// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/lithium-codegen-ia32.h"
#include "src/ic.h"
#include "src/code-stubs.h"
#include "src/deoptimizer.h"
#include "src/stub-cache.h"
#include "src/codegen.h"
#include "src/hydrogen-osr.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator V8_FINAL : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) {}
virtual ~SafepointGenerator() {}
virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
virtual void AfterCall() const V8_OVERRIDE {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
support_aligned_spilled_doubles_ = info()->IsOptimizing();
dynamic_frame_alignment_ = info()->IsOptimizing() &&
((chunk()->num_double_slots() > 2 &&
!chunk()->graph()->is_recursive()) ||
!info()->osr_ast_id().IsNone());
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
PopulateDeoptimizationData(code);
if (!info()->IsStub()) {
Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
}
}
#ifdef _MSC_VER
void LCodeGen::MakeSureStackPagesMapped(int offset) {
const int kPageSize = 4 * KB;
for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
__ mov(Operand(esp, offset), eax);
}
}
#endif
void LCodeGen::SaveCallerDoubles() {
ASSERT(info()->saves_caller_doubles());
ASSERT(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ movsd(MemOperand(esp, count * kDoubleSize),
XMMRegister::FromAllocationIndex(save_iterator.Current()));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
ASSERT(info()->saves_caller_doubles());
ASSERT(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ movsd(XMMRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(esp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ int3();
}
#endif
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info_->this_has_uses() &&
info_->strict_mode() == SLOPPY &&
!info_->is_native()) {
Label ok;
// +1 for return address.
int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
__ mov(ecx, Operand(esp, receiver_offset));
__ cmp(ecx, isolate()->factory()->undefined_value());
__ j(not_equal, &ok, Label::kNear);
__ mov(ecx, GlobalObjectOperand());
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, receiver_offset), ecx);
__ bind(&ok);
}
if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
// Move state of dynamic frame alignment into edx.
__ Move(edx, Immediate(kNoAlignmentPadding));
Label do_not_pad, align_loop;
STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
// Align esp + 4 to a multiple of 2 * kPointerSize.
__ test(esp, Immediate(kPointerSize));
__ j(not_zero, &do_not_pad, Label::kNear);
__ push(Immediate(0));
__ mov(ebx, esp);
__ mov(edx, Immediate(kAlignmentPaddingPushed));
// Copy arguments, receiver, and return address.
__ mov(ecx, Immediate(scope()->num_parameters() + 2));
__ bind(&align_loop);
__ mov(eax, Operand(ebx, 1 * kPointerSize));
__ mov(Operand(ebx, 0), eax);
__ add(Operand(ebx), Immediate(kPointerSize));
__ dec(ecx);
__ j(not_zero, &align_loop, Label::kNear);
__ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
__ bind(&do_not_pad);
}
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
ASSERT(!frame_is_built_);
frame_is_built_ = true;
if (info()->IsStub()) {
__ StubPrologue();
} else {
__ Prologue(info()->IsCodePreAgingActive());
}
info()->AddNoFrameRange(0, masm_->pc_offset());
}
if (info()->IsOptimizing() &&
dynamic_frame_alignment_ &&
FLAG_debug_code) {
__ test(esp, Immediate(kPointerSize));
__ Assert(zero, kFrameIsExpectedToBeAligned);
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
ASSERT(slots != 0 || !info()->IsOptimizing());
if (slots > 0) {
if (slots == 1) {
if (dynamic_frame_alignment_) {
__ push(edx);
} else {
__ push(Immediate(kNoAlignmentPadding));
}
} else {
if (FLAG_debug_code) {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
__ push(eax);
__ mov(Operand(eax), Immediate(slots));
Label loop;
__ bind(&loop);
__ mov(MemOperand(esp, eax, times_4, 0),
Immediate(kSlotsZapValue));
__ dec(eax);
__ j(not_zero, &loop);
__ pop(eax);
} else {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
}
if (support_aligned_spilled_doubles_) {
Comment(";;; Store dynamic frame alignment tag for spilled doubles");
// Store dynamic frame alignment state in the first local.
int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
if (dynamic_frame_alignment_) {
__ mov(Operand(ebp, offset), edx);
} else {
__ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
}
}
}
if (info()->saves_caller_doubles()) SaveCallerDoubles();
}
// Possibly allocate a local context.
int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is still in edi.
