size() != 1) { Error("Incorrect encoding of block pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getBlockPointerType(PointeeType); } case TYPE_LVALUE_REFERENCE: { if (Record.size() != 2) { Error("Incorrect encoding of lvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getLValueReferenceType(PointeeType, Record[1]); } case TYPE_RVALUE_REFERENCE: { if (Record.size() != 1) { Error("Incorrect encoding of rvalue reference type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); return Context.getRValueReferenceType(PointeeType); } case TYPE_MEMBER_POINTER: { if (Record.size() != 2) { Error("Incorrect encoding of member pointer type"); return QualType(); } QualType PointeeType = readType(*Loc.F, Record, Idx); QualType ClassType = readType(*Loc.F, Record, Idx); if (PointeeType.isNull() || ClassType.isNull()) return QualType(); return Context.getMemberPointerType(PointeeType, ClassType.getTypePtr()); } case TYPE_CONSTANT_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; unsigned Idx = 3; llvm::APInt Size = ReadAPInt(Record, Idx); return Context.getConstantArrayType(ElementType, Size, ASM, IndexTypeQuals); } case TYPE_INCOMPLETE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; return Context.getIncompleteArrayType(ElementType, ASM, IndexTypeQuals); } case TYPE_VARIABLE_ARRAY: { QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[1]; unsigned IndexTypeQuals = Record[2]; SourceLocation LBLoc = ReadSourceLocation(*Loc.F, Record[3]); SourceLocation RBLoc = ReadSourceLocation(*Loc.F, Record[4]); return Context.getVariableArrayType(ElementType, ReadExpr(*Loc.F), ASM, IndexTypeQuals, SourceRange(LBLoc, RBLoc)); } case TYPE_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; unsigned VecKind = Record[2]; return Context.getVectorType(ElementType, NumElements, (VectorType::VectorKind)VecKind); } case TYPE_EXT_VECTOR: { if (Record.size() != 3) { Error("incorrect encoding of extended vector type in AST file"); return QualType(); } QualType ElementType = readType(*Loc.F, Record, Idx); unsigned NumElements = Record[1]; return Context.getExtVectorType(ElementType, NumElements); } case TYPE_FUNCTION_NO_PROTO: { if (Record.size() != 6) { Error("incorrect encoding of no-proto function type"); return QualType(); } QualType ResultType = readType(*Loc.F, Record, Idx); FunctionType::ExtInfo Info(Record[1], Record[2], Record[3], (CallingConv)Record[4], Record[5]); return Context.getFunctionNoProtoType(ResultType, Info); } case TYPE_FUNCTION_PROTO: { QualType ResultType = readType(*Loc.F, Record, Idx); FunctionProtoType::ExtProtoInfo EPI; EPI.ExtInfo = FunctionType::ExtInfo(/*noreturn*/ Record[1], /*hasregparm*/ Record[2], /*regparm*/ Record[3], static_cast
(Record[4]), /*produces*/ Record[5]); unsigned Idx = 6; unsigned NumParams = Record[Idx++]; SmallVector
ParamTypes; for (unsigned I = 0; I != NumParams; ++I) ParamTypes.push_back(readType(*Loc.F, Record, Idx)); EPI.Variadic = Record[Idx++]; EPI.HasTrailingReturn = Record[Idx++]; EPI.TypeQuals = Record[Idx++]; EPI.RefQualifier = static_cast
(Record[Idx++]); SmallVector
ExceptionStorage; readExceptionSpec(*Loc.F, ExceptionStorage, EPI, Record, Idx); return Context.getFunctionType(ResultType, ParamTypes, EPI); } case TYPE_UNRESOLVED_USING: { unsigned Idx = 0; return Context.getTypeDeclType( ReadDeclAs
(*Loc.F, Record, Idx)); } case TYPE_TYPEDEF: { if (Record.size() != 2) { Error("incorrect encoding of typedef type"); return QualType(); } unsigned Idx = 0; TypedefNameDecl *Decl = ReadDeclAs
(*Loc.F, Record, Idx); QualType Canonical = readType(*Loc.F, Record, Idx); if (!Canonical.isNull()) Canonical = Context.getCanonicalType(Canonical); return Context.getTypedefType(Decl, Canonical); } case TYPE_TYPEOF_EXPR: return Context.getTypeOfExprType(ReadExpr(*Loc.F)); case TYPE_TYPEOF: { if (Record.size() != 1) { Error("incorrect encoding of typeof(type) in AST file"); return QualType(); } QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getTypeOfType(UnderlyingType); } case TYPE_DECLTYPE: { QualType UnderlyingType = readType(*Loc.F, Record, Idx); return Context.getDecltypeType(ReadExpr(*Loc.F), UnderlyingType); } case TYPE_UNARY_TRANSFORM: { QualType BaseType = readType(*Loc.F, Record, Idx); QualType UnderlyingType = readType(*Loc.F, Record, Idx); UnaryTransformType::UTTKind UKind = (UnaryTransformType::UTTKind)Record[2]; return Context.getUnaryTransformType(BaseType, UnderlyingType, UKind); } case TYPE_AUTO: { QualType Deduced = readType(*Loc.F, Record, Idx); bool IsDecltypeAuto = Record[Idx++]; bool IsDependent = Deduced.isNull() ? Record[Idx++] : false; return Context.getAutoType(Deduced, IsDecltypeAuto, IsDependent); } case TYPE_RECORD: { if (Record.size() != 2) { Error("incorrect encoding of record type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; RecordDecl *RD = ReadDeclAs
(*Loc.F, Record, Idx); RD = cast_or_null
(RD->getCanonicalDecl()); QualType T = Context.getRecordType(RD); const_cast
(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ENUM: { if (Record.size() != 2) { Error("incorrect encoding of enum type"); return QualType(); } unsigned Idx = 0; bool IsDependent = Record[Idx++]; QualType T = Context.getEnumType(ReadDeclAs
(*Loc.F, Record, Idx)); const_cast
(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATTRIBUTED: { if (Record.size() != 3) { Error("incorrect encoding of attributed type"); return QualType(); } QualType modifiedType = readType(*Loc.F, Record, Idx); QualType equivalentType = readType(*Loc.F, Record, Idx); AttributedType::Kind kind = static_cast
(Record[2]); return Context.getAttributedType(kind, modifiedType, equivalentType); } case TYPE_PAREN: { if (Record.size() != 1) { Error("incorrect encoding of paren type"); return QualType(); } QualType InnerType = readType(*Loc.F, Record, Idx); return Context.getParenType(InnerType); } case TYPE_PACK_EXPANSION: { if (Record.size() != 2) { Error("incorrect encoding of pack expansion type"); return QualType(); } QualType Pattern = readType(*Loc.F, Record, Idx); if (Pattern.isNull()) return QualType(); Optional
NumExpansions; if (Record[1]) NumExpansions = Record[1] - 1; return Context.getPackExpansionType(Pattern, NumExpansions); } case TYPE_ELABORATED: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); QualType NamedType = readType(*Loc.F, Record, Idx); return Context.getElaboratedType(Keyword, NNS, NamedType); } case TYPE_OBJC_INTERFACE: { unsigned Idx = 0; ObjCInterfaceDecl *ItfD = ReadDeclAs
(*Loc.F, Record, Idx); return Context.getObjCInterfaceType(ItfD->getCanonicalDecl()); } case TYPE_OBJC_OBJECT: { unsigned Idx = 0; QualType Base = readType(*Loc.F, Record, Idx); unsigned NumProtos = Record[Idx++]; SmallVector
Protos; for (unsigned I = 0; I != NumProtos; ++I) Protos.push_back(ReadDeclAs
(*Loc.F, Record, Idx)); return Context.getObjCObjectType(Base, Protos.data(), NumProtos); } case TYPE_OBJC_OBJECT_POINTER: { unsigned Idx = 0; QualType Pointee = readType(*Loc.F, Record, Idx); return Context.getObjCObjectPointerType(Pointee); } case TYPE_SUBST_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); QualType Replacement = readType(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmType( cast
