// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_IC_H_
#define V8_IC_H_
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
const int kMaxKeyedPolymorphism = 4;
// IC_UTIL_LIST defines all utility functions called from generated
// inline caching code. The argument for the macro, ICU, is the function name.
#define IC_UTIL_LIST(ICU) \
ICU(LoadIC_Miss) \
ICU(KeyedLoadIC_Miss) \
ICU(CallIC_Miss) \
ICU(CallIC_Customization_Miss) \
ICU(StoreIC_Miss) \
ICU(StoreIC_ArrayLength) \
ICU(StoreIC_Slow) \
ICU(SharedStoreIC_ExtendStorage) \
ICU(KeyedStoreIC_Miss) \
ICU(KeyedStoreIC_Slow) \
/* Utilities for IC stubs. */ \
ICU(StoreCallbackProperty) \
ICU(LoadPropertyWithInterceptorOnly) \
ICU(LoadPropertyWithInterceptor) \
ICU(KeyedLoadPropertyWithInterceptor) \
ICU(StoreInterceptorProperty) \
ICU(CompareIC_Miss) \
ICU(BinaryOpIC_Miss) \
ICU(CompareNilIC_Miss) \
ICU(Unreachable) \
ICU(ToBooleanIC_Miss)
//
// IC is the base class for LoadIC, StoreIC, KeyedLoadIC, and KeyedStoreIC.
//
class IC {
public:
// The ids for utility called from the generated code.
enum UtilityId {
#define CONST_NAME(name) k##name,
IC_UTIL_LIST(CONST_NAME)
#undef CONST_NAME
kUtilityCount
};
// Looks up the address of the named utility.
static Address AddressFromUtilityId(UtilityId id);
// Alias the inline cache state type to make the IC code more readable.
typedef InlineCacheState State;
// The IC code is either invoked with no extra frames on the stack
// or with a single extra frame for supporting calls.
enum FrameDepth {
NO_EXTRA_FRAME = 0,
EXTRA_CALL_FRAME = 1
};
// Construct the IC structure with the given number of extra
// JavaScript frames on the stack.
IC(FrameDepth depth, Isolate* isolate);
virtual ~IC() {}
State state() const { return state_; }
inline Address address() const;
// Compute the current IC state based on the target stub, receiver and name.
void UpdateState(Handle<Object> receiver, Handle<Object> name);
bool IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name);
bool TryMarkMonomorphicPrototypeFailure(Handle<Object> name) {
if (IsNameCompatibleWithMonomorphicPrototypeFailure(name)) {
state_ = MONOMORPHIC_PROTOTYPE_FAILURE;
return true;
}
return false;
}
// If the stub contains weak maps then this function adds the stub to
// the dependent code array of each weak map.
static void RegisterWeakMapDependency(Handle<Code> stub);
// This function is called when a weak map in the stub is dying,
// invalidates the stub by setting maps in it to undefined.
static void InvalidateMaps(Code* stub);
// Clear the inline cache to initial state.
static void Clear(Isolate* isolate,
Address address,
ConstantPoolArray* constant_pool);
#ifdef DEBUG
bool IsLoadStub() const {
return target()->is_load_stub() || target()->is_keyed_load_stub();
}
bool IsStoreStub() const {
return target()->is_store_stub() || target()->is_keyed_store_stub();
}
bool IsCallStub() const {
return target()->is_call_stub();
}
#endif
// Determines which map must be used for keeping the code stub.
// These methods should not be called with undefined or null.
static inline InlineCacheHolderFlag GetCodeCacheForObject(Object* object);
// TODO(verwaest): This currently returns a HeapObject rather than JSObject*
// since loading the IC for loading the length from strings are stored on
// the string map directly, rather than on the JSObject-typed prototype.
static inline HeapObject* GetCodeCacheHolder(Isolate* isolate,
Object* object,
InlineCacheHolderFlag holder);
static inline InlineCacheHolderFlag GetCodeCacheFlag(HeapType* type);
static inline Handle<Map> GetCodeCacheHolder(InlineCacheHolderFlag flag,
HeapType* type,
Isolate* isolate);
static bool IsCleared(Code* code) {
InlineCacheState state = code->ic_state();
return state == UNINITIALIZED || state == PREMONOMORPHIC;
}
// Utility functions to convert maps to types and back. There are two special
// cases:
// - The heap_number_map is used as a marker which includes heap numbers as
// well as smis.