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(edi);
__ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in eax. It replaces the context passed to us.
// It's saved in the stack and kept live in esi.
__ mov(esi, eax);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
// Copy parameters into context if necessary.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ mov(eax, Operand(ebp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ mov(Operand(esi, context_offset), eax);
// Update the write barrier. This clobbers eax and ebx.
if (need_write_barrier) {
__ RecordWriteContextSlot(esi,
context_offset,
eax,
ebx,
kDontSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace && info()->IsOptimizing()) {
// We have not executed any compiled code yet, so esi still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Move state of dynamic frame alignment into edx.
__ Move(edx, Immediate(kNoAlignmentPadding));
if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
Label do_not_pad, align_loop;
// Align ebp + 4 to a multiple of 2 * kPointerSize.
__ test(ebp, Immediate(kPointerSize));
__ j(zero, &do_not_pad, Label::kNear);
__ push(Immediate(0));
__ mov(ebx, esp);
__ mov(edx, Immediate(kAlignmentPaddingPushed));
// Move all parts of the frame over one word. The frame consists of:
// unoptimized frame slots, alignment state, context, frame pointer, return
// address, receiver, and the arguments.
__ mov(ecx, Immediate(scope()->num_parameters() +
5 + graph()->osr()->UnoptimizedFrameSlots()));
__ bind(&align_loop);
__ mov(eax, Operand(ebx, 1 * kPointerSize));
__ mov(Operand(ebx, 0), eax);
__ add(Operand(ebx), Immediate(kPointerSize));
__ dec(ecx);
__ j(not_zero, &align_loop, Label::kNear);
__ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
__ sub(Operand(ebp), Immediate(kPointerSize));
__ bind(&do_not_pad);
}
// Save the first local, which is overwritten by the alignment state.
Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
__ push(alignment_loc);
// Set the dynamic frame alignment state.
__ mov(alignment_loc, edx);
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
ASSERT(slots >= 1);
__ sub(esp, Immediate((slots - 1) * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { }
bool LCodeGen::GenerateJumpTable() {
Label needs_frame;
if (jump_table_.length() > 0) {
Comment(";;; -------------------- Jump table --------------------");
}
for (int i = 0; i < jump_table_.length(); i++) {
__ bind(&jump_table_[i].label);
Address entry = jump_table_[i].address;
Deoptimizer::BailoutType type = jump_table_[i].bailout_type;
int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
if (id == Deoptimizer::kNotDeoptimizationEntry) {
Comment(";;; jump table entry %d.", i);
} else {
Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
}
if (jump_table_[i].needs_frame) {
ASSERT(!info()->saves_caller_doubles());
__ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
if (needs_frame.is_bound()) {
__ jmp(&needs_frame);
} else {
__ bind(&needs_frame);
__ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
ASSERT(info()->IsStub());
__ push(Immediate(Smi::FromInt(StackFrame::STUB)));
// Push a PC inside the function so that the deopt code can find where
// the deopt comes from. It doesn't have to be the precise return
// address of a "calling" LAZY deopt, it only has to be somewhere
// inside the code body.
Label push_approx_pc;
__ call(&push_approx_pc);
__ bind(&push_approx_pc);
// Push the continuation which was stashed were the ebp should
// be. Replace it with the saved ebp.
__ push(MemOperand(esp, 3 * kPointerSize));
__ mov(MemOperand(esp, 4 * kPointerSize), ebp);
__ lea(ebp, MemOperand(esp, 4 * kPointerSize));
__ ret(0); // Call the continuation without clobbering registers.
}
} else {
if (info()->saves_caller_doubles()) RestoreCallerDoubles();
__ call(entry, RelocInfo::RUNTIME_ENTRY);
}
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(
chunk()->graph()->SourcePositionToScriptPosition(value->position()));
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
ASSERT(!frame_is_built_);
ASSERT(info()->IsStub());
frame_is_built_ = true;
// Build the frame in such a way that esi isn't trashed.
__ push(ebp); // Caller's frame pointer.
__ push(Operand(ebp, StandardFrameConstants::kContextOffset));
__ push(Immediate(Smi::FromInt(StackFrame::STUB)));
__ lea(ebp, Operand(esp, 2 * kPointerSize));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
__ bind(code->done());
Comment(";;; Destroy frame");
ASSERT(frame_is_built_);
frame_is_built_ = false;
__ mov(esp, ebp);
__ pop(ebp);
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
if (!info()->IsStub()) {
// For lazy deoptimization we need space to patch a call after every call.