(Parm), Context.getCanonicalType(Replacement)); } case TYPE_SUBST_TEMPLATE_TYPE_PARM_PACK: { unsigned Idx = 0; QualType Parm = readType(*Loc.F, Record, Idx); TemplateArgument ArgPack = ReadTemplateArgument(*Loc.F, Record, Idx); return Context.getSubstTemplateTypeParmPackType( cast
(Parm), ArgPack); } case TYPE_INJECTED_CLASS_NAME: { CXXRecordDecl *D = ReadDeclAs
(*Loc.F, Record, Idx); QualType TST = readType(*Loc.F, Record, Idx); // probably derivable // FIXME: ASTContext::getInjectedClassNameType is not currently suitable // for AST reading, too much interdependencies. const Type *T; if (const Type *Existing = D->getTypeForDecl()) T = Existing; else if (auto *Prev = D->getPreviousDecl()) T = Prev->getTypeForDecl(); else T = new (Context, TypeAlignment) InjectedClassNameType(D, TST); return QualType(T, 0); } case TYPE_TEMPLATE_TYPE_PARM: { unsigned Idx = 0; unsigned Depth = Record[Idx++]; unsigned Index = Record[Idx++]; bool Pack = Record[Idx++]; TemplateTypeParmDecl *D = ReadDeclAs
(*Loc.F, Record, Idx); return Context.getTemplateTypeParmType(Depth, Index, Pack, D); } case TYPE_DEPENDENT_NAME: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx); QualType Canon = readType(*Loc.F, Record, Idx); if (!Canon.isNull()) Canon = Context.getCanonicalType(Canon); return Context.getDependentNameType(Keyword, NNS, Name, Canon); } case TYPE_DEPENDENT_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; ElaboratedTypeKeyword Keyword = (ElaboratedTypeKeyword)Record[Idx++]; NestedNameSpecifier *NNS = ReadNestedNameSpecifier(*Loc.F, Record, Idx); const IdentifierInfo *Name = this->GetIdentifierInfo(*Loc.F, Record, Idx); unsigned NumArgs = Record[Idx++]; SmallVector
Args; Args.reserve(NumArgs); while (NumArgs--) Args.push_back(ReadTemplateArgument(*Loc.F, Record, Idx)); return Context.getDependentTemplateSpecializationType(Keyword, NNS, Name, Args.size(), Args.data()); } case TYPE_DEPENDENT_SIZED_ARRAY: { unsigned Idx = 0; // ArrayType QualType ElementType = readType(*Loc.F, Record, Idx); ArrayType::ArraySizeModifier ASM = (ArrayType::ArraySizeModifier)Record[Idx++]; unsigned IndexTypeQuals = Record[Idx++]; // DependentSizedArrayType Expr *NumElts = ReadExpr(*Loc.F); SourceRange Brackets = ReadSourceRange(*Loc.F, Record, Idx); return Context.getDependentSizedArrayType(ElementType, NumElts, ASM, IndexTypeQuals, Brackets); } case TYPE_TEMPLATE_SPECIALIZATION: { unsigned Idx = 0; bool IsDependent = Record[Idx++]; TemplateName Name = ReadTemplateName(*Loc.F, Record, Idx); SmallVector
Args; ReadTemplateArgumentList(Args, *Loc.F, Record, Idx); QualType Underlying = readType(*Loc.F, Record, Idx); QualType T; if (Underlying.isNull()) T = Context.getCanonicalTemplateSpecializationType(Name, Args.data(), Args.size()); else T = Context.getTemplateSpecializationType(Name, Args.data(), Args.size(), Underlying); const_cast
(T.getTypePtr())->setDependent(IsDependent); return T; } case TYPE_ATOMIC: { if (Record.size() != 1) { Error("Incorrect encoding of atomic type"); return QualType(); } QualType ValueType = readType(*Loc.F, Record, Idx); return Context.getAtomicType(ValueType); } } llvm_unreachable("Invalid TypeCode!"); } void ASTReader::readExceptionSpec(ModuleFile &ModuleFile, SmallVectorImpl
&Exceptions, FunctionProtoType::ExtProtoInfo &EPI, const RecordData &Record, unsigned &Idx) { ExceptionSpecificationType EST = static_cast
(Record[Idx++]); EPI.ExceptionSpecType = EST; if (EST == EST_Dynamic) { EPI.NumExceptions = Record[Idx++]; for (unsigned I = 0; I != EPI.NumExceptions; ++I) Exceptions.push_back(readType(ModuleFile, Record, Idx)); EPI.Exceptions = Exceptions.data(); } else if (EST == EST_ComputedNoexcept) { EPI.NoexceptExpr = ReadExpr(ModuleFile); } else if (EST == EST_Uninstantiated) { EPI.ExceptionSpecDecl = ReadDeclAs
(ModuleFile, Record, Idx); EPI.ExceptionSpecTemplate = ReadDeclAs
(ModuleFile, Record, Idx); } else if (EST == EST_Unevaluated) { EPI.ExceptionSpecDecl = ReadDeclAs
(ModuleFile, Record, Idx); } } class clang::TypeLocReader : public TypeLocVisitor
{ ASTReader &Reader; ModuleFile &F; const ASTReader::RecordData &Record; unsigned &Idx; SourceLocation ReadSourceLocation(const ASTReader::RecordData &R, unsigned &I) { return Reader.ReadSourceLocation(F, R, I); } template
T *ReadDeclAs(const ASTReader::RecordData &Record, unsigned &Idx) { return Reader.ReadDeclAs
(F, Record, Idx); } public: TypeLocReader(ASTReader &Reader, ModuleFile &F, const ASTReader::RecordData &Record, unsigned &Idx) : Reader(Reader), F(F), Record(Record), Idx(Idx) { } // We want compile-time assurance that we've enumerated all of // these, so unfortunately we have to declare them first, then // define them out-of-line. #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ void Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc); #include "clang/AST/TypeLocNodes.def" void VisitFunctionTypeLoc(FunctionTypeLoc); void VisitArrayTypeLoc(ArrayTypeLoc); }; void TypeLocReader::VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { TL.setBuiltinLoc(ReadSourceLocation(Record, Idx)); if (TL.needsExtraLocalData()) { TL.setWrittenTypeSpec(static_cast
(Record[Idx++])); TL.setWrittenSignSpec(static_cast
(Record[Idx++])); TL.setWrittenWidthSpec(static_cast
(Record[Idx++])); TL.setModeAttr(Record[Idx++]); } } void TypeLocReader::VisitComplexTypeLoc(ComplexTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitPointerTypeLoc(PointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDecayedTypeLoc(DecayedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { // nothing to do } void TypeLocReader::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { TL.setCaretLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { TL.setAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { TL.setAmpAmpLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); TL.setClassTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitArrayTypeLoc(ArrayTypeLoc TL) { TL.setLBracketLoc(ReadSourceLocation(Record, Idx)); TL.setRBracketLoc(ReadSourceLocation(Record, Idx)); if (Record[Idx++]) TL.setSizeExpr(Reader.ReadExpr(F)); else TL.setSizeExpr(nullptr); } void TypeLocReader::VisitConstantArrayTypeLoc(ConstantArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitIncompleteArrayTypeLoc(IncompleteArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitVariableArrayTypeLoc(VariableArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedArrayTypeLoc( DependentSizedArrayTypeLoc TL) { VisitArrayTypeLoc(TL); } void TypeLocReader::VisitDependentSizedExtVectorTypeLoc( DependentSizedExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitFunctionTypeLoc(FunctionTypeLoc TL) { TL.setLocalRangeBegin(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setLocalRangeEnd(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumParams(); i != e; ++i) { TL.setParam(i, ReadDeclAs