// - The oddball map is only used for booleans.
static Handle<Map> TypeToMap(HeapType* type, Isolate* isolate);
template <class T>
static typename T::TypeHandle MapToType(Handle<Map> map,
typename T::Region* region);
static Handle<HeapType> CurrentTypeOf(Handle<Object> object,
Isolate* isolate);
protected:
// Get the call-site target; used for determining the state.
Handle<Code> target() const { return target_; }
Address fp() const { return fp_; }
Address pc() const { return *pc_address_; }
Isolate* isolate() const { return isolate_; }
// Get the shared function info of the caller.
SharedFunctionInfo* GetSharedFunctionInfo() const;
// Get the code object of the caller.
Code* GetCode() const;
// Get the original (non-breakpointed) code object of the caller.
Code* GetOriginalCode() const;
// Set the call-site target.
void set_target(Code* code) {
#ifdef VERIFY_HEAP
code->VerifyEmbeddedObjectsDependency();
#endif
SetTargetAtAddress(address(), code, constant_pool());
target_set_ = true;
}
bool is_target_set() { return target_set_; }
#ifdef DEBUG
char TransitionMarkFromState(IC::State state);
void TraceIC(const char* type, Handle<Object> name);
#endif
MaybeHandle<Object> TypeError(const char* type,
Handle<Object> object,
Handle<Object> key);
MaybeHandle<Object> ReferenceError(const char* type, Handle<String> name);
// Access the target code for the given IC address.
static inline Code* GetTargetAtAddress(Address address,
ConstantPoolArray* constant_pool);
static inline void SetTargetAtAddress(Address address,
Code* target,
ConstantPoolArray* constant_pool);
static void PostPatching(Address address, Code* target, Code* old_target);
// Compute the handler either by compiling or by retrieving a cached version.
Handle<Code> ComputeHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> value = Handle<Code>::null());
virtual Handle<Code> CompileHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
InlineCacheHolderFlag cache_holder) {
UNREACHABLE();
return Handle<Code>::null();
}
void UpdateMonomorphicIC(Handle<HeapType> type,
Handle<Code> handler,
Handle<String> name);
bool UpdatePolymorphicIC(Handle<HeapType> type,
Handle<String> name,
Handle<Code> code);
virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code);
void CopyICToMegamorphicCache(Handle<String> name);
bool IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map);
void PatchCache(Handle<HeapType> type,
Handle<String> name,
Handle<Code> code);
virtual Code::Kind kind() const {
UNREACHABLE();
return Code::STUB;
}
virtual Handle<Code> slow_stub() const {
UNREACHABLE();
return Handle<Code>::null();
}
virtual Handle<Code> megamorphic_stub() {
UNREACHABLE();
return Handle<Code>::null();
}
virtual Handle<Code> generic_stub() const {
UNREACHABLE();
return Handle<Code>::null();
}
bool TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
Handle<String> name);
void TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name);
ExtraICState extra_ic_state() const { return extra_ic_state_; }
void set_extra_ic_state(ExtraICState state) {
extra_ic_state_ = state;
}
void TargetMaps(MapHandleList* list) {
FindTargetMaps();
for (int i = 0; i < target_maps_.length(); i++) {
list->Add(target_maps_.at(i));
}
}
void TargetTypes(TypeHandleList* list) {
FindTargetMaps();
for (int i = 0; i < target_maps_.length(); i++) {
list->Add(IC::MapToType<HeapType>(target_maps_.at(i), isolate_));
}
}
Map* FirstTargetMap() {
FindTargetMaps();
return target_maps_.length() > 0 ? *target_maps_.at(0) : NULL;
}
protected:
void UpdateTarget() {
target_ = handle(raw_target(), isolate_);
}
private:
Code* raw_target() const {
return GetTargetAtAddress(address(), constant_pool());
}
inline ConstantPoolArray* constant_pool() const;
inline ConstantPoolArray* raw_constant_pool() const;
void FindTargetMaps() {
if (target_maps_set_) return;
target_maps_set_ = true;
if (state_ == MONOMORPHIC) {
Map* map = target_->FindFirstMap();
if (map != NULL) target_maps_.Add(handle(map));
} else if (state_ != UNINITIALIZED && state_ != PREMONOMORPHIC) {
target_->FindAllMaps(&target_maps_);
}
}
// Frame pointer for the frame that uses (calls) the IC.