// Ensure there is always space for such patching, even if the code ends
// in a call.
int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
while (masm()->pc_offset() < target_offset) {
masm()->nop();
}
}
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
XMMRegister LCodeGen::ToDoubleRegister(int index) const {
return XMMRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
ASSERT(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(constant->HasDoubleValue());
return constant->DoubleValue();
}
ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(constant->HasExternalReferenceValue());
return constant->ExternalReferenceValue();
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
static int ArgumentsOffsetWithoutFrame(int index) {
ASSERT(index < 0);
return -(index + 1) * kPointerSize + kPCOnStackSize;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
if (op->IsRegister()) return Operand(ToRegister(op));
if (op->IsDoubleRegister()) return Operand(ToDoubleRegister(op));
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, StackSlotOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
Operand LCodeGen::HighOperand(LOperand* op) {
ASSERT(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(
esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
bool has_closure_id = !info()->closure().is_null() &&
!info()->closure().is_identical_to(environment->closure());
int closure_id = has_closure_id
? DefineDeoptimizationLiteral(environment->closure())
: Translation::kSelfLiteralId;
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case JS_GETTER:
ASSERT(translation_size == 1);
ASSERT(height == 0);
translation->BeginGetterStubFrame(closure_id);
break;
case JS_SETTER:
ASSERT(translation_size == 2);
ASSERT(height == 0);
translation->BeginSetterStubFrame(closure_id);
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
case STUB:
translation->BeginCompiledStubFrame();
break;
default:
UNREACHABLE();
}
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i),
&object_index,
&dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else if (is_uint32) {
translation->StoreUint32StackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
XMMRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
ASSERT(instr != NULL);
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallRuntime(const Runtime::Function* fun,
int argc,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
ASSERT(instr != NULL);
ASSERT(instr->HasPointerMap());
__ CallRuntime(fun, argc, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
ASSERT(info()->is_calling());
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
if (!ToRegister(context).is(esi)) {
__ mov(esi, ToRegister(context));
}
} else if (context->IsStackSlot()) {
__ mov(esi, ToOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
ASSERT(info()->is_calling());
}
void LCodeGen::RegisterEnvironmentForDeoptimization(
LEnvironment* environment, Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cc,
LEnvironment* environment,
Deoptimizer::BailoutType bailout_type) {
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
ASSERT(info()->IsOptimizing() || info()->IsStub());
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (DeoptEveryNTimes()) {
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ pushfd();
__ push(eax);
__ mov(eax, Operand::StaticVariable(count));
__ sub(eax, Immediate(1));
__ j(not_zero, &no_deopt, Label::kNear);
if (FLAG_trap_on_deopt) __ int3();
__ mov(eax, Immediate(FLAG_deopt_every_n_times));
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
ASSERT(frame_is_built_);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
}
if (info()->ShouldTrapOnDeopt()) {
Label done;
if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
}
ASSERT(info()->IsStub() || frame_is_built_);
if (cc == no_condition && frame_is_built_) {
__ call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (jump_table_.is_empty() ||
jump_table_.last().address != entry ||
jump_table_.last().needs_frame != !frame_is_built_ ||
jump_table_.last().bailout_type != bailout_type) {
Deoptimizer::JumpTableEntry table_entry(entry,
bailout_type,
!frame_is_built_);
jump_table_.Add(table_entry, zone());
}
if (cc == no_condition) {
__ jmp(&jump_table_.last().label);
} else {
__ j(cc, &jump_table_.last().label);
}
}
}
void LCodeGen::DeoptimizeIf(Condition cc,
LEnvironment* environment) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(cc, environment, bailout_type);
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
DeoptimizationInputData::New(isolate(), length, TENURED);
Handle<ByteArray> translations =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
if (info_->IsOptimizing()) {
// Reference to shared function info does not change between phases.
AllowDeferredHandleDereference allow_handle_dereference;
data->SetSharedFunctionInfo(*info_->shared_info());
} else {
data->SetSharedFunctionInfo(Smi::FromInt(0));
}
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
{ AllowDeferredHandleDereference copy_handles;
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
}
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, env->ast_id());
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal, zone());
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
ASSERT(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint =
safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
masm()->positions_recorder()->WriteRecordedPositions();
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpExec: {
RegExpExecStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ test(dividend, dividend);
__ j(not_sign, ÷nd_is_not_negative, Label::kNear);
// Note that this is correct even for kMinInt operands.