(Record, Idx)); } } void TypeLocReader::VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitFunctionNoProtoTypeLoc(FunctionNoProtoTypeLoc TL) { VisitFunctionTypeLoc(TL); } void TypeLocReader::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypedefTypeLoc(TypedefTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { TL.setTypeofLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); TL.setUnderlyingTInfo(Reader.GetTypeSourceInfo(F, Record, Idx)); } void TypeLocReader::VisitAutoTypeLoc(AutoTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitRecordTypeLoc(RecordTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitEnumTypeLoc(EnumTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAttributedTypeLoc(AttributedTypeLoc TL) { TL.setAttrNameLoc(ReadSourceLocation(Record, Idx)); if (TL.hasAttrOperand()) { SourceRange range; range.setBegin(ReadSourceLocation(Record, Idx)); range.setEnd(ReadSourceLocation(Record, Idx)); TL.setAttrOperandParensRange(range); } if (TL.hasAttrExprOperand()) { if (Record[Idx++]) TL.setAttrExprOperand(Reader.ReadExpr(F)); else TL.setAttrExprOperand(nullptr); } else if (TL.hasAttrEnumOperand()) TL.setAttrEnumOperandLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmTypeLoc( SubstTemplateTypeParmTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitSubstTemplateTypeParmPackTypeLoc( SubstTemplateTypeParmPackTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitTemplateSpecializationTypeLoc( TemplateSpecializationTypeLoc TL) { TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) TL.setArgLocInfo(i, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(i).getKind(), Record, Idx)); } void TypeLocReader::VisitParenTypeLoc(ParenTypeLoc TL) { TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); } void TypeLocReader::VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitDependentTemplateSpecializationTypeLoc( DependentTemplateSpecializationTypeLoc TL) { TL.setElaboratedKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setQualifierLoc(Reader.ReadNestedNameSpecifierLoc(F, Record, Idx)); TL.setTemplateKeywordLoc(ReadSourceLocation(Record, Idx)); TL.setTemplateNameLoc(ReadSourceLocation(Record, Idx)); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) TL.setArgLocInfo(I, Reader.GetTemplateArgumentLocInfo(F, TL.getTypePtr()->getArg(I).getKind(), Record, Idx)); } void TypeLocReader::VisitPackExpansionTypeLoc(PackExpansionTypeLoc TL) { TL.setEllipsisLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { TL.setNameLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { TL.setHasBaseTypeAsWritten(Record[Idx++]); TL.setLAngleLoc(ReadSourceLocation(Record, Idx)); TL.setRAngleLoc(ReadSourceLocation(Record, Idx)); for (unsigned i = 0, e = TL.getNumProtocols(); i != e; ++i) TL.setProtocolLoc(i, ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { TL.setStarLoc(ReadSourceLocation(Record, Idx)); } void TypeLocReader::VisitAtomicTypeLoc(AtomicTypeLoc TL) { TL.setKWLoc(ReadSourceLocation(Record, Idx)); TL.setLParenLoc(ReadSourceLocation(Record, Idx)); TL.setRParenLoc(ReadSourceLocation(Record, Idx)); } TypeSourceInfo *ASTReader::GetTypeSourceInfo(ModuleFile &F, const RecordData &Record, unsigned &Idx) { QualType InfoTy = readType(F, Record, Idx); if (InfoTy.isNull()) return nullptr; TypeSourceInfo *TInfo = getContext().CreateTypeSourceInfo(InfoTy); TypeLocReader TLR(*this, F, Record, Idx); for (TypeLoc TL = TInfo->getTypeLoc(); !TL.isNull(); TL = TL.getNextTypeLoc()) TLR.Visit(TL); return TInfo; } QualType ASTReader::GetType(TypeID ID) { unsigned FastQuals = ID & Qualifiers::FastMask; unsigned Index = ID >> Qualifiers::FastWidth; if (Index < NUM_PREDEF_TYPE_IDS) { QualType T; switch ((PredefinedTypeIDs)Index) { case PREDEF_TYPE_NULL_ID: return QualType(); case PREDEF_TYPE_VOID_ID: T = Context.VoidTy; break; case PREDEF_TYPE_BOOL_ID: T = Context.BoolTy; break; case PREDEF_TYPE_CHAR_U_ID: case PREDEF_TYPE_CHAR_S_ID: // FIXME: Check that the signedness of CharTy is correct! T = Context.CharTy; break; case PREDEF_TYPE_UCHAR_ID: T = Context.UnsignedCharTy; break; case PREDEF_TYPE_USHORT_ID: T = Context.UnsignedShortTy; break; case PREDEF_TYPE_UINT_ID: T = Context.UnsignedIntTy; break; case PREDEF_TYPE_ULONG_ID: T = Context.UnsignedLongTy; break; case PREDEF_TYPE_ULONGLONG_ID: T = Context.UnsignedLongLongTy; break; case PREDEF_TYPE_UINT128_ID: T = Context.UnsignedInt128Ty; break; case PREDEF_TYPE_SCHAR_ID: T = Context.SignedCharTy; break; case PREDEF_TYPE_WCHAR_ID: T = Context.WCharTy; break; case PREDEF_TYPE_SHORT_ID: T = Context.ShortTy; break; case PREDEF_TYPE_INT_ID: T = Context.IntTy; break; case PREDEF_TYPE_LONG_ID: T = Context.LongTy; break; case PREDEF_TYPE_LONGLONG_ID: T = Context.LongLongTy; break; case PREDEF_TYPE_INT128_ID: T = Context.Int128Ty; break; case PREDEF_TYPE_HALF_ID: T = Context.HalfTy; break; case PREDEF_TYPE_FLOAT_ID: T = Context.FloatTy; break; case PREDEF_TYPE_DOUBLE_ID: T = Context.DoubleTy; break; case PREDEF_TYPE_LONGDOUBLE_ID: T = Context.LongDoubleTy; break; case PREDEF_TYPE_OVERLOAD_ID: T = Context.OverloadTy; break; case PREDEF_TYPE_BOUND_MEMBER: T = Context.BoundMemberTy; break; case PREDEF_TYPE_PSEUDO_OBJECT: T = Context.PseudoObjectTy; break; case PREDEF_TYPE_DEPENDENT_ID: T = Context.DependentTy; break; case PREDEF_TYPE_UNKNOWN_ANY: T = Context.UnknownAnyTy; break; case PREDEF_TYPE_NULLPTR_ID: T = Context.NullPtrTy; break; case PREDEF_TYPE_CHAR16_ID: T = Context.Char16Ty; break; case PREDEF_TYPE_CHAR32_ID: T = Context.Char32Ty; break; case PREDEF_TYPE_OBJC_ID: T = Context.ObjCBuiltinIdTy; break; case PREDEF_TYPE_OBJC_CLASS: T = Context.ObjCBuiltinClassTy; break; case PREDEF_TYPE_OBJC_SEL: T = Context.ObjCBuiltinSelTy; break; case PREDEF_TYPE_IMAGE1D_ID: T = Context.OCLImage1dTy; break; case PREDEF_TYPE_IMAGE1D_ARR_ID: T = Context.OCLImage1dArrayTy; break; case PREDEF_TYPE_IMAGE1D_BUFF_ID: T = Context.OCLImage1dBufferTy; break; case PREDEF_TYPE_IMAGE2D_ID: T = Context.OCLImage2dTy; break; case PREDEF_TYPE_IMAGE2D_ARR_ID: T = Context.OCLImage2dArrayTy; break; case PREDEF_TYPE_IMAGE3D_ID: T = Context.OCLImage3dTy; break; case PREDEF_TYPE_SAMPLER_ID: T = Context.OCLSamplerTy; break; case PREDEF_TYPE_EVENT_ID: T = Context.OCLEventTy; break; case PREDEF_TYPE_AUTO_DEDUCT: T = Context.getAutoDeductType(); break; case PREDEF_TYPE_AUTO_RREF_DEDUCT: T = Context.getAutoRRefDeductType(); break; case PREDEF_TYPE_ARC_UNBRIDGED_CAST: T = Context.ARCUnbridgedCastTy; break; case PREDEF_TYPE_VA_LIST_TAG: T = Context.getVaListTagType(); break; case PREDEF_TYPE_BUILTIN_FN: T = Context.BuiltinFnTy; break; } assert(!T.isNull() && "Unknown predefined type"); return T.withFastQualifiers(FastQuals); } Index -= NUM_PREDEF_TYPE_IDS; assert(Index < TypesLoaded.size() && "Type index out-of-range"); if (TypesLoaded[Index].isNull()) { TypesLoaded[Index] = readTypeRecord(Index); if (TypesLoaded[Index].isNull()) return QualType(); TypesLoaded[Index]->setFromAST(); if (DeserializationListener) DeserializationListener->TypeRead(TypeIdx::fromTypeID(ID), TypesLoaded[Index]); } return TypesLoaded[Index].withFastQualifiers(FastQuals); } QualType ASTReader::getLocalType(ModuleFile &F, unsigned LocalID) { return GetType(getGlobalTypeID(F, LocalID)); } serialization::TypeID ASTReader::getGlobalTypeID(ModuleFile &F, unsigned LocalID) const { unsigned FastQuals = LocalID & Qualifiers::FastMask; unsigned LocalIndex = LocalID >> Qualifiers::FastWidth; if (LocalIndex < NUM_PREDEF_TYPE_IDS) return LocalID; ContinuousRangeMap