Address fp_;
// All access to the program counter of an IC structure is indirect
// to make the code GC safe. This feature is crucial since
// GetProperty and SetProperty are called and they in turn might
// invoke the garbage collector.
Address* pc_address_;
Isolate* isolate_;
// The constant pool of the code which originally called the IC (which might
// be for the breakpointed copy of the original code).
Handle<ConstantPoolArray> raw_constant_pool_;
// The original code target that missed.
Handle<Code> target_;
State state_;
bool target_set_;
ExtraICState extra_ic_state_;
MapHandleList target_maps_;
bool target_maps_set_;
DISALLOW_IMPLICIT_CONSTRUCTORS(IC);
};
// An IC_Utility encapsulates IC::UtilityId. It exists mainly because you
// cannot make forward declarations to an enum.
class IC_Utility {
public:
explicit IC_Utility(IC::UtilityId id)
: address_(IC::AddressFromUtilityId(id)), id_(id) {}
Address address() const { return address_; }
IC::UtilityId id() const { return id_; }
private:
Address address_;
IC::UtilityId id_;
};
class CallIC: public IC {
public:
enum CallType { METHOD, FUNCTION };
class State V8_FINAL BASE_EMBEDDED {
public:
explicit State(ExtraICState extra_ic_state);
State(int argc, CallType call_type)
: argc_(argc), call_type_(call_type) {
}
InlineCacheState GetICState() const { return ::v8::internal::GENERIC; }
ExtraICState GetExtraICState() const;
static void GenerateAheadOfTime(
Isolate*, void (*Generate)(Isolate*, const State&));
int arg_count() const { return argc_; }
CallType call_type() const { return call_type_; }
bool CallAsMethod() const { return call_type_ == METHOD; }
void Print(StringStream* stream) const;
private:
class ArgcBits: public BitField<int, 0, Code::kArgumentsBits> {};
class CallTypeBits: public BitField<CallType, Code::kArgumentsBits, 1> {};
const int argc_;
const CallType call_type_;
};
explicit CallIC(Isolate* isolate)
: IC(EXTRA_CALL_FRAME, isolate) {
}
void PatchMegamorphic(Handle<FixedArray> vector, Handle<Smi> slot);
void HandleMiss(Handle<Object> receiver,
Handle<Object> function,
Handle<FixedArray> vector,
Handle<Smi> slot);
// Returns true if a custom handler was installed.
bool DoCustomHandler(Handle<Object> receiver,
Handle<Object> function,
Handle<FixedArray> vector,
Handle<Smi> slot,
const State& state);
// Code generator routines.
static Handle<Code> initialize_stub(Isolate* isolate,
int argc,
CallType call_type);
static void Clear(Isolate* isolate, Address address, Code* target,
ConstantPoolArray* constant_pool);
};
class LoadIC: public IC {
public:
// ExtraICState bits
class ContextualModeBits: public BitField<ContextualMode, 0, 1> {};
STATIC_ASSERT(static_cast<int>(NOT_CONTEXTUAL) == 0);
static ExtraICState ComputeExtraICState(ContextualMode contextual_mode) {
return ContextualModeBits::encode(contextual_mode);
}
static ContextualMode GetContextualMode(ExtraICState state) {
return ContextualModeBits::decode(state);
}
ContextualMode contextual_mode() const {
return ContextualModeBits::decode(extra_ic_state());
}
explicit LoadIC(FrameDepth depth, Isolate* isolate)
: IC(depth, isolate) {
ASSERT(IsLoadStub());
}
// Returns if this IC is for contextual (no explicit receiver)
// access to properties.
bool IsUndeclaredGlobal(Handle<Object> receiver) {
if (receiver->IsGlobalObject()) {
return contextual_mode() == CONTEXTUAL;
} else {
ASSERT(contextual_mode() != CONTEXTUAL);
return false;
}
}
// Code generator routines.