__ neg(dividend);
__ and_(dividend, mask);
__ neg(dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr->environment());
}
__ jmp(&done, Label::kNear);
}
__ bind(÷nd_is_not_negative);
__ and_(dividend, mask);
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(eax));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
__ TruncatingDiv(dividend, Abs(divisor));
__ imul(edx, edx, Abs(divisor));
__ mov(eax, dividend);
__ sub(eax, edx);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ j(not_zero, &remainder_not_zero, Label::kNear);
__ cmp(dividend, Immediate(0));
DeoptimizeIf(less, instr->environment());
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
ASSERT(left_reg.is(eax));
Register right_reg = ToRegister(instr->right());
ASSERT(!right_reg.is(eax));
ASSERT(!right_reg.is(edx));
Register result_reg = ToRegister(instr->result());
ASSERT(result_reg.is(edx));
Label done;
// Check for x % 0, idiv would signal a divide error. We have to
// deopt in this case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(right_reg, Operand(right_reg));
DeoptimizeIf(zero, instr->environment());
}
// Check for kMinInt % -1, idiv would signal a divide error. We
// have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmp(left_reg, kMinInt);
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ cmp(right_reg, -1);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(equal, instr->environment());
} else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ Move(result_reg, Immediate(0));
__ jmp(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Sign extend dividend in eax into edx:eax.
__ cdq();
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
__ test(left_reg, Operand(left_reg));
__ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
__ test(result_reg, Operand(result_reg));
DeoptimizeIf(zero, instr->environment());
__ jmp(&done, Label::kNear);
__ bind(&positive_left);
}
__ idiv(right_reg);
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
ASSERT(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmp(dividend, kMinInt);
DeoptimizeIf(zero, instr->environment());
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ test(dividend, Immediate(mask));
DeoptimizeIf(not_zero, instr->environment());
}
__ Move(result, dividend);
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift > 0) {
// The arithmetic shift is always OK, the 'if' is an optimization only.
if (shift > 1) __ sar(result, 31);
__ shr(result, 32 - shift);
__ add(result, dividend);
__ sar(result, shift);
}
if (divisor < 0) __ neg(result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ mov(eax, edx);
__ imul(eax, eax, divisor);
__ sub(eax, dividend);
DeoptimizeIf(not_equal, instr->environment());
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
ASSERT(dividend.is(eax));
ASSERT(remainder.is(edx));
ASSERT(ToRegister(instr->result()).is(eax));
ASSERT(!divisor.is(eax));
ASSERT(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
__ bind(÷nd_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ test(remainder, remainder);
DeoptimizeIf(not_zero, instr->environment());
}
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(dividend.is(ToRegister(instr->result())));
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
if (divisor == 1) return;
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sar(dividend, shift);
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ neg(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr->environment());
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(overflow, instr->environment());
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sar(dividend, shift);
return;
}
Label not_kmin_int, done;
__ j(no_overflow, ¬_kmin_int, Label::kNear);
__ mov(dividend, Immediate(kMinInt / divisor));
__ jmp(&done, Label::kNear);
__ bind(¬_kmin_int);
__ sar(dividend, shift);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp3());
ASSERT(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
Label needs_adjustment, done;
__ cmp(dividend, Immediate(0));
__ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ jmp(&done, Label::kNear);
__ bind(&needs_adjustment);
__ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
__ TruncatingDiv(temp, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ dec(edx);
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
ASSERT(dividend.is(eax));
ASSERT(remainder.is(edx));
ASSERT(result.is(eax));
ASSERT(!divisor.is(eax));
ASSERT(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
__ bind(÷nd_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
Label done;
__ test(remainder, remainder);
__ j(zero, &done, Label::kNear);
__ xor_(remainder, divisor);
__ sar(remainder, 31);
__ add(result, remainder);
__ bind(&done);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->left());
LOperand* right = instr->right();
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ mov(ToRegister(instr->temp()), left);
}
if (right->IsConstantOperand()) {
// Try strength reductions on the multiplication.