::iterator I = F.TypeRemap.find(LocalIndex - NUM_PREDEF_TYPE_IDS); assert(I != F.TypeRemap.end() && "Invalid index into type index remap"); unsigned GlobalIndex = LocalIndex + I->second; return (GlobalIndex << Qualifiers::FastWidth) | FastQuals; } TemplateArgumentLocInfo ASTReader::GetTemplateArgumentLocInfo(ModuleFile &F, TemplateArgument::ArgKind Kind, const RecordData &Record, unsigned &Index) { switch (Kind) { case TemplateArgument::Expression: return ReadExpr(F); case TemplateArgument::Type: return GetTypeSourceInfo(F, Record, Index); case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, SourceLocation()); } case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLoc QualifierLoc = ReadNestedNameSpecifierLoc(F, Record, Index); SourceLocation TemplateNameLoc = ReadSourceLocation(F, Record, Index); SourceLocation EllipsisLoc = ReadSourceLocation(F, Record, Index); return TemplateArgumentLocInfo(QualifierLoc, TemplateNameLoc, EllipsisLoc); } case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: case TemplateArgument::Pack: // FIXME: Is this right? return TemplateArgumentLocInfo(); } llvm_unreachable("unexpected template argument loc"); } TemplateArgumentLoc ASTReader::ReadTemplateArgumentLoc(ModuleFile &F, const RecordData &Record, unsigned &Index) { TemplateArgument Arg = ReadTemplateArgument(F, Record, Index); if (Arg.getKind() == TemplateArgument::Expression) { if (Record[Index++]) // bool InfoHasSameExpr. return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo(Arg.getAsExpr())); } return TemplateArgumentLoc(Arg, GetTemplateArgumentLocInfo(F, Arg.getKind(), Record, Index)); } const ASTTemplateArgumentListInfo* ASTReader::ReadASTTemplateArgumentListInfo(ModuleFile &F, const RecordData &Record, unsigned &Index) { SourceLocation LAngleLoc = ReadSourceLocation(F, Record, Index); SourceLocation RAngleLoc = ReadSourceLocation(F, Record, Index); unsigned NumArgsAsWritten = Record[Index++]; TemplateArgumentListInfo TemplArgsInfo(LAngleLoc, RAngleLoc); for (unsigned i = 0; i != NumArgsAsWritten; ++i) TemplArgsInfo.addArgument(ReadTemplateArgumentLoc(F, Record, Index)); return ASTTemplateArgumentListInfo::Create(getContext(), TemplArgsInfo); } Decl *ASTReader::GetExternalDecl(uint32_t ID) { return GetDecl(ID); } void ASTReader::CompleteRedeclChain(const Decl *D) { if (NumCurrentElementsDeserializing) { // We arrange to not care about the complete redeclaration chain while we're // deserializing. Just remember that the AST has marked this one as complete // but that it's not actually complete yet, so we know we still need to // complete it later. PendingIncompleteDeclChains.push_back(const_cast
(D)); return; } const DeclContext *DC = D->getDeclContext()->getRedeclContext(); // Recursively ensure that the decl context itself is complete // (in particular, this matters if the decl context is a namespace). // // FIXME: This should be performed by lookup instead of here. cast
(DC)->getMostRecentDecl(); // If this is a named declaration, complete it by looking it up // within its context. // // FIXME: We don't currently handle the cases where we can't do this; // merging a class definition that contains unnamed entities should merge // those entities. Likewise, merging a function definition should merge // all mergeable entities within it. if (isa
(DC) || isa
(DC) || isa
(DC) || isa
(DC)) { if (DeclarationName Name = cast
(D)->getDeclName()) { auto *II = Name.getAsIdentifierInfo(); if (isa
(DC) && II) { // Outside of C++, we don't have a lookup table for the TU, so update // the identifier instead. In C++, either way should work fine. if (II->isOutOfDate()) updateOutOfDateIdentifier(*II); } else DC->lookup(Name); } } } uint64_t ASTReader::readCXXBaseSpecifiers(ModuleFile &M, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size() || Record[Idx] > M.LocalNumCXXBaseSpecifiers) { Error("malformed AST file: missing C++ base specifier"); return 0; } unsigned LocalID = Record[Idx++]; return getGlobalBitOffset(M, M.CXXBaseSpecifiersOffsets[LocalID - 1]); } CXXBaseSpecifier *ASTReader::GetExternalCXXBaseSpecifiers(uint64_t Offset) { RecordLocation Loc = getLocalBitOffset(Offset); BitstreamCursor &Cursor = Loc.F->DeclsCursor; SavedStreamPosition SavedPosition(Cursor); Cursor.JumpToBit(Loc.Offset); ReadingKindTracker ReadingKind(Read_Decl, *this); RecordData Record; unsigned Code = Cursor.ReadCode(); unsigned RecCode = Cursor.readRecord(Code, Record); if (RecCode != DECL_CXX_BASE_SPECIFIERS) { Error("malformed AST file: missing C++ base specifiers"); return nullptr; } unsigned Idx = 0; unsigned NumBases = Record[Idx++]; void *Mem = Context.Allocate(sizeof(CXXBaseSpecifier) * NumBases); CXXBaseSpecifier *Bases = new (Mem) CXXBaseSpecifier [NumBases]; for (unsigned I = 0; I != NumBases; ++I) Bases[I] = ReadCXXBaseSpecifier(*Loc.F, Record, Idx); return Bases; } serialization::DeclID ASTReader::getGlobalDeclID(ModuleFile &F, LocalDeclID LocalID) const { if (LocalID < NUM_PREDEF_DECL_IDS) return LocalID; ContinuousRangeMap
::iterator I = F.DeclRemap.find(LocalID - NUM_PREDEF_DECL_IDS); assert(I != F.DeclRemap.end() && "Invalid index into decl index remap"); return LocalID + I->second; } bool ASTReader::isDeclIDFromModule(serialization::GlobalDeclID ID, ModuleFile &M) const { GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(ID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); return &M == I->second; } ModuleFile *ASTReader::getOwningModuleFile(const Decl *D) { if (!D->isFromASTFile()) return nullptr; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(D->getGlobalID()); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); return I->second; } SourceLocation ASTReader::getSourceLocationForDeclID(GlobalDeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) return SourceLocation(); unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index > DeclsLoaded.size()) { Error("declaration ID out-of-range for AST file"); return SourceLocation(); } if (Decl *D = DeclsLoaded[Index]) return D->getLocation(); unsigned RawLocation = 0; RecordLocation Rec = DeclCursorForID(ID, RawLocation); return ReadSourceLocation(*Rec.F, RawLocation); } Decl *ASTReader::GetExistingDecl(DeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) { switch ((PredefinedDeclIDs)ID) { case PREDEF_DECL_NULL_ID: return nullptr; case PREDEF_DECL_TRANSLATION_UNIT_ID: return Context.getTranslationUnitDecl(); case PREDEF_DECL_OBJC_ID_ID: return Context.getObjCIdDecl(); case PREDEF_DECL_OBJC_SEL_ID: return Context.getObjCSelDecl(); case PREDEF_DECL_OBJC_CLASS_ID: return Context.getObjCClassDecl(); case PREDEF_DECL_OBJC_PROTOCOL_ID: return Context.getObjCProtocolDecl(); case PREDEF_DECL_INT_128_ID: return Context.getInt128Decl(); case PREDEF_DECL_UNSIGNED_INT_128_ID: return Context.getUInt128Decl(); case PREDEF_DECL_OBJC_INSTANCETYPE_ID: return Context.getObjCInstanceTypeDecl(); case PREDEF_DECL_BUILTIN_VA_LIST_ID: return Context.getBuiltinVaListDecl(); } } unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index >= DeclsLoaded.size()) { assert(0 && "declaration ID out-of-range for AST file"); Error("declaration ID out-of-range for AST file"); return nullptr; } return DeclsLoaded[Index]; } Decl *ASTReader::GetDecl(DeclID ID) { if (ID < NUM_PREDEF_DECL_IDS) return GetExistingDecl(ID); unsigned Index = ID - NUM_PREDEF_DECL_IDS; if (Index >= DeclsLoaded.size()) { assert(0 && "declaration ID out-of-range for AST file"); Error("declaration ID out-of-range for AST file"); return nullptr; } if (!DeclsLoaded[Index]) { ReadDeclRecord(ID); if (DeserializationListener) DeserializationListener->DeclRead(ID, DeclsLoaded[Index]); } return DeclsLoaded[Index]; } DeclID ASTReader::mapGlobalIDToModuleFileGlobalID(ModuleFile &M, DeclID GlobalID) { if (GlobalID < NUM_PREDEF_DECL_IDS) return GlobalID; GlobalDeclMapType::const_iterator I = GlobalDeclMap.find(GlobalID); assert(I != GlobalDeclMap.end() && "Corrupted global declaration map"); ModuleFile *Owner = I->second; llvm::DenseMap
::iterator Pos = M.GlobalToLocalDeclIDs.find(Owner); if (Pos == M.GlobalToLocalDeclIDs.end()) return 0; return GlobalID - Owner->BaseDeclID + Pos->second; } serialization::DeclID ASTReader::ReadDeclID(ModuleFile &F, const RecordData &Record, unsigned &Idx) { if (Idx >= Record.size()) { Error("Corrupted AST file"); return 0; } return getGlobalDeclID(F, Record[Idx++]); } /// \brief Resolve the offset of a statement into a statement. /// /// This operation will read a new statement from the external /// source each time it is called, and is meant to be used via a /// LazyOffsetPtr (which is used by Decls for the body of functions, etc). Stmt *ASTReader::GetExternalDeclStmt(uint64_t Offset) { // Switch case IDs are per Decl. ClearSwitchCaseIDs(); // Offset here is a global offset across the entire chain. RecordLocation Loc = getLocalBitOffset(Offset); Loc.F->DeclsCursor.JumpToBit(Loc.Offset); return ReadStmtFromStream(*Loc.F); } namespace { class FindExternalLexicalDeclsVisitor { ASTReader &Reader; const DeclContext *DC; bool (*isKindWeWant)(Decl::Kind); SmallVectorImpl
&Decls; bool PredefsVisited[NUM_PREDEF_DECL_IDS]; public: FindExternalLexicalDeclsVisitor(ASTReader &Reader, const DeclContext *DC, bool (*isKindWeWant)(Decl::Kind), SmallVectorImpl
&Decls) : Reader(Reader), DC(DC), isKindWeWant(isKindWeWant), Decls(Decls) { for (unsigned I = 0; I != NUM_PREDEF_DECL_IDS; ++I) PredefsVisited[I] = false; } static bool visit(ModuleFile &M, bool Preorder, void *UserData) { if (Preorder) return false; FindExternalLexicalDeclsVisitor *This = static_cast
(UserData); ModuleFile::DeclContextInfosMap::iterator Info = M.DeclContextInfos.find(This->DC); if (Info == M.DeclContextInfos.end() || !Info->second.LexicalDecls) return false; // Load all of the declaration IDs for (const KindDeclIDPair *ID = Info->second.LexicalDecls, *IDE = ID + Info->second.NumLexicalDecls; ID != IDE; ++ID) { if (This->isKindWeWant && !This->isKindWeWant((Decl::Kind)ID->first)) continue; // Don't add predefined declarations to the lexical context more // than once. if (ID->second < NUM_PREDEF_DECL_IDS) { if (This->PredefsVisited[ID->second]) continue; This->PredefsVisited[ID->second] = true; } if (Decl *D = This->Reader.GetLocalDecl(M, ID->second)) { if (!This->DC->isDeclInLexicalTraversal(D)) This->Decls.push_back(D); } } return false; } }; } ExternalLoadResult ASTReader::FindExternalLexicalDecls(const DeclContext *DC, bool (*isKindWeWant)(Decl::Kind), SmallVectorImpl
&Decls) { // There might be lexical decls in multiple modules, for the TU at // least. Walk all of the modules in the order they were loaded. FindExternalLexicalDeclsVisitor Visitor(*this, DC, isKindWeWant, Decls); ModuleMgr.visitDepthFirst(&FindExternalLexicalDeclsVisitor::visit, &Visitor); ++NumLexicalDeclContextsRead; return ELR_Success; } namespace { class DeclIDComp { ASTReader &Reader; ModuleFile &Mod; public: DeclIDComp(ASTReader &Reader, ModuleFile &M) : Reader(Reader), Mod(M) {} bool operator()(LocalDeclID L, LocalDeclID R) const { SourceLocation LHS = getLocation(L); SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(SourceLocation LHS, LocalDeclID R) const { SourceLocation RHS = getLocation(R); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } bool operator()(LocalDeclID L, SourceLocation RHS) const { SourceLocation LHS = getLocation(L); return Reader.getSourceManager().isBeforeInTranslationUnit(LHS, RHS); } SourceLocation getLocation(LocalDeclID ID) const { return Reader.getSourceManager().getFileLoc( Reader.getSourceLocationForDeclID(Reader.getGlobalDeclID(Mod, ID))); } }; } void ASTReader::FindFileRegionDecls(FileID File, unsigned Offset, unsigned Length, SmallVectorImpl
&Decls) { SourceManager &SM = getSourceManager(); llvm::DenseMap
::iterator I = FileDeclIDs.find(File); if (I == FileDeclIDs.end()) return; FileDeclsInfo &DInfo = I->second; if (DInfo.Decls.empty()) return; SourceLocation BeginLoc = SM.getLocForStartOfFile(File).getLocWithOffset(Offset); SourceLocation EndLoc = BeginLoc.getLocWithOffset(Length); DeclIDComp DIDComp(*this, *DInfo.Mod); ArrayRef
::iterator BeginIt = std::lower_bound(DInfo.Decls.begin(), DInfo.Decls.end(), BeginLoc, DIDComp); if (BeginIt != DInfo.Decls.begin()) --BeginIt; // If we are pointing at a top-level decl inside an objc container, we need // to backtrack until we find it otherwise we will fail to report that the // region overlaps with an objc container. while (BeginIt != DInfo.Decls.begin() && GetDecl(getGlobalDeclID(*DInfo.Mod, *BeginIt)) ->isTopLevelDeclInObjCContainer()) --BeginIt; ArrayRef
::iterator EndIt = std::upper_bound(DInfo.Decls.begin(), DInfo.Decls.end(), EndLoc, DIDComp); if (EndIt != DInfo.Decls.end()) ++EndIt; for (ArrayRef
::iterator DIt = BeginIt; DIt != EndIt; ++DIt) Decls.push_back(GetDecl(getGlobalDeclID(*DInfo.Mod, *DIt))); } namespace { /// \brief ModuleFile visitor used to perform name lookup into a /// declaration context. class DeclContextNameLookupVisitor { ASTReader &Reader; SmallVectorImpl
&Contexts; DeclarationName Name; SmallVectorImpl
&Decls; public: DeclContextNameLookupVisitor(ASTReader &Reader, SmallVectorImpl
&Contexts, DeclarationName Name, SmallVectorImpl
&Decls) : Reader(Reader), Contexts(Contexts), Name(Name), Decls(Decls) { } static bool visit(ModuleFile &M, void *UserData) { DeclContextNameLookupVisitor *This = static_cast
(UserData); // Check whether we have any visible declaration information for // this context in this module. ModuleFile::DeclContextInfosMap::iterator Info; bool FoundInfo = false; for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) { Info = M.DeclContextInfos.find(This->Contexts[I]); if (Info != M.DeclContextInfos.end() && Info->second.NameLookupTableData) { FoundInfo = true; break; } } if (!FoundInfo) return false; // Look for this name within this module. ASTDeclContextNameLookupTable *LookupTable = Info->second.NameLookupTableData; ASTDeclContextNameLookupTable::iterator Pos = LookupTable->find(This->Name); if (Pos == LookupTable->end()) return false; bool FoundAnything = false; ASTDeclContextNameLookupTrait::data_type Data = *Pos; for (; Data.first != Data.second; ++Data.first) { NamedDecl *ND = This->Reader.GetLocalDeclAs
(M, *Data.first); if (!ND) continue; if (ND->getDeclName() != This->Name) { // A name might be null because the decl's redeclarable part is // currently read before reading its name. The lookup is triggered by // building that decl (likely indirectly), and so it is later in the // sense of "already existing" and can be ignored here. continue; } // Record this declaration. FoundAnything = true; This->Decls.push_back(ND); } return FoundAnything; } }; } /// \brief Retrieve the "definitive" module file for the definition of the /// given declaration context, if there is one. /// /// The "definitive" module file is the only place where we need to look to /// find information about the declarations within the given declaration /// context. For example, C++ and Objective-C classes, C structs/unions, and /// Objective-C protocols, categories, and extensions are all defined in a /// single place in the source code, so they have definitive module files /// associated with them. C++ namespaces, on the other hand, can have /// definitions in multiple different module files. /// /// Note: this needs to be kept in sync with ASTWriter::AddedVisibleDecl's /// NDEBUG checking. static ModuleFile *getDefinitiveModuleFileFor(const DeclContext *DC, ASTReader &Reader) { if (const DeclContext *DefDC = getDefinitiveDeclContext(DC)) return Reader.getOwningModuleFile(cast
(DefDC)); return nullptr; } bool ASTReader::FindExternalVisibleDeclsByName(const DeclContext *DC, DeclarationName Name) { assert(DC->hasExternalVisibleStorage() && "DeclContext has no visible decls in storage"); if (!Name) return false; SmallVector
Decls; // Compute the declaration contexts we need to look into. Multiple such // declaration contexts occur when two declaration contexts from disjoint // modules get merged, e.g., when two namespaces with the same name are // independently defined in separate modules. SmallVector
Contexts; Contexts.push_back(DC); if (DC->isNamespace()) { auto Merged = MergedDecls.find(const_cast
(cast
(DC))); if (Merged != MergedDecls.end()) { for (unsigned I = 0, N = Merged->second.size(); I != N; ++I) Contexts.push_back(cast
(GetDecl(Merged->second[I]))); } } if (isa
(DC)) { auto Merged = MergedLookups.find(DC); if (Merged != MergedLookups.end()) Contexts.insert(Contexts.end(), Merged->second.begin(), Merged->second.end()); } DeclContextNameLookupVisitor Visitor(*this, Contexts, Name, Decls); // If we can definitively determine which module file to look into, // only look there. Otherwise, look in all module files. ModuleFile *Definitive; if (Contexts.size() == 1 && (Definitive = getDefinitiveModuleFileFor(DC, *this))) { DeclContextNameLookupVisitor::visit(*Definitive, &Visitor); } else { ModuleMgr.visit(&DeclContextNameLookupVisitor::visit, &Visitor); } ++NumVisibleDeclContextsRead; SetExternalVisibleDeclsForName(DC, Name, Decls); return !Decls.empty(); } namespace { /// \brief ModuleFile visitor used to retrieve all visible names in a /// declaration context. class DeclContextAllNamesVisitor { ASTReader &Reader; SmallVectorImpl
&Contexts; DeclsMap &Decls; bool VisitAll; public: DeclContextAllNamesVisitor(ASTReader &Reader, SmallVectorImpl
&Contexts, DeclsMap &Decls, bool VisitAll) : Reader(Reader), Contexts(Contexts), Decls(Decls), VisitAll(VisitAll) { } static bool visit(ModuleFile &M, void *UserData) { DeclContextAllNamesVisitor *This = static_cast
(UserData); // Check whether we have any visible declaration information for // this context in this module. ModuleFile::DeclContextInfosMap::iterator Info; bool FoundInfo = false; for (unsigned I = 0, N = This->Contexts.size(); I != N; ++I) { Info = M.DeclContextInfos.find(This->Contexts[I]); if (Info != M.DeclContextInfos.end() && Info->second.NameLookupTableData) { FoundInfo = true; break; } } if (!FoundInfo) return false; ASTDeclContextNameLookupTable *LookupTable = Info->second.NameLookupTableData; bool FoundAnything = false; for (ASTDeclContextNameLookupTable::data_iterator I = LookupTable->data_begin(), E = LookupTable->data_end(); I != E; ++I) { ASTDeclContextNameLookupTrait::data_type Data = *I; for (; Data.first != Data.second; ++Data.first) { NamedDecl *ND = This->Reader.GetLocalDeclAs
(M, *Data.first); if (!ND) continue; // Record this declaration. FoundAnything = true; This->Decls[ND->getDeclName()].push_back(ND); } } return FoundAnything && !This->VisitAll; } }; } void ASTReader::completeVisibleDeclsMap(const DeclContext *DC) { if (!DC->hasExternalVisibleStorage()) return; DeclsMap Decls; // Compute the declaration contexts we need to look into. Multiple such // declaration contexts occur when two declaration contexts from disjoint // modules get merged, e.g., when two namespaces with the same name are // independently defined in separate modules. SmallVector
Contexts; Contexts.push_back(DC); if (DC->isNamespace()) { MergedDeclsMap::iterator Merged = MergedDecls.find(const_cast
(cast
(DC))); if (Merged != MergedDecls.end()) { for (unsigned I = 0, N = Merged->second.size(); I != N; ++I) Contexts.push_back(cast
(GetDecl(Merged->second[I]))); } } DeclContextAllNamesVisitor Visitor(*this, Contexts, Decls, /*VisitAll=*/DC->isFileContext()); ModuleMgr.visit(&DeclContextAllNamesVisitor::visit, &Visitor); ++NumVisibleDeclContextsRead; for (DeclsMap::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { SetExternalVisibleDeclsForName(DC, I->first, I->second); } const_cast
(DC)->setHasExternalVisibleStorage(false); } /// \brief Under non-PCH compilation the consumer receives the objc methods /// before receiving the implementation, and codegen depends on this. /// We simulate this by deserializing and passing to consumer the methods of the /// implementation before passing the deserialized implementation decl. static void PassObjCImplDeclToConsumer(ObjCImplDecl *ImplD, ASTConsumer *Consumer) { assert(ImplD && Consumer); for (auto *I : ImplD->methods()) Consumer->HandleInterestingDecl(DeclGroupRef(I)); Consumer->HandleInterestingDecl(DeclGroupRef(ImplD)); } void ASTReader::PassInterestingDeclsToConsumer() { assert(Consumer); if (PassingDeclsToConsumer) return; // Guard variable to avoid recursively redoing the process of passing // decls to consumer. SaveAndRestore
GuardPassingDeclsToConsumer(PassingDeclsToConsumer, true); while (!InterestingDecls.empty()) { Decl *D = InterestingDecls.front(); InterestingDecls.pop_front(); PassInterestingDeclToConsumer(D); } } void ASTReader::PassInterestingDeclToConsumer(Decl *D) { if (ObjCImplDecl *ImplD = dyn_cast