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm);
}
static void GenerateMiss(MacroAssembler* masm);
static void GenerateMegamorphic(MacroAssembler* masm);
static void GenerateNormal(MacroAssembler* masm);
static void GenerateRuntimeGetProperty(MacroAssembler* masm);
static Handle<Code> initialize_stub(Isolate* isolate,
ExtraICState extra_state);
MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object,
Handle<String> name);
protected:
virtual Code::Kind kind() const { return Code::LOAD_IC; }
void set_target(Code* code) {
// The contextual mode must be preserved across IC patching.
ASSERT(GetContextualMode(code->extra_ic_state()) ==
GetContextualMode(target()->extra_ic_state()));
IC::set_target(code);
}
virtual Handle<Code> slow_stub() const {
return isolate()->builtins()->LoadIC_Slow();
}
virtual Handle<Code> megamorphic_stub();
// Update the inline cache and the global stub cache based on the
// lookup result.
void UpdateCaches(LookupResult* lookup,
Handle<Object> object,
Handle<String> name);
virtual Handle<Code> CompileHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> unused,
InlineCacheHolderFlag cache_holder);
private:
// Stub accessors.
static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
ExtraICState exstra_state);
virtual Handle<Code> pre_monomorphic_stub() {
return pre_monomorphic_stub(isolate(), extra_ic_state());
}
Handle<Code> SimpleFieldLoad(FieldIndex index);
static void Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool);
friend class IC;
};
class KeyedLoadIC: public LoadIC {
public:
explicit KeyedLoadIC(FrameDepth depth, Isolate* isolate)
: LoadIC(depth, isolate) {
ASSERT(target()->is_keyed_load_stub());
}
MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object,
Handle<Object> key);
// Code generator routines.
static void GenerateMiss(MacroAssembler* masm);
static void GenerateRuntimeGetProperty(MacroAssembler* masm);
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm);
}
static void GenerateGeneric(MacroAssembler* masm);
static void GenerateString(MacroAssembler* masm);
static void GenerateIndexedInterceptor(MacroAssembler* masm);
static void GenerateSloppyArguments(MacroAssembler* masm);
// Bit mask to be tested against bit field for the cases when
// generic stub should go into slow case.
// Access check is necessary explicitly since generic stub does not perform
// map checks.
static const int kSlowCaseBitFieldMask =
(1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor);
protected:
virtual Code::Kind kind() const { return Code::KEYED_LOAD_IC; }
Handle<Code> LoadElementStub(Handle<JSObject> receiver);
virtual Handle<Code> megamorphic_stub();
virtual Handle<Code> generic_stub() const;
virtual Handle<Code> slow_stub() const {
return isolate()->builtins()->KeyedLoadIC_Slow();
}
virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {}
private:
// Stub accessors.
static Handle<Code> pre_monomorphic_stub(Isolate* isolate) {
return isolate->builtins()->KeyedLoadIC_PreMonomorphic();
}
virtual Handle<Code> pre_monomorphic_stub() {
return pre_monomorphic_stub(isolate());
}
Handle<Code> indexed_interceptor_stub() {
return isolate()->builtins()->KeyedLoadIC_IndexedInterceptor();
}
Handle<Code> sloppy_arguments_stub() {
return isolate()->builtins()->KeyedLoadIC_SloppyArguments();
}
Handle<Code> string_stub() {
return isolate()->builtins()->KeyedLoadIC_String();
}
static void Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool);
friend class IC;
};
class StoreIC: public IC {
public:
class StrictModeState: public BitField<StrictMode, 1, 1> {};
static ExtraICState ComputeExtraICState(StrictMode flag) {
return StrictModeState::encode(flag);
}
static StrictMode GetStrictMode(ExtraICState state) {
return StrictModeState::decode(state);
}
// For convenience, a statically declared encoding of strict mode extra
// IC state.
static const ExtraICState kStrictModeState =
1 << StrictModeState::kShift;
StoreIC(FrameDepth depth, Isolate* isolate)
: IC(depth, isolate) {
ASSERT(IsStoreStub());
}
StrictMode strict_mode() const {
return StrictModeState::decode(extra_ic_state());
}
// Code generators for stub routines. Only called once at startup.
static void GenerateSlow(MacroAssembler* masm);
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm);
}
static void GenerateMiss(MacroAssembler* masm);
static void GenerateMegamorphic(MacroAssembler* masm);
static void GenerateNormal(MacroAssembler* masm);
static void GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictMode strict_mode);
static Handle<Code> initialize_stub(Isolate* isolate,
StrictMode strict_mode);
MUST_USE_RESULT MaybeHandle<Object> Store(
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode =
JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED);
protected:
virtual Code::Kind kind() const { return Code::STORE_IC; }
virtual Handle<Code> megamorphic_stub();
// Stub accessors.
virtual Handle<Code> generic_stub() const;
virtual Handle<Code> slow_stub() const {
return isolate()->builtins()->StoreIC_Slow();
}
virtual Handle<Code> pre_monomorphic_stub() {
return pre_monomorphic_stub(isolate(), strict_mode());
}
static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
StrictMode strict_mode);
// Update the inline cache and the global stub cache based on the
// lookup result.
void UpdateCaches(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value);
virtual Handle<Code> CompileHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
InlineCacheHolderFlag cache_holder);
private:
void set_target(Code* code) {
// Strict mode must be preserved across IC patching.
ASSERT(GetStrictMode(code->extra_ic_state()) ==
GetStrictMode(target()->extra_ic_state()));
IC::set_target(code);
}
static void Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool);
friend class IC;
};
enum KeyedStoreCheckMap {
kDontCheckMap,
kCheckMap
};
enum KeyedStoreIncrementLength {
kDontIncrementLength,
kIncrementLength
};
class KeyedStoreIC: public StoreIC {
public:
// ExtraICState bits (building on IC)
// ExtraICState bits
class ExtraICStateKeyedAccessStoreMode:
public BitField<KeyedAccessStoreMode, 2, 4> {}; // NOLINT
static ExtraICState ComputeExtraICState(StrictMode flag,
KeyedAccessStoreMode mode) {
return StrictModeState::encode(flag) |
ExtraICStateKeyedAccessStoreMode::encode(mode);
}
static KeyedAccessStoreMode GetKeyedAccessStoreMode(
ExtraICState extra_state) {
return ExtraICStateKeyedAccessStoreMode::decode(extra_state);
}
KeyedStoreIC(FrameDepth depth, Isolate* isolate)
: StoreIC(depth, isolate) {
ASSERT(target()->is_keyed_store_stub());
}
MUST_USE_RESULT MaybeHandle<Object> Store(Handle<Object> object,
Handle<Object> name,
Handle<Object> value);
// Code generators for stub routines. Only called once at startup.
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm);
}
static void GenerateMiss(MacroAssembler* masm);
static void GenerateSlow(MacroAssembler* masm);
static void GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictMode strict_mode);
static void GenerateGeneric(MacroAssembler* masm, StrictMode strict_mode);
static void GenerateSloppyArguments(MacroAssembler* masm);
protected:
virtual Code::Kind kind() const { return Code::KEYED_STORE_IC; }
virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {}
virtual Handle<Code> pre_monomorphic_stub() {
return pre_monomorphic_stub(isolate(), strict_mode());
}
static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
StrictMode strict_mode) {
if (strict_mode == STRICT) {
return isolate->builtins()->KeyedStoreIC_PreMonomorphic_Strict();
} else {
return isolate->builtins()->KeyedStoreIC_PreMonomorphic();
}
}
virtual Handle<Code> slow_stub() const {
return isolate()->builtins()->KeyedStoreIC_Slow();
}
virtual Handle<Code> megamorphic_stub() {
if (strict_mode() == STRICT) {
return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
} else {
return isolate()->builtins()->KeyedStoreIC_Generic();
}
}
Handle<Code> StoreElementStub(Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode);
private:
void set_target(Code* code) {
// Strict mode must be preserved across IC patching.
ASSERT(GetStrictMode(code->extra_ic_state()) == strict_mode());
IC::set_target(code);
}
// Stub accessors.
virtual Handle<Code> generic_stub() const {
if (strict_mode() == STRICT) {
return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
} else {
return isolate()->builtins()->KeyedStoreIC_Generic();
}
}
Handle<Code> sloppy_arguments_stub() {
return isolate()->builtins()->KeyedStoreIC_SloppyArguments();
}
static void Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool);
KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver,
Handle<Object> key,
Handle<Object> value);
Handle<Map> ComputeTransitionedMap(Handle<Map> map,
KeyedAccessStoreMode store_mode);
friend class IC;
};
// Mode to overwrite BinaryExpression values.
enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };
// Type Recording BinaryOpIC, that records the types of the inputs and outputs.
class BinaryOpIC: public IC {
public:
class State V8_FINAL BASE_EMBEDDED {
public:
State(Isolate* isolate, ExtraICState extra_ic_state);
State(Isolate* isolate, Token::Value op, OverwriteMode mode)
: op_(op), mode_(mode), left_kind_(NONE), right_kind_(NONE),
result_kind_(NONE), isolate_(isolate) {
ASSERT_LE(FIRST_TOKEN, op);
ASSERT_LE(op, LAST_TOKEN);
}
InlineCacheState GetICState() const {
if (Max(left_kind_, right_kind_) == NONE) {
return ::v8::internal::UNINITIALIZED;
}
if (Max(left_kind_, right_kind_) == GENERIC) {
return ::v8::internal::MEGAMORPHIC;
}
if (Min(left_kind_, right_kind_) == GENERIC) {
return ::v8::internal::GENERIC;
}
return ::v8::internal::MONOMORPHIC;
}
ExtraICState GetExtraICState() const;
static void GenerateAheadOfTime(
Isolate*, void (*Generate)(Isolate*, const State&));
bool CanReuseDoubleBox() const {
return (result_kind_ > SMI && result_kind_ <= NUMBER) &&
((mode_ == OVERWRITE_LEFT &&
left_kind_ > SMI && left_kind_ <= NUMBER) ||
(mode_ == OVERWRITE_RIGHT &&
right_kind_ > SMI && right_kind_ <= NUMBER));
}
// Returns true if the IC _could_ create allocation mementos.
bool CouldCreateAllocationMementos() const {
if (left_kind_ == STRING || right_kind_ == STRING) {
ASSERT_EQ(Token::ADD, op_);
return true;
}
return false;
}
// Returns true if the IC _should_ create allocation mementos.
bool ShouldCreateAllocationMementos() const {
return FLAG_allocation_site_pretenuring &&
CouldCreateAllocationMementos();
}
bool HasSideEffects() const {
return Max(left_kind_, right_kind_) == GENERIC;
}
// Returns true if the IC should enable the inline smi code (i.e. if either
// parameter may be a smi).
bool UseInlinedSmiCode() const {
return KindMaybeSmi(left_kind_) || KindMaybeSmi(right_kind_);
}
static const int FIRST_TOKEN = Token::BIT_OR;
static const int LAST_TOKEN = Token::MOD;
Token::Value op() const { return op_; }
OverwriteMode mode() const { return mode_; }
Maybe<int> fixed_right_arg() const { return fixed_right_arg_; }
Type* GetLeftType(Zone* zone) const {
return KindToType(left_kind_, zone);
}
Type* GetRightType(Zone* zone) const {
return KindToType(right_kind_, zone);
}
Type* GetResultType(Zone* zone) const;
void Print(StringStream* stream) const;
void Update(Handle<Object> left,
Handle<Object> right,
Handle<Object> result);
Isolate* isolate() const { return isolate_; }
private:
enum Kind { NONE, SMI, INT32, NUMBER, STRING, GENERIC };
Kind UpdateKind(Handle<Object> object, Kind kind) const;
static const char* KindToString(Kind kind);
static Type* KindToType(Kind kind, Zone* zone);
static bool KindMaybeSmi(Kind kind) {
return (kind >= SMI && kind <= NUMBER) || kind == GENERIC;
}
// We truncate the last bit of the token.
STATIC_ASSERT(LAST_TOKEN - FIRST_TOKEN < (1 << 4));
class OpField: public BitField<int, 0, 4> {};
class OverwriteModeField: public BitField<OverwriteMode, 4, 2> {};
class ResultKindField: public BitField<Kind, 6, 3> {};
class LeftKindField: public BitField<Kind, 9, 3> {};
// When fixed right arg is set, we don't need to store the right kind.
// Thus the two fields can overlap.
class HasFixedRightArgField: public BitField<bool, 12, 1> {};
class FixedRightArgValueField: public BitField<int, 13, 4> {};
class RightKindField: public BitField<Kind, 13, 3> {};
Token::Value op_;
OverwriteMode mode_;
Kind left_kind_;
Kind right_kind_;
Kind result_kind_;
Maybe<int> fixed_right_arg_;
Isolate* isolate_;
};
explicit BinaryOpIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { }
static Builtins::JavaScript TokenToJSBuiltin(Token::Value op);
MaybeHandle<Object> Transition(Handle<AllocationSite> allocation_site,
Handle<Object> left,
Handle<Object> right) V8_WARN_UNUSED_RESULT;
};
class CompareIC: public IC {
public:
// The type/state lattice is defined by the following inequations:
// UNINITIALIZED < ...
// ... < GENERIC
// SMI < NUMBER
// INTERNALIZED_STRING < STRING
// KNOWN_OBJECT < OBJECT
enum State {
UNINITIALIZED,
SMI,
NUMBER,
STRING,
INTERNALIZED_STRING,
UNIQUE_NAME, // Symbol or InternalizedString
OBJECT, // JSObject
KNOWN_OBJECT, // JSObject with specific map (faster check)
GENERIC
};
static State NewInputState(State old_state, Handle<Object> value);
static Type* StateToType(Zone* zone,
State state,
Handle<Map> map = Handle<Map>());
static void StubInfoToType(int stub_minor_key,
Type** left_type,
Type** right_type,
Type** overall_type,
Handle<Map> map,
Zone* zone);
CompareIC(Isolate* isolate, Token::Value op)
: IC(EXTRA_CALL_FRAME, isolate), op_(op) { }
// Update the inline cache for the given operands.
Code* UpdateCaches(Handle<Object> x, Handle<Object> y);
// Factory method for getting an uninitialized compare stub.
static Handle<Code> GetUninitialized(Isolate* isolate, Token::Value op);
// Helper function for computing the condition for a compare operation.
static Condition ComputeCondition(Token::Value op);
static const char* GetStateName(State state);
private:
static bool HasInlinedSmiCode(Address address);
State TargetState(State old_state,
State old_left,
State old_right,
bool has_inlined_smi_code,
Handle<Object> x,
Handle<Object> y);
bool strict() const { return op_ == Token::EQ_STRICT; }
Condition GetCondition() const { return ComputeCondition(op_); }
static Code* GetRawUninitialized(Isolate* isolate, Token::Value op);
static void Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool);
Token::Value op_;
friend class IC;
};
class CompareNilIC: public IC {
public:
explicit CompareNilIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {}
Handle<Object> CompareNil(Handle<Object> object);
static Handle<Code> GetUninitialized();
static void Clear(Address address,
Code* target,
ConstantPoolArray* constant_pool);
static Handle<Object> DoCompareNilSlow(Isolate* isolate, NilValue nil,
Handle<Object> object);
};
class ToBooleanIC: public IC {
public:
explicit ToBooleanIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { }
Handle<Object> ToBoolean(Handle<Object> object);
};
// Helper for BinaryOpIC and CompareIC.
enum InlinedSmiCheck { ENABLE_INLINED_SMI_CHECK, DISABLE_INLINED_SMI_CHECK };
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check);
DECLARE_RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure);
DECLARE_RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure);
DECLARE_RUNTIME_FUNCTION(UnaryOpIC_Miss);
DECLARE_RUNTIME_FUNCTION(StoreIC_MissFromStubFailure);
DECLARE_RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss);
DECLARE_RUNTIME_FUNCTION(BinaryOpIC_Miss);
DECLARE_RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite);
DECLARE_RUNTIME_FUNCTION(CompareNilIC_Miss);
DECLARE_RUNTIME_FUNCTION(ToBooleanIC_Miss);
} } // namespace v8::internal
#endif // V8_IC_H_