// All replacement instructions are at most as long as the imul
// and have better latency.
int constant = ToInteger32(LConstantOperand::cast(right));
if (constant == -1) {
__ neg(left);
} else if (constant == 0) {
__ xor_(left, Operand(left));
} else if (constant == 2) {
__ add(left, Operand(left));
} else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
// If we know that the multiplication can't overflow, it's safe to
// use instructions that don't set the overflow flag for the
// multiplication.
switch (constant) {
case 1:
// Do nothing.
break;
case 3:
__ lea(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shl(left, 2);
break;
case 5:
__ lea(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shl(left, 3);
break;
case 9:
__ lea(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shl(left, 4);
break;
default:
__ imul(left, left, constant);
break;
}
} else {
__ imul(left, left, constant);
}
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(left);
}
__ imul(left, ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ test(left, Operand(left));
__ j(not_zero, &done, Label::kNear);
if (right->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(right)) < 0) {
DeoptimizeIf(no_condition, instr->environment());
} else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
__ cmp(ToRegister(instr->temp()), Immediate(0));
DeoptimizeIf(less, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ or_(ToRegister(instr->temp()), ToOperand(right));
DeoptimizeIf(sign, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), right_operand);
break;
case Token::BIT_OR:
__ or_(ToRegister(left), right_operand);
break;
case Token::BIT_XOR:
if (right_operand == int32_t(~0)) {
__ not_(ToRegister(left));
} else {
__ xor_(ToRegister(left), right_operand);
}
break;
default:
UNREACHABLE();
break;
}
} else {
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_OR:
__ or_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_XOR:
__ xor_(ToRegister(left), ToOperand(right));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsRegister()) {
ASSERT(ToRegister(right).is(ecx));
switch (instr->op()) {
case Token::ROR:
__ ror_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SAR:
__ sar_cl(ToRegister(left));
break;
case Token::SHR:
__ shr_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SHL:
__ shl_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count == 0 && instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
} else {
__ ror(ToRegister(left), shift_count);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sar(ToRegister(left), shift_count);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ shr(ToRegister(left), shift_count);
} else if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ shl(ToRegister(left), shift_count - 1);
}
__ SmiTag(ToRegister(left));
DeoptimizeIf(overflow, instr->environment());
} else {
__ shl(ToRegister(left), shift_count);
}
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ sub(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ sub(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
double v = instr->value();
uint64_t int_val = BitCast<uint64_t, double>(v);
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
ASSERT(instr->result()->IsDoubleRegister());
XMMRegister res = ToDoubleRegister(instr->result());
if (int_val == 0) {
__ xorps(res, res);
} else {
Register temp = ToRegister(instr->temp());
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope2(masm(), SSE4_1);
if (lower != 0) {
__ Move(temp, Immediate(lower));
__ movd(res, Operand(temp));
__ Move(temp, Immediate(upper));
__ pinsrd(res, Operand(temp), 1);
} else {
__ xorps(res, res);
__ Move(temp, Immediate(upper));
__ pinsrd(res, Operand(temp), 1);
}
} else {
__ Move(temp, Immediate(upper));
__ movd(res, Operand(temp));
__ psllq(res, 32);
if (lower != 0) {
XMMRegister xmm_scratch = double_scratch0();
__ Move(temp, Immediate(lower));
__ movd(xmm_scratch, Operand(temp));
__ orps(res, xmm_scratch);
}
}
}
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Register reg = ToRegister(instr->result());
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ LoadObject(reg, object);
}
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->value());
__ EnumLength(result, map);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->date());
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp());
Smi* index = instr->index();
Label runtime, done;
ASSERT(object.is(result));
ASSERT(object.is(eax));
__ test(object, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
__ CmpObjectType(object, JS_DATE_TYPE, scratch);
DeoptimizeIf(not_equal, instr->environment());
if (index->value() == 0) {
__ mov(result, FieldOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand::StaticVariable(stamp));
__ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
__ j(not_equal, &runtime, Label::kNear);
__ mov(result, FieldOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done, Label::kNear);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(Operand(esp, 0), object);
__ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
Operand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToRepresentation(LConstantOperand::cast(index),
Representation::Integer32());
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldOperand(string, SeqString::kHeaderSize + offset);
}
return FieldOperand(