(D)) PassObjCImplDeclToConsumer(ImplD, Consumer); else Consumer->HandleInterestingDecl(DeclGroupRef(D)); } void ASTReader::StartTranslationUnit(ASTConsumer *Consumer) { this->Consumer = Consumer; if (!Consumer) return; for (unsigned I = 0, N = EagerlyDeserializedDecls.size(); I != N; ++I) { // Force deserialization of this decl, which will cause it to be queued for // passing to the consumer. GetDecl(EagerlyDeserializedDecls[I]); } EagerlyDeserializedDecls.clear(); PassInterestingDeclsToConsumer(); } void ASTReader::PrintStats() { std::fprintf(stderr, "*** AST File Statistics:\n"); unsigned NumTypesLoaded = TypesLoaded.size() - std::count(TypesLoaded.begin(), TypesLoaded.end(), QualType()); unsigned NumDeclsLoaded = DeclsLoaded.size() - std::count(DeclsLoaded.begin(), DeclsLoaded.end(), (Decl *)nullptr); unsigned NumIdentifiersLoaded = IdentifiersLoaded.size() - std::count(IdentifiersLoaded.begin(), IdentifiersLoaded.end(), (IdentifierInfo *)nullptr); unsigned NumMacrosLoaded = MacrosLoaded.size() - std::count(MacrosLoaded.begin(), MacrosLoaded.end(), (MacroInfo *)nullptr); unsigned NumSelectorsLoaded = SelectorsLoaded.size() - std::count(SelectorsLoaded.begin(), SelectorsLoaded.end(), Selector()); if (unsigned TotalNumSLocEntries = getTotalNumSLocs()) std::fprintf(stderr, " %u/%u source location entries read (%f%%)\n", NumSLocEntriesRead, TotalNumSLocEntries, ((float)NumSLocEntriesRead/TotalNumSLocEntries * 100)); if (!TypesLoaded.empty()) std::fprintf(stderr, " %u/%u types read (%f%%)\n", NumTypesLoaded, (unsigned)TypesLoaded.size(), ((float)NumTypesLoaded/TypesLoaded.size() * 100)); if (!DeclsLoaded.empty()) std::fprintf(stderr, " %u/%u declarations read (%f%%)\n", NumDeclsLoaded, (unsigned)DeclsLoaded.size(), ((float)NumDeclsLoaded/DeclsLoaded.size() * 100)); if (!IdentifiersLoaded.empty()) std::fprintf(stderr, " %u/%u identifiers read (%f%%)\n", NumIdentifiersLoaded, (unsigned)IdentifiersLoaded.size(), ((float)NumIdentifiersLoaded/IdentifiersLoaded.size() * 100)); if (!MacrosLoaded.empty()) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosLoaded, (unsigned)MacrosLoaded.size(), ((float)NumMacrosLoaded/MacrosLoaded.size() * 100)); if (!SelectorsLoaded.empty()) std::fprintf(stderr, " %u/%u selectors read (%f%%)\n", NumSelectorsLoaded, (unsigned)SelectorsLoaded.size(), ((float)NumSelectorsLoaded/SelectorsLoaded.size() * 100)); if (TotalNumStatements) std::fprintf(stderr, " %u/%u statements read (%f%%)\n", NumStatementsRead, TotalNumStatements, ((float)NumStatementsRead/TotalNumStatements * 100)); if (TotalNumMacros) std::fprintf(stderr, " %u/%u macros read (%f%%)\n", NumMacrosRead, TotalNumMacros, ((float)NumMacrosRead/TotalNumMacros * 100)); if (TotalLexicalDeclContexts) std::fprintf(stderr, " %u/%u lexical declcontexts read (%f%%)\n", NumLexicalDeclContextsRead, TotalLexicalDeclContexts, ((float)NumLexicalDeclContextsRead/TotalLexicalDeclContexts * 100)); if (TotalVisibleDeclContexts) std::fprintf(stderr, " %u/%u visible declcontexts read (%f%%)\n", NumVisibleDeclContextsRead, TotalVisibleDeclContexts, ((float)NumVisibleDeclContextsRead/TotalVisibleDeclContexts * 100)); if (TotalNumMethodPoolEntries) { std::fprintf(stderr, " %u/%u method pool entries read (%f%%)\n", NumMethodPoolEntriesRead, TotalNumMethodPoolEntries, ((float)NumMethodPoolEntriesRead/TotalNumMethodPoolEntries * 100)); } if (NumMethodPoolLookups) { std::fprintf(stderr, " %u/%u method pool lookups succeeded (%f%%)\n", NumMethodPoolHits, NumMethodPoolLookups, ((float)NumMethodPoolHits/NumMethodPoolLookups * 100.0)); } if (NumMethodPoolTableLookups) { std::fprintf(stderr, " %u/%u method pool table lookups succeeded (%f%%)\n", NumMethodPoolTableHits, NumMethodPoolTableLookups, ((float)NumMethodPoolTableHits/NumMethodPoolTableLookups * 100.0)); } if (NumIdentifierLookupHits) { std::fprintf(stderr, " %u / %u identifier table lookups succeeded (%f%%)\n", NumIdentifierLookupHits, NumIdentifierLookups, (double)NumIdentifierLookupHits*100.0/NumIdentifierLookups); } if (GlobalIndex) { std::fprintf(stderr, "\n"); GlobalIndex->printStats(); } std::fprintf(stderr, "\n"); dump(); std::fprintf(stderr, "\n"); } template
static void dumpModuleIDMap(StringRef Name, const ContinuousRangeMap
&Map) { if (Map.begin() == Map.end()) return; typedef ContinuousRangeMap
MapType; llvm::errs() << Name << ":\n"; for (typename MapType::const_iterator I = Map.begin(), IEnd = Map.end(); I != IEnd; ++I) { llvm::errs() << " " << I->first << " -> " << I->second->FileName << "\n"; } } void ASTReader::dump() { llvm::errs() << "*** PCH/ModuleFile Remappings:\n"; dumpModuleIDMap("Global bit offset map", GlobalBitOffsetsMap); dumpModuleIDMap("Global source location entry map", GlobalSLocEntryMap); dumpModuleIDMap("Global type map", GlobalTypeMap); dumpModuleIDMap("Global declaration map", GlobalDeclMap); dumpModuleIDMap("Global identifier map", GlobalIdentifierMap); dumpModuleIDMap("Global macro map", GlobalMacroMap); dumpModuleIDMap("Global submodule map", GlobalSubmoduleMap); dumpModuleIDMap("Global selector map", GlobalSelectorMap); dumpModuleIDMap("Global preprocessed entity map", GlobalPreprocessedEntityMap); llvm::errs() << "\n*** PCH/Modules Loaded:"; for (ModuleManager::ModuleConstIterator M = ModuleMgr.begin(), MEnd = ModuleMgr.end(); M != MEnd; ++M) (*M)->dump(); } /// Return the amount of memory used by memory buffers, breaking down /// by heap-backed versus mmap'ed memory. void ASTReader::getMemoryBufferSizes(MemoryBufferSizes &sizes) const { for (ModuleConstIterator I = ModuleMgr.begin(), E = ModuleMgr.end(); I != E; ++I) { if (llvm::MemoryBuffer *buf = (*I)->Buffer.get()) { size_t bytes = buf->getBufferSize(); switch (buf->getBufferKind()) { case llvm::MemoryBuffer::MemoryBuffer_Malloc: sizes.malloc_bytes += bytes; break; case llvm::MemoryBuffer::MemoryBuffer_MMap: sizes.mmap_bytes += bytes; break; } } } } void ASTReader::InitializeSema(Sema &S) { SemaObj = &S; S.addExternalSource(this); // Makes sure any declarations that were deserialized "too early" // still get added to the identifier's declaration chains. for (unsigned I = 0, N = PreloadedDecls.size(); I != N; ++I) { pushExternalDeclIntoScope(PreloadedDecls[I], PreloadedDecls[I]->getDeclName()); } PreloadedDecls.clear(); // FIXME: What happens if these are changed by a module import? if (!FPPragmaOptions.empty()) { assert(FPPragmaOptions.size() == 1 && "Wrong number of FP_PRAGMA_OPTIONS"); SemaObj->FPFeatures.fp_contract = FPPragmaOptions[0]; } // FIXME: What happens if these are changed by a module import? if (!OpenCLExtensions.empty()) { unsigned I = 0; #define OPENCLEXT(nm) SemaObj->OpenCLFeatures.nm = OpenCLExtensions[I++]; #include "clang/Basic/OpenCLExtensions.def" assert(OpenCLExtensions.size() == I && "Wrong number of OPENCL_EXTENSIONS"); } UpdateSema(); } void ASTReader::UpdateSema() { assert(SemaObj && "no Sema to update"); // Load the offsets of the declarations that Sema references. // They will be lazily deserialized when needed. if (!SemaDeclRefs.empty()) { assert(SemaDeclRefs.size() % 2 == 0); for (unsigned I = 0; I != SemaDeclRefs.size(); I += 2) { if (!SemaObj->StdNamespace) SemaObj->StdNamespace = SemaDeclRefs[I]; if (!SemaObj->StdBadAlloc) SemaObj->StdBadAlloc = SemaDeclRefs[I+1]; } SemaDeclRefs.clear(); } // Update the state of 'pragma clang optimize'. Use the same API as if we had // encountered the pragma in the source. if(OptimizeOffPragmaLocation.isValid()) SemaObj->ActOnPragmaOptimize(/* IsOn = */ false, OptimizeOffPragmaLocation); } IdentifierInfo* ASTReader::get(const char *NameStart, const char *NameEnd) { // Note that we are loading an identifier. Deserializing AnIdentifier(this); StringRef Name(NameStart, NameEnd - NameStart); // If there is a global index, look there first to determine which modules // provably do not have any results for this identifier. GlobalModuleIndex::HitSet Hits; GlobalModuleIndex::HitSet *HitsPtr = nullptr; if (!loadGlobalIndex()) { if (GlobalIndex->lookupIdentifier(Name, Hits)) { HitsPtr = &Hits; } } IdentifierLookupVisitor Visitor(Name, /*PriorGeneration=*/0, NumIdentifierLookups, NumIdentifierLookupHits); ModuleMgr.visit(IdentifierLookupVisitor::visit, &Visitor, HitsPtr); IdentifierInfo *II = Visitor.getIdentifierInfo(); markIdentifierUpToDate(II); return II; } namespace clang { /// \brief An identifier-lookup iterator that enumerates all of the /// identifiers stored within a set of AST files. class ASTIdentifierIterator : public IdentifierIterator { /// \brief The AST reader whose identifiers are being enumerated. const ASTReader &Reader; /// \brief The current index into the chain of AST files stored in /// the AST reader. unsigned Index; /// \brief The current position within the identifier lookup table /// of the current AST file. ASTIdentifierLookupTable::key_iterator Current; /// \brief The end position within the identifier lookup table of /// the current AST file. ASTIdentifierLookupTable::key_iterator End; public: explicit ASTIdentifierIterator(const ASTReader &Reader); StringRef Next() override; }; } ASTIdentifierIterator::ASTIdentifierIterator(const ASTReader &Reader) : Reader(Reader), Index(Reader.ModuleMgr.size() - 1) { ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index].IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } StringRef ASTIdentifierIterator::Next() { while (Current == End) { // If we have exhausted all of our AST files, we're done. if (Index == 0) return StringRef(); --Index; ASTIdentifierLookupTable *IdTable = (ASTIdentifierLookupTable *)Reader.ModuleMgr[Index]. IdentifierLookupTable; Current = IdTable->key_begin(); End = IdTable->key_end(); } // We have any identifiers remaining in the current AST file; return // the next one. StringRef Result = *Current; ++Current; return Result; } IdentifierIterator *ASTReader::getIdentifiers() { if (!loadGlobalIndex()) return GlobalIndex->createIdentifierIterator(); return new ASTIdentifierIterator(*this); } namespace clang { namespace serialization { class ReadMethodPoolVisitor { ASTReader &Reader; Selector Sel; unsigned PriorGeneration; unsigned InstanceBits; unsigned FactoryBits; SmallVector
InstanceMethods; SmallVector
FactoryMethods; public: ReadMethodPoolVisitor(ASTReader &Reader, Selector Sel, unsigned PriorGeneration) : Reader(Reader), Sel(Sel), PriorGeneration(PriorGeneration), InstanceBits(0), FactoryBits(0) { } static bool visit(ModuleFile &M, void *UserData) { ReadMethodPoolVisitor *This = static_cast
(UserData); if (!M.SelectorLookupTable) return false; // If we've already searched this module file, skip it now. if (M.Generation <= This->PriorGeneration) return true; ++This->Reader.NumMethodPoolTableLookups; ASTSelectorLookupTable *PoolTable = (ASTSelectorLookupTable*)M.SelectorLookupTable; ASTSelectorLookupTable::iterator Pos = PoolTable->find(This->Sel); if (Pos == PoolTable->end()) return false; ++This->Reader.NumMethodPoolTableHits; ++This->Reader.NumSelectorsRead; // FIXME: Not quite happy with the statistics here. We probably should // disable this tracking when called via LoadSelector. // Also, should entries without methods count as misses? ++This->Reader.NumMethodPoolEntriesRead; ASTSelectorLookupTrait::data_type Data = *Pos; if (This->Reader.DeserializationListener) This->Reader.DeserializationListener->SelectorRead(Data.ID, This->Sel); This->InstanceMethods.append(Data.Instance.begin(), Data.Instance.end()); This->FactoryMethods.append(Data.Factory.begin(), Data.Factory.end()); This->InstanceBits = Data.InstanceBits; This->FactoryBits = Data.FactoryBits; return true; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef
getInstanceMethods() const { return InstanceMethods; } /// \brief Retrieve the instance methods found by this visitor. ArrayRef
getFactoryMethods() const { return FactoryMethods; } unsigned getInstanceBits() const { return InstanceBits; } unsigned getFactoryBits() const { return FactoryBits; } }; } } // end namespace clang::serialization /// \brief Add the given set of methods to the method list. static void addMethodsToPool(Sema &S, ArrayRef
Methods, ObjCMethodList &List) { for (unsigned I = 0, N = Methods.size(); I != N; ++I) { S.addMethodToGlobalList(&List, Methods[I]); } } void ASTReader::ReadMethodPool(Selector Sel) { // Get the selector generation and update it to the current generation. unsigned &Generation = SelectorGeneration[Sel]; unsigned PriorGeneration = Generation; Generation = getGeneration(); // Search for methods defined with this selector. ++NumMethodPoolLookups; ReadMethodPoolVisitor Visitor(*this, Sel, PriorGeneration); ModuleMgr.visit(&ReadMethodPoolVisitor::visit, &Visitor); if (Visitor.getInstanceMethods().empty() && Visitor.getFactoryMethods().empty()) return; ++NumMethodPoolHits; if (!getSema()) return; Sema &S = *getSema(); Sema::GlobalMethodPool::iterator Pos = S.MethodPool.insert(std::make_pair(Sel, Sema::GlobalMethods())).first; addMethodsToPool(S, Visitor.getInstanceMethods(), Pos->second.first); addMethodsToPool(S, Visitor.getFactoryMethods(), Pos->second.second); Pos->second.first.setBits(Visitor.getInstanceBits()); Pos->second.second.setBits(Visitor.getFactoryBits()); } void ASTReader::ReadKnownNamespaces( SmallVectorImpl
&Namespaces) { Namespaces.clear(); for (unsigned I = 0, N = KnownNamespaces.size(); I != N; ++I) { if (NamespaceDecl *Namespace = dyn_cast_or_null
(GetDecl(KnownNamespaces[I]))) Namespaces.push_back(Namespace); } } void ASTReader::ReadUndefinedButUsed( llvm::DenseMap
&Undefined) { for (unsigned Idx = 0, N = UndefinedButUsed.size(); Idx != N;) { NamedDecl *D = cast
(GetDecl(UndefinedButUsed[Idx++])); SourceLocation Loc = SourceLocation::getFromRawEncoding(UndefinedButUsed[Idx++]); Undefined.insert(std::make_pair(D, Loc)); } } void ASTReader::ReadTentativeDefinitions( SmallVectorImpl
&TentativeDefs) { for (unsigned I = 0, N = TentativeDefinitions.size(); I != N; ++I) { VarDecl *Var = dyn_cast_or_null
(GetDecl(TentativeDefinitions[I])); if (Var) TentativeDefs.push_back(Var); } TentativeDefinitions.clear(); } void ASTReader::ReadUnusedFileScopedDecls( SmallVectorImpl
&Decls) { for (unsigned I = 0, N = UnusedFileScopedDecls.size(); I != N; ++I) { DeclaratorDecl *D = dyn_cast_or_null
(GetDecl(UnusedFileScopedDecls[I])); if (D) Decls.push_back(D); } UnusedFileScopedDecls.clear(); } void ASTReader::ReadDelegatingConstructors( SmallVectorImpl
&Decls) { for (unsigned I = 0, N = DelegatingCtorDecls.size(); I != N; ++I) { CXXConstructorDecl *D = dyn_cast_or_null
(GetDecl(DelegatingCtorDecls[I])); if (D) Decls.push_back(D); } DelegatingCtorDecls.clear(); } void ASTReader::ReadExtVectorDecls(SmallVectorImpl