code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); CHECK(code->IsCode()); HeapObject* obj = HeapObject::cast(*code); Address obj_addr = obj->address(); for (int i = 0; i < obj->Size(); i += kPointerSize) { Object* found = isolate->FindCodeObject(obj_addr + i); CHECK_EQ(*code, found); } Handle copy = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(reinterpret_cast(NULL), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM64) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticAscii("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context()->global_object()); CHECK(JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, NONE, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_namex, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackData& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty( function, prop_name, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); // delete first JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete first and then second JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, second)); JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete second and then first JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, NONE, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, NONE, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetElementsLength(array, handle(Smi::FromInt(0), isolate)).Check(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(array, 0, name, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. Handle length = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); JSArray::SetElementsLength(array, length).Check(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(array, int_length, name, NONE, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 0, first, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 1, second, NONE, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, NONE, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 0, second, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 1, first, NONE, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_ascii = NewArray(3 * length + 1); char* ascii = NewArray(length + 1); non_ascii[3 * length] = 0; ascii[length] = 0; for (int i = 0; i < length; i++) { ascii[i] = 'a'; non_ascii[3 * i] = chars[0]; non_ascii[3 * i + 1] = chars[1]; non_ascii[3 * i + 2] = chars[2]; } Handle non_ascii_sym = factory->InternalizeUtf8String( Vector(non_ascii, 3 * length)); CHECK_EQ(length, non_ascii_sym->length()); Handle ascii_sym = factory->InternalizeOneByteString(OneByteVector(ascii, length)); CHECK_EQ(length, ascii_sym->length()); Handle non_ascii_str = factory->NewStringFromUtf8( Vector(non_ascii, 3 * length)).ToHandleChecked(); non_ascii_str->Hash(); CHECK_EQ(length, non_ascii_str->length()); Handle ascii_str = factory->NewStringFromUtf8( Vector(ascii, length)).ToHandleChecked(); ascii_str->Hash(); CHECK_EQ(length, ascii_str->length()); DeleteArray(non_ascii); DeleteArray(ascii); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle runaway; { v8::EscapableHandleScope nested(CcTest::isolate()); Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); // Increase the chance of 'bump-the-pointer' allocation in old space. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. Handle object_ctor( CcTest::i_isolate()->native_context()->object_function()); CHECK(object_ctor->has_initial_map()); // Create a map with single inobject property. Handle my_map = Map::Create(object_ctor, 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. FieldIndex index = FieldIndex::ForInObjectOffset( JSObject::kHeaderSize - kPointerSize); jsobject->FastPropertyAtPut(index, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = heap->old_pointer_space()->top(); AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(heap->old_pointer_space()->Contains(clone->address())); } TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty( CcTest::i_isolate()->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); if (!function->next_function_link()->IsUndefined()) break; CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); bool opt = (FLAG_always_opt && isolate->use_crankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope HandleScope scope(isolate); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); static const int kNumTestContexts = 10; HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && isolate->use_crankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(CcTest::heap()->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->EffectiveCapacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->Capacity(); FillUpNewSpace(new_space); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { if (FLAG_never_compact) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun("var base = {};"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("base")))); int initialTransitions = baseObject->map()->NumberOfProtoTransitions(); CompileRun( "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); // Verify that only dead prototype transitions are cleared. CHECK_EQ(initialTransitions + 10, baseObject->map()->NumberOfProtoTransitions()); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); const int transitions = 10 - 3; CHECK_EQ(initialTransitions + transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = initialTransitions; i < initialTransitions + transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = CcTest::heap()->old_pointer_space(); { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(space); prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment CcTest::heap()->global_ic_age(). const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); CcTest::heap()->incremental_marking()->Abort(); // The following two calls will increment CcTest::heap()->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldPointerSpace(o->RawFastPropertyAt(idx1))); CHECK(CcTest::heap()->InOldDataSpace(o->RawFastPropertyAt(idx2))); JSObject* inner_object = reinterpret_cast
()); CHECK(code->IsCode()); HeapObject* obj = HeapObject::cast(*code); Address obj_addr = obj->address(); for (int i = 0; i < obj->Size(); i += kPointerSize) { Object* found = isolate->FindCodeObject(obj_addr + i); CHECK_EQ(*code, found); } Handle copy = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(reinterpret_cast(NULL), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM64) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticAscii("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context()->global_object()); CHECK(JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, NONE, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_namex, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackData& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty( function, prop_name, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); // delete first JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete first and then second JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, second)); JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete second and then first JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, NONE, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, NONE, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetElementsLength(array, handle(Smi::FromInt(0), isolate)).Check(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(array, 0, name, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. Handle length = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); JSArray::SetElementsLength(array, length).Check(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(array, int_length, name, NONE, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 0, first, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 1, second, NONE, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, NONE, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 0, second, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 1, first, NONE, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_ascii = NewArray(3 * length + 1); char* ascii = NewArray(length + 1); non_ascii[3 * length] = 0; ascii[length] = 0; for (int i = 0; i < length; i++) { ascii[i] = 'a'; non_ascii[3 * i] = chars[0]; non_ascii[3 * i + 1] = chars[1]; non_ascii[3 * i + 2] = chars[2]; } Handle non_ascii_sym = factory->InternalizeUtf8String( Vector(non_ascii, 3 * length)); CHECK_EQ(length, non_ascii_sym->length()); Handle ascii_sym = factory->InternalizeOneByteString(OneByteVector(ascii, length)); CHECK_EQ(length, ascii_sym->length()); Handle non_ascii_str = factory->NewStringFromUtf8( Vector(non_ascii, 3 * length)).ToHandleChecked(); non_ascii_str->Hash(); CHECK_EQ(length, non_ascii_str->length()); Handle ascii_str = factory->NewStringFromUtf8( Vector(ascii, length)).ToHandleChecked(); ascii_str->Hash(); CHECK_EQ(length, ascii_str->length()); DeleteArray(non_ascii); DeleteArray(ascii); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle runaway; { v8::EscapableHandleScope nested(CcTest::isolate()); Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); // Increase the chance of 'bump-the-pointer' allocation in old space. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. Handle object_ctor( CcTest::i_isolate()->native_context()->object_function()); CHECK(object_ctor->has_initial_map()); // Create a map with single inobject property. Handle my_map = Map::Create(object_ctor, 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. FieldIndex index = FieldIndex::ForInObjectOffset( JSObject::kHeaderSize - kPointerSize); jsobject->FastPropertyAtPut(index, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = heap->old_pointer_space()->top(); AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(heap->old_pointer_space()->Contains(clone->address())); } TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty( CcTest::i_isolate()->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); if (!function->next_function_link()->IsUndefined()) break; CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); bool opt = (FLAG_always_opt && isolate->use_crankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope HandleScope scope(isolate); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); static const int kNumTestContexts = 10; HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && isolate->use_crankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(CcTest::heap()->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->EffectiveCapacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->Capacity(); FillUpNewSpace(new_space); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { if (FLAG_never_compact) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun("var base = {};"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("base")))); int initialTransitions = baseObject->map()->NumberOfProtoTransitions(); CompileRun( "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); // Verify that only dead prototype transitions are cleared. CHECK_EQ(initialTransitions + 10, baseObject->map()->NumberOfProtoTransitions()); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); const int transitions = 10 - 3; CHECK_EQ(initialTransitions + transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = initialTransitions; i < initialTransitions + transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = CcTest::heap()->old_pointer_space(); { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(space); prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment CcTest::heap()->global_ic_age(). const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); CcTest::heap()->incremental_marking()->Abort(); // The following two calls will increment CcTest::heap()->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldPointerSpace(o->RawFastPropertyAt(idx1))); CHECK(CcTest::heap()->InOldDataSpace(o->RawFastPropertyAt(idx2))); JSObject* inner_object = reinterpret_cast
copy = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(reinterpret_cast(NULL), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM64) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticAscii("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context()->global_object()); CHECK(JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, NONE, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_namex, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackData& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty( function, prop_name, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); // delete first JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete first and then second JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, second)); JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete second and then first JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, NONE, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, NONE, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetElementsLength(array, handle(Smi::FromInt(0), isolate)).Check(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(array, 0, name, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. Handle length = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); JSArray::SetElementsLength(array, length).Check(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(array, int_length, name, NONE, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 0, first, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 1, second, NONE, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, NONE, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 0, second, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 1, first, NONE, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_ascii = NewArray(3 * length + 1); char* ascii = NewArray(length + 1); non_ascii[3 * length] = 0; ascii[length] = 0; for (int i = 0; i < length; i++) { ascii[i] = 'a'; non_ascii[3 * i] = chars[0]; non_ascii[3 * i + 1] = chars[1]; non_ascii[3 * i + 2] = chars[2]; } Handle non_ascii_sym = factory->InternalizeUtf8String( Vector(non_ascii, 3 * length)); CHECK_EQ(length, non_ascii_sym->length()); Handle ascii_sym = factory->InternalizeOneByteString(OneByteVector(ascii, length)); CHECK_EQ(length, ascii_sym->length()); Handle non_ascii_str = factory->NewStringFromUtf8( Vector(non_ascii, 3 * length)).ToHandleChecked(); non_ascii_str->Hash(); CHECK_EQ(length, non_ascii_str->length()); Handle ascii_str = factory->NewStringFromUtf8( Vector(ascii, length)).ToHandleChecked(); ascii_str->Hash(); CHECK_EQ(length, ascii_str->length()); DeleteArray(non_ascii); DeleteArray(ascii); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle runaway; { v8::EscapableHandleScope nested(CcTest::isolate()); Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); // Increase the chance of 'bump-the-pointer' allocation in old space. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. Handle object_ctor( CcTest::i_isolate()->native_context()->object_function()); CHECK(object_ctor->has_initial_map()); // Create a map with single inobject property. Handle my_map = Map::Create(object_ctor, 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. FieldIndex index = FieldIndex::ForInObjectOffset( JSObject::kHeaderSize - kPointerSize); jsobject->FastPropertyAtPut(index, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = heap->old_pointer_space()->top(); AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(heap->old_pointer_space()->Contains(clone->address())); } TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty( CcTest::i_isolate()->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); if (!function->next_function_link()->IsUndefined()) break; CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); bool opt = (FLAG_always_opt && isolate->use_crankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope HandleScope scope(isolate); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); static const int kNumTestContexts = 10; HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && isolate->use_crankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(CcTest::heap()->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->EffectiveCapacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->Capacity(); FillUpNewSpace(new_space); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { if (FLAG_never_compact) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun("var base = {};"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("base")))); int initialTransitions = baseObject->map()->NumberOfProtoTransitions(); CompileRun( "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); // Verify that only dead prototype transitions are cleared. CHECK_EQ(initialTransitions + 10, baseObject->map()->NumberOfProtoTransitions()); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); const int transitions = 10 - 3; CHECK_EQ(initialTransitions + transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = initialTransitions; i < initialTransitions + transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = CcTest::heap()->old_pointer_space(); { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(space); prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment CcTest::heap()->global_ic_age(). const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); CcTest::heap()->incremental_marking()->Abort(); // The following two calls will increment CcTest::heap()->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldPointerSpace(o->RawFastPropertyAt(idx1))); CHECK(CcTest::heap()->InOldDataSpace(o->RawFastPropertyAt(idx2))); JSObject* inner_object = reinterpret_cast
()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(reinterpret_cast(NULL), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM64) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticAscii("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context()->global_object()); CHECK(JSReceiver::HasOwnProperty(global, object_string)); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, NONE, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_namex, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. CHECK(JSReceiver::HasOwnProperty(global, name)); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check(); JSReceiver::SetProperty( obj, prop_name, twenty_three, NONE, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); CHECK(JSReceiver::HasOwnProperty(global, obj_name)); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackData& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticAscii("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty( function, prop_name, twenty_four, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); // delete first JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete first and then second JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, second)); JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // add first and then second JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); CHECK(JSReceiver::HasOwnProperty(obj, second)); // delete second and then first JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); CHECK(JSReceiver::HasOwnProperty(obj, first)); JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); CHECK(!JSReceiver::HasOwnProperty(obj, first)); CHECK(!JSReceiver::HasOwnProperty(obj, second)); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, NONE, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); CHECK(JSReceiver::HasOwnProperty(obj, s1_string)); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, NONE, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); CHECK(JSReceiver::HasOwnProperty(obj, s2)); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetElementsLength(array, handle(Smi::FromInt(0), isolate)).Check(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(array, 0, name, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. Handle length = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); JSArray::SetElementsLength(array, length).Check(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(array, int_length, name, NONE, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, NONE, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 0, first, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 1, second, NONE, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, NONE, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 0, second, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 1, first, NONE, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_ascii = NewArray(3 * length + 1); char* ascii = NewArray(length + 1); non_ascii[3 * length] = 0; ascii[length] = 0; for (int i = 0; i < length; i++) { ascii[i] = 'a'; non_ascii[3 * i] = chars[0]; non_ascii[3 * i + 1] = chars[1]; non_ascii[3 * i + 2] = chars[2]; } Handle non_ascii_sym = factory->InternalizeUtf8String( Vector(non_ascii, 3 * length)); CHECK_EQ(length, non_ascii_sym->length()); Handle ascii_sym = factory->InternalizeOneByteString(OneByteVector(ascii, length)); CHECK_EQ(length, ascii_sym->length()); Handle non_ascii_str = factory->NewStringFromUtf8( Vector(non_ascii, 3 * length)).ToHandleChecked(); non_ascii_str->Hash(); CHECK_EQ(length, non_ascii_str->length()); Handle ascii_str = factory->NewStringFromUtf8( Vector(ascii, length)).ToHandleChecked(); ascii_str->Hash(); CHECK_EQ(length, ascii_str->length()); DeleteArray(non_ascii); DeleteArray(ascii); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticAscii("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle runaway; { v8::EscapableHandleScope nested(CcTest::isolate()); Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); // Increase the chance of 'bump-the-pointer' allocation in old space. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. Handle object_ctor( CcTest::i_isolate()->native_context()->object_function()); CHECK(object_ctor->has_initial_map()); // Create a map with single inobject property. Handle my_map = Map::Create(object_ctor, 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. FieldIndex index = FieldIndex::ForInObjectOffset( JSObject::kHeaderSize - kPointerSize); jsobject->FastPropertyAtPut(index, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = heap->old_pointer_space()->top(); AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(heap->old_pointer_space()->Contains(clone->address())); } TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty( CcTest::i_isolate()->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(); if (!function->next_function_link()->IsUndefined()) break; CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); bool opt = (FLAG_always_opt && isolate->use_crankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope HandleScope scope(isolate); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); static const int kNumTestContexts = 10; HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && isolate->use_crankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(CcTest::heap()->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->IsConcurrentSweepingInProgress()) { collector->WaitUntilSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->EffectiveCapacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->Capacity(); FillUpNewSpace(new_space); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->Capacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->Capacity(); new_space->Grow(); new_capacity = new_space->Capacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->Capacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); v8::V8::ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { if (FLAG_never_compact) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun("var base = {};"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("base")))); int initialTransitions = baseObject->map()->NumberOfProtoTransitions(); CompileRun( "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); // Verify that only dead prototype transitions are cleared. CHECK_EQ(initialTransitions + 10, baseObject->map()->NumberOfProtoTransitions()); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); const int transitions = 10 - 3; CHECK_EQ(initialTransitions + transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = initialTransitions; i < initialTransitions + transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = CcTest::heap()->old_pointer_space(); { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(space); prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment CcTest::heap()->global_ic_age(). const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); CcTest::heap()->incremental_marking()->Abort(); // The following two calls will increment CcTest::heap()->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; v8::V8::ContextDisposedNotification(); v8::V8::IdleNotification(kLongIdlePauseInMs); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldPointerSpace(o->RawFastPropertyAt(idx1))); CHECK(CcTest::heap()->InOldDataSpace(o->RawFastPropertyAt(idx2))); JSObject* inner_object = reinterpret_cast