// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#ifdef __linux__
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#endif
#include <utility>
#include "src/v8.h"
#include "src/full-codegen.h"
#include "src/global-handles.h"
#include "src/snapshot.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
TEST(MarkingDeque) {
CcTest::InitializeVM();
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingDeque s;
s.Initialize(low, high);
Address original_address = reinterpret_cast<Address>(&s);
Address current_address = original_address;
while (!s.IsFull()) {
s.PushBlack(HeapObject::FromAddress(current_address));
current_address += kPointerSize;
}
while (!s.IsEmpty()) {
Address value = s.Pop()->address();
current_address -= kPointerSize;
CHECK_EQ(current_address, value);
}
CHECK_EQ(original_address, current_address);
DeleteArray(mem);
}
TEST(Promotion) {
CcTest::InitializeVM();
TestHeap* heap = CcTest::test_heap();
heap->ConfigureHeap(1, 1, 1, 0);
v8::HandleScope sc(CcTest::isolate());
// Allocate a fixed array in the new space.
int array_length =
(Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
(4 * kPointerSize);
Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(heap->InSpace(*array, NEW_SPACE));
// Call mark compact GC, so array becomes an old object.
heap->CollectGarbage(OLD_POINTER_SPACE);
// Array now sits in the old space
CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
CcTest::InitializeVM();
TestHeap* heap = CcTest::test_heap();
heap->ConfigureHeap(1, 1, 1, 0);
v8::HandleScope sc(CcTest::isolate());
// Allocate a big fixed array in the new space.
int array_length =
(Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
(2 * kPointerSize);
Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(heap->InSpace(*array, NEW_SPACE));
// Simulate a full old space to make promotion fail.
SimulateFullSpace(heap->old_pointer_space());
// Call mark compact GC, and it should pass.
heap->CollectGarbage(OLD_POINTER_SPACE);
}
TEST(MarkCompactCollector) {
FLAG_incremental_marking = false;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
TestHeap* heap = CcTest::test_heap();
Factory* factory = isolate->factory();
v8::HandleScope sc(CcTest::isolate());
Handle<GlobalObject> global(isolate->context()->global_object());
// call mark-compact when heap is empty
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
AllocationResult allocation;
do {
allocation = heap->AllocateFixedArray(ARRAY_SIZE);
} while (!allocation.IsRetry());
heap->CollectGarbage(NEW_SPACE, "trigger 2");
heap->AllocateFixedArray(ARRAY_SIZE).ToObjectChecked();
// keep allocating maps until it fails
do {
allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (!allocation.IsRetry());
heap->CollectGarbage(MAP_SPACE, "trigger 3");
heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
{ HandleScope scope(isolate);
// allocate a garbage
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
Handle<JSFunction> function = factory->NewFunction(func_name);
JSReceiver::SetProperty(global, func_name, function, NONE, SLOPPY).Check();
factory->NewJSObject(function);
}
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
{ HandleScope scope(isolate);
Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
CHECK(JSReceiver::HasOwnProperty(global, func_name));
Handle<Object> func_value =
Object::GetProperty(global, func_name).ToHandleChecked();
CHECK(func_value->IsJSFunction());
Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
Handle<JSObject> obj = factory->NewJSObject(function);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check();
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check();
}
heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
{ HandleScope scope(isolate);
Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
CHECK(JSReceiver::HasOwnProperty(global, obj_name));
Handle<Object> object =
Object::GetProperty(global, obj_name).ToHandleChecked();
CHECK(object->IsJSObject());
Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
Smi::FromInt(23));
}
}
// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap(Isolate* isolate) {
return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
Factory* factory = isolate->factory();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = factory->NewJSObjectFromMap(map);
} while (CcTest::heap()->map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
// And now map pointers should be encodable again.
CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
}
#endif
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(
const v8::WeakCallbackData<v8::Value, void>& data) {
std::pair<v8::Persistent<v8::Value>*, int>* p =
reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
data.GetParameter());
ASSERT_EQ(1234, p->second);
NumberOfWeakCalls++;
p->first->Reset();
}
TEST(ObjectGroups) {
FLAG_incremental_marking = false;
CcTest::InitializeVM();
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
TestHeap* heap = CcTest::test_heap();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> g1s1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g1c1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
GlobalHandles::MakeWeak(g1s1.location(),
reinterpret_cast<void*>(&g1s1_and_id),
&WeakPointerCallback);
std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
GlobalHandles::MakeWeak(g1s2.location(),
reinterpret_cast<void*>(&g1s2_and_id),
&WeakPointerCallback);
std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
GlobalHandles::MakeWeak(g1c1.location(),
reinterpret_cast<void*>(&g1c1_and_id),
&WeakPointerCallback);
Handle<Object> g2s1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
Handle<Object> g2c1 =
global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
GlobalHandles::MakeWeak(g2s1.location(),
reinterpret_cast<void*>(&g2s1_and_id),
&WeakPointerCallback);
std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
GlobalHandles::MakeWeak(g2s2.location(),
reinterpret_cast<void*>(&g2s2_and_id),
&WeakPointerCallback);
std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
GlobalHandles::MakeWeak(g2c1.location(),
reinterpret_cast<void*>(&g2c1_and_id),
&WeakPointerCallback);
Handle<Object> root = global_handles->Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
}
// Do a full GC
heap->CollectGarbage(OLD_POINTER_SPACE);
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
GlobalHandles::MakeWeak(root.location(),
reinterpret_cast<void*>(&root_and_id),
&WeakPointerCallback);
// But make children strong roots---all the objects (except for children)
// should be collectable now.
global_handles->ClearWeakness(g1c1.location());
global_handles->ClearWeakness(g2c1.location());
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
}
heap->CollectGarbage(OLD_POINTER_SPACE);
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
// And now make children weak again and collect them.
GlobalHandles::MakeWeak(g1c1.location(),
reinterpret_cast<void*>(&g1c1_and_id),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2c1.location(),
reinterpret_cast<void*>(&g2c1_and_id),
&WeakPointerCallback);
heap->CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(7, NumberOfWeakCalls);
}
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
public:
TestRetainedObjectInfo() : has_been_disposed_(false) {}
bool has_been_disposed() { return has_been_disposed_; }
virtual void Dispose() {
ASSERT(!has_been_disposed_);
has_been_disposed_ = true;
}
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
return other == this;
}
virtual intptr_t GetHash() { return 0; }
virtual const char* GetLabel() { return "whatever"; }
private:
bool has_been_disposed_;
};
TEST(EmptyObjectGroups) {
CcTest::InitializeVM();
GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> object = global_handles->Create(
CcTest::test_heap()->AllocateFixedArray(1).ToObjectChecked());
TestRetainedObjectInfo info;
global_handles->AddObjectGroup(NULL, 0, &info);
ASSERT(info.has_been_disposed());
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(object).location(), NULL, 0);
}
#if defined(__has_feature)
#if __has_feature(address_sanitizer)
#define V8_WITH_ASAN 1
#endif
#endif
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes. Testing with ASAN doesn't make sense, either.
#if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
char* end_address = buffer + *position;
uintptr_t result = strtoul(buffer + *position, &end_address, base);
CHECK(result != ULONG_MAX || errno != ERANGE);
CHECK(end_address > buffer + *position);
*position = end_address - buffer;
return result;
}
// The memory use computed this way is not entirely accurate and depends on
// the way malloc allocates memory. That's why the memory use may seem to
// increase even though the sum of the allocated object sizes decreases. It
// also means that the memory use depends on the kernel and stdlib.
static intptr_t MemoryInUse() {
intptr_t memory_use = 0;
int fd = open("/proc/self/maps", O_RDONLY);
if (fd < 0) return -1;
const int kBufSize = 10000;
char buffer[kBufSize];
int length = read(fd, buffer, kBufSize);
intptr_t line_start = 0;
CHECK_LT(length, kBufSize); // Make the buffer bigger.
CHECK_GT(length, 0); // We have to find some data in the file.
while (line_start < length) {
if (buffer[line_start] == '\n') {
line_start++;
continue;
}
intptr_t position = line_start;
uintptr_t start = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], '-');
uintptr_t end = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], ' ');
CHECK(buffer[position] == '-' || buffer[position] == 'r');
bool read_permission = (buffer[position++] == 'r');
CHECK(buffer[position] == '-' || buffer[position] == 'w');
bool write_permission = (buffer[position++] == 'w');
CHECK(buffer[position] == '-' || buffer[position] == 'x');
bool execute_permission = (buffer[position++] == 'x');
CHECK(buffer[position] == '-' || buffer[position] == 'p');
bool private_mapping = (buffer[position++] == 'p');
CHECK_EQ(buffer[position++], ' ');
uintptr_t offset = ReadLong(buffer, &position, 16);
USE(offset);
CHECK_EQ(buffer[position++], ' ');
uintptr_t major = ReadLong(buffer, &position, 16);
USE(major);
CHECK_EQ(buffer[position++], ':');
uintptr_t minor = ReadLong(buffer, &position, 16);
USE(minor);
CHECK_EQ(buffer[position++], ' ');
uintptr_t inode = ReadLong(buffer, &position, 10);
while (position < length && buffer[position] != '\n') position++;
if ((read_permission || write_permission || execute_permission) &&
private_mapping && inode == 0) {
memory_use += (end - start);
}
line_start = position;
}
close(fd);
return memory_use;
}
intptr_t ShortLivingIsolate() {
v8::Isolate* isolate = v8::Isolate::New();
{ v8::Isolate::Scope isolate_scope(isolate);
v8::Locker lock(isolate);
v8::HandleScope handle_scope(isolate);
v8::Local<v8::Context> context = v8::Context::New(isolate);
CHECK(!context.IsEmpty());
}
isolate->Dispose();
return MemoryInUse();
}
TEST(RegressJoinThreadsOnIsolateDeinit) {
intptr_t size_limit = ShortLivingIsolate() * 2;
for (int i = 0; i < 10; i++) {
CHECK_GT(size_limit, ShortLivingIsolate());
}
}
#endif // __linux__ and !USE_SIMULATOR