string, ToRegister(index),
encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register result = ToRegister(instr->result());
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
__ push(string);
__ mov(string, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
__ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(equal, kUnexpectedStringType);
__ pop(string);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ movzx_b(result, operand);
} else {
__ movzx_w(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
Register value = ToRegister(instr->value());
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (instr->value()->IsConstantOperand()) {
int value = ToRepresentation(LConstantOperand::cast(instr->value()),
Representation::Integer32());
ASSERT_LE(0, value);
if (encoding == String::ONE_BYTE_ENCODING) {
ASSERT_LE(value, String::kMaxOneByteCharCode);
__ mov_b(operand, static_cast<int8_t>(value));
} else {
ASSERT_LE(value, String::kMaxUtf16CodeUnit);
__ mov_w(operand, static_cast<int16_t>(value));
}
} else {
Register value = ToRegister(instr->value());
if (encoding == String::ONE_BYTE_ENCODING) {
__ mov_b(operand, value);
} else {
__ mov_w(operand, value);
}
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
if (right->IsConstantOperand()) {
int32_t offset = ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
__ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
} else {
Operand address(ToRegister(left), ToRegister(right), times_1, 0);
__ lea(ToRegister(instr->result()), address);
}
} else {
if (right->IsConstantOperand()) {
__ add(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ add(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Label return_left;
Condition condition = (operation == HMathMinMax::kMathMin)
? less_equal
: greater_equal;
if (right->IsConstantOperand()) {
Operand left_op = ToOperand(left);
Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
instr->hydrogen()->representation());
__ cmp(left_op, immediate);
__ j(condition, &return_left, Label::kNear);
__ mov(left_op, immediate);
} else {
Register left_reg = ToRegister(left);
Operand right_op = ToOperand(right);
__ cmp(left_reg, right_op);
__ j(condition, &return_left, Label::kNear);
__ mov(left_reg, right_op);
}
__ bind(&return_left);
} else {
ASSERT(instr->hydrogen()->representation().IsDouble());
Label check_nan_left, check_zero, return_left, return_right;
Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
XMMRegister left_reg = ToDoubleRegister(left);
XMMRegister right_reg = ToDoubleRegister(right);
__ ucomisd(left_reg, right_reg);
__ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
__ j(equal, &check_zero, Label::kNear); // left == right.
__ j(condition, &return_left, Label::kNear);
__ jmp(&return_right, Label::kNear);
__ bind(&check_zero);
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(left_reg, xmm_scratch);
__ j(not_equal, &return_left, Label::kNear); // left == right != 0.
// At this point, both left and right are either 0 or -0.
if (operation == HMathMinMax::kMathMin) {
__ orpd(left_reg, right_reg);
} else {
// Since we operate on +0 and/or -0, addsd and andsd have the same effect.
__ addsd(left_reg, right_reg);
}
__ jmp(&return_left, Label::kNear);
__ bind(&check_nan_left);
__ ucomisd(left_reg, left_reg); // NaN check.
__ j(parity_even, &return_left, Label::kNear); // left == NaN.
__ bind(&return_right);
__ movaps(left_reg, right_reg);
__ bind(&return_left);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->left());
XMMRegister right = ToDoubleRegister(instr->right());
XMMRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ addsd(left, right);
break;
case Token::SUB:
__ subsd(left, right);
break;
case Token::MUL:
__ mulsd(left, right);
break;
case Token::DIV:
__ divsd(left, right);
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a mulsd depending on the result
__ movaps(left, left);
break;
case Token::MOD: {
// Pass two doubles as arguments on the stack.
__ PrepareCallCFunction(4, eax);
__ movsd(Operand(esp, 0 * kDoubleSize), left);
__ movsd(Operand(esp, 1 * kDoubleSize), right);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()),
4);
// Return value is in st(0) on ia32.
// Store it into the result register.
__ sub(Operand(esp), Immediate(kDoubleSize));
__ fstp_d(Operand(esp, 0));
__ movsd(result, Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->left()).is(edx));
ASSERT(ToRegister(instr->right()).is(eax));
ASSERT(ToRegister(instr->result()).is(eax));
BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cc == no_condition) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
int false_block = instr->FalseDestination(chunk_);
if (cc == no_condition) {
__ jmp(chunk_->GetAssemblyLabel(false_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(false_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsSmiOrInteger32()) {
Register reg = ToRegister(instr->value());
__ test(reg, Operand(reg));
EmitBranch(instr, not_zero);
} else if (r.IsDouble()) {
ASSERT(!info()->IsStub());
XMMRegister reg = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(reg, xmm_scratch);
EmitBranch(instr, not_equal);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
ASSERT(!info()->IsStub());
__ cmp(reg, factory()->true_value());
EmitBranch(instr, equal);
} else if (type.IsSmi()) {
ASSERT(!info()->IsStub());
__ test(reg, Operand(reg));
EmitBranch(instