// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Platform-specific code for POSIX goes here. This is not a platform on its
// own, but contains the parts which are the same across the POSIX platforms
// Linux, MacOS, FreeBSD, OpenBSD, NetBSD and QNX.
#include <dlfcn.h>
#include <pthread.h>
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
#include <pthread_np.h> // for pthread_set_name_np
#endif
#include <sched.h> // for sched_yield
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#if defined(__linux__)
#include <sys/prctl.h> // for prctl
#endif
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || \
defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/sysctl.h> // for sysctl
#endif
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netdb.h>
#undef MAP_TYPE
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
#define LOG_TAG "v8"
#include <android/log.h>
#endif
#include "src/v8.h"
#include "src/isolate-inl.h"
#include "src/platform.h"
#ifdef V8_FAST_TLS_SUPPORTED
#include "src/base/atomicops.h"
#endif
namespace v8 {
namespace internal {
// 0 is never a valid thread id.
static const pthread_t kNoThread = (pthread_t) 0;
int OS::NumberOfProcessorsOnline() {
return static_cast<int>(sysconf(_SC_NPROCESSORS_ONLN));
}
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
intptr_t OS::MaxVirtualMemory() {
struct rlimit limit;
int result = getrlimit(RLIMIT_DATA, &limit);
if (result != 0) return 0;
#if V8_OS_NACL
// The NaCl compiler doesn't like resource.h constants.
if (static_cast<int>(limit.rlim_cur) == -1) return 0;
#else
if (limit.rlim_cur == RLIM_INFINITY) return 0;
#endif
return limit.rlim_cur;
}
uint64_t OS::TotalPhysicalMemory() {
#if V8_OS_MACOSX
int mib[2];
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
int64_t size = 0;
size_t len = sizeof(size);
if (sysctl(mib, 2, &size, &len, NULL, 0) != 0) {
UNREACHABLE();
return 0;
}
return static_cast<uint64_t>(size);
#elif V8_OS_FREEBSD
int pages, page_size;
size_t size = sizeof(pages);
sysctlbyname("vm.stats.vm.v_page_count", &pages, &size, NULL, 0);
sysctlbyname("vm.stats.vm.v_page_size", &page_size, &size, NULL, 0);
if (pages == -1 || page_size == -1) {
UNREACHABLE();
return 0;
}
return static_cast<uint64_t>(pages) * page_size;
#elif V8_OS_CYGWIN
MEMORYSTATUS memory_info;
memory_info.dwLength = sizeof(memory_info);
if (!GlobalMemoryStatus(&memory_info)) {
UNREACHABLE();
return 0;
}
return static_cast<uint64_t>(memory_info.dwTotalPhys);
#elif V8_OS_QNX
struct stat stat_buf;
if (stat("/proc", &stat_buf) != 0) {
UNREACHABLE();
return 0;
}
return static_cast<uint64_t>(stat_buf.st_size);
#else
intptr_t pages = sysconf(_SC_PHYS_PAGES);
intptr_t page_size = sysconf(_SC_PAGESIZE);
if (pages == -1 || page_size == -1) {
UNREACHABLE();
return 0;
}
return static_cast<uint64_t>(pages) * page_size;
#endif
}
int OS::ActivationFrameAlignment() {
#if V8_TARGET_ARCH_ARM
// On EABI ARM targets this is required for fp correctness in the
// runtime system.
return 8;
#elif V8_TARGET_ARCH_MIPS
return 8;
#else
// Otherwise we just assume 16 byte alignment, i.e.:
// - With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
// - Mac OS X and Solaris (64-bit) activation frames must be 16 byte-aligned;
// see "Mac OS X ABI Function Call Guide"
return 16;
#endif
}
intptr_t OS::CommitPageSize() {
static intptr_t page_size = getpagesize();
return page_size;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
// Get rid of writable permission on code allocations.
void OS::ProtectCode(void* address, const size_t size) {
#if V8_OS_CYGWIN
DWORD old_protect;
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
#elif V8_OS_NACL
// The Native Client port of V8 uses an interpreter, so
// code pages don't need PROT_EXEC.
mprotect(address, size, PROT_READ);
#else
mprotect(address, size, PROT_READ | PROT_EXEC);
#endif
}
// Create guard pages.
void OS::Guard(void* address, const size_t size) {
#if V8_OS_CYGWIN
DWORD oldprotect;
VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
#else
mprotect(address, size, PROT_NONE);
#endif
}
void* OS::GetRandomMmapAddr() {
#if V8_OS_NACL
// TODO(bradchen): restore randomization once Native Client gets
// smarter about using mmap address hints.
// See http://code.google.com/p/nativeclient/issues/3341
return NULL;
#endif
#if defined(ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER) || \
defined(THREAD_SANITIZER)
// Dynamic tools do not support custom mmap addresses.
return NULL;
#endif
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
uintptr_t raw_addr;
isolate->random_number_generator()->NextBytes(&raw_addr, sizeof(raw_addr));
#if V8_TARGET_ARCH_X64
// Currently available CPUs have 48 bits of virtual addressing. Truncate
// the hint address to 46 bits to give the kernel a fighting chance of
// fulfilling our placement request.
raw_addr &= V8_UINT64_C(0x3ffffffff000);
#else
raw_addr &= 0x3ffff000;
# ifdef __sun
// For our Solaris/illumos mmap hint, we pick a random address in the bottom
// half of the top half of the address space (that is, the third quarter).
// Because we do not MAP_FIXED, this will be treated only as a hint -- the
// system will not fail to mmap() because something else happens to already
// be mapped at our random address. We deliberately set the hint high enough
// to get well above the system's break (that is, the heap); Solaris and
// illumos will try the hint and if that fails allocate as if there were
// no hint at all. The high hint prevents the break from getting hemmed in
// at low values, ceding half of the address space to the system heap.
raw_addr += 0x80000000;
# else
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macos
// 10.6 and 10.7.
raw_addr += 0x20000000;
# endif
#endif
return reinterpret_cast<void*>(raw_addr);
}
return NULL;
}
size_t OS::AllocateAlignment() {
return static_cast<size_t>(sysconf(_SC_PAGESIZE));
}
void OS::Sleep(int milliseconds) {
useconds_t ms = static_cast<useconds_t>(milliseconds);
usleep(1000 * ms);
}
void OS::Abort() {
if (FLAG_hard_abort) {
V8_IMMEDIATE_CRASH();
}
// Redirect to std abort to signal abnormal program termination.
abort();
}
void OS::DebugBreak() {
#if V8_HOST_ARCH_ARM
asm("bkpt 0");
#elif V8_HOST_ARCH_ARM64
asm("brk 0");
#elif V8_HOST_ARCH_MIPS
asm("break");
#elif V8_HOST_ARCH_IA32
#if defined(__native_client__)
asm("hlt");
#else
asm("int $3");
#endif // __native_client__
#elif V8_HOST_ARCH_X64
asm("int $3");
#else
#error Unsupported host architecture.
#endif
}
// ----------------------------------------------------------------------------
// Math functions
double OS::nan_value() {
// NAN from math.h is defined in C99 and not in POSIX.
return NAN;
}
int OS::GetCurrentProcessId() {
return static_cast<int>(getpid());
}
// ----------------------------------------------------------------------------
// POSIX date/time support.
//
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) < 0) return -1;
*secs = usage.ru_utime.tv_sec;
*usecs = usage.ru_utime.tv_usec;
return 0;
}
double OS::TimeCurrentMillis() {
return Time::Now().ToJsTime();
}
class TimezoneCache {};
TimezoneCache* OS::CreateTimezoneCache() {
return NULL;
}
void OS::DisposeTimezoneCache(TimezoneCache* cache) {
ASSERT(cache == NULL);
}
void OS::ClearTimezoneCache(TimezoneCache* cache) {
ASSERT(cache == NULL);
}
double OS::DaylightSavingsOffset(double time, TimezoneCache*) {
if (std::isnan(time)) return nan_value();
time_t tv = static_cast<time_t>(std::floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return nan_value();
return t->tm_isdst > 0 ? 3600 * msPerSecond : 0;
}
int OS::GetLastError() {
return errno;
}
// ----------------------------------------------------------------------------
// POSIX stdio support.
//
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
}
bool OS::Remove(const char* path) {
return (remove(path) == 0);
}
FILE* OS::OpenTemporaryFile() {
return tmpfile();
}
const char* const OS::LogFileOpenMode = "w";
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vprintf(format, args);
#endif
}
void OS::FPrint(FILE* out, const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(out, format, args);
va_end(args);
}
void OS::VFPrint(FILE* out, const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vfprintf(out, format, args);
#endif
}
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_ERROR, LOG_TAG, format, args);
#else
vfprintf(stderr, format, args);
#endif
}
int OS::SNPrintF(char* str, int length, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, length, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(char* str,
int length,
const char* format,
va_list args) {
int n = vsnprintf(str, length, format, args);
if (n < 0 || n >= length) {
// If the length is zero, the assignment fails.
if (length > 0)
str[length - 1] = '\0';
return -1;
} else {
return n;
}
}
// ----------------------------------------------------------------------------
// POSIX string support.
//
char* OS::StrChr(char* str, int c) {
return strchr(str, c);
}
void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
strncpy(dest, src, n);
}
// ----------------------------------------------------------------------------
// POSIX thread support.
//
class Thread::PlatformData : public Malloced {
public:
PlatformData() : thread_(kNoThread) {}
pthread_t thread_; // Thread handle for pthread.
// Synchronizes thread creation
Mutex thread_creation_mutex_;
};
Thread::Thread(const Options& options)
: data_(new PlatformData),
stack_size_(options.stack_size()),
start_semaphore_(NULL) {
if (stack_size_ > 0 && stack_size_ < PTHREAD_STACK_MIN) {
stack_size_ = PTHREAD_STACK_MIN;
}
set_name(options.name());
}
Thread::~Thread() {
delete data_;
}
static void SetThreadName(const char* name) {
#if V8_OS_DRAGONFLYBSD || V8_OS_FREEBSD || V8_OS_OPENBSD
pthread_set_name_np(pthread_self(), name);
#elif V8_OS_NETBSD
STATIC_ASSERT(Thread::kMaxThreadNameLength <= PTHREAD_MAX_NAMELEN_NP);
pthread_setname_np(pthread_self(), "%s", name);
#elif V8_OS_MACOSX
// pthread_setname_np is only available in 10.6 or later, so test
// for it at runtime.
int (*dynamic_pthread_setname_np)(const char*);
*reinterpret_cast<void**>(&dynamic_pthread_setname_np) =
dlsym(RTLD_DEFAULT, "pthread_setname_np");
if (dynamic_pthread_setname_np == NULL)
return;
// Mac OS X does not expose the length limit of the name, so hardcode it.
static const int kMaxNameLength = 63;
STATIC_ASSERT(Thread::kMaxThreadNameLength <= kMaxNameLength);
dynamic_pthread_setname_np(name);
#elif defined(PR_SET_NAME)
prctl(PR_SET_NAME,
reinterpret_cast<unsigned long>(name), // NOLINT
0, 0, 0);
#endif
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// We take the lock here to make sure that pthread_create finished first since
// we don't know which thread will run first (the original thread or the new
// one).
{ LockGuard<Mutex> lock_guard(&thread->data()->thread_creation_mutex_); }
SetThreadName(thread->name());
ASSERT(thread->data()->thread_ != kNoThread);
thread->NotifyStartedAndRun();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
int result;
pthread_attr_t attr;
memset(&attr, 0, sizeof(attr));
result = pthread_attr_init(&attr);
ASSERT_EQ(0, result);
// Native client uses default stack size.
#if !V8_OS_NACL
if (stack_size_ > 0) {
result = pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
ASSERT_EQ(0, result);
}
#endif
{
LockGuard<Mutex> lock_guard(&data_->thread_creation_mutex_);
result = pthread_create(&data_->thread_, &attr, ThreadEntry, this);
}
ASSERT_EQ(0, result);
result = pthread_attr_destroy(&attr);
ASSERT_EQ(0, result);
ASSERT(data_->thread_ != kNoThread);
USE(result);
}
void Thread::Join() {
pthread_join(data_->thread_, NULL);
}
void Thread::YieldCPU() {
int result = sched_yield();
ASSERT_EQ(0, result);
USE(result);
}
static Thread::LocalStorageKey PthreadKeyToLocalKey(pthread_key_t pthread_key) {
#if V8_OS_CYGWIN
// We need to cast pthread_key_t to Thread::LocalStorageKey in two steps
// because pthread_key_t is a pointer type on Cygwin. This will probably not
// work on 64-bit platforms, but Cygwin doesn't support 64-bit anyway.
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = reinterpret_cast<intptr_t>(pthread_key);
return static_cast<Thread::LocalStorageKey>(ptr_key);
#else
return static_cast<Thread::LocalStorageKey>(pthread_key);
#endif
}
static pthread_key_t LocalKeyToPthreadKey(Thread::LocalStorageKey local_key) {
#if V8_OS_CYGWIN
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = static_cast<intptr_t>(local_key);
return reinterpret_cast<pthread_key_t>(ptr_key);
#else
return static_cast<pthread_key_t>(local_key);
#endif
}
#ifdef V8_FAST_TLS_SUPPORTED
static base::Atomic32 tls_base_offset_initialized = 0;
intptr_t kMacTlsBaseOffset = 0;
// It's safe to do the initialization more that once, but it has to be
// done at least once.
static void InitializeTlsBaseOffset() {
const size_t kBufferSize = 128;
char buffer[kBufferSize];
size_t buffer_size = kBufferSize;
int ctl_name[] = { CTL_KERN , KERN_OSRELEASE };
if (sysctl(ctl_name, 2, buffer, &buffer_size, NULL, 0) != 0) {
V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
}
// The buffer now contains a string of the form XX.YY.ZZ, where
// XX is the major kernel version component.
// Make sure the buffer is 0-terminated.
buffer[kBufferSize - 1] = '\0';
char* period_pos = strchr(buffer, '.');
*period_pos = '\0';
int kernel_version_major =
static_cast<int>(strtol(buffer, NULL, 10)); // NOLINT
// The constants below are taken from pthreads.s from the XNU kernel
// sources archive at www.opensource.apple.com.
if (kernel_version_major < 11) {
// 8.x.x (Tiger), 9.x.x (Leopard), 10.x.x (Snow Leopard) have the
// same offsets.
#if V8_HOST_ARCH_IA32
kMacTlsBaseOffset = 0x48;
#else
kMacTlsBaseOffset = 0x60;
#endif
} else {
// 11.x.x (Lion) changed the offset.
kMacTlsBaseOffset = 0;
}
base::Release_Store(&tls_base_offset_initialized, 1);
}
static void CheckFastTls(Thread::LocalStorageKey key) {
void* expected = reinterpret_cast<void*>(0x1234CAFE);
Thread::SetThreadLocal(key, expected);
void* actual = Thread::GetExistingThreadLocal(key);
if (expected != actual) {
V8_Fatal(__FILE__, __LINE__,
"V8 failed to initialize fast TLS on current kernel");
}
Thread::SetThreadLocal(key, NULL);
}
#endif // V8_FAST_TLS_SUPPORTED
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
#ifdef V8_FAST_TLS_SUPPORTED
bool check_fast_tls = false;
if (tls_base_offset_initialized == 0) {
check_fast_tls = true;
InitializeTlsBaseOffset();
}
#endif
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
ASSERT_EQ(0, result);
USE(result);
LocalStorageKey local_key = PthreadKeyToLocalKey(key);
#ifdef V8_FAST_TLS_SUPPORTED
// If we just initialized fast TLS support, make sure it works.
if (check_fast_tls) CheckFastTls(local_key);
#endif
return local_key;
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_key_delete(pthread_key);
ASSERT_EQ(0, result);
USE(result);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_setspecific(pthread_key, value);
ASSERT_EQ(0, result);
USE(result);
}
} } // namespace v8::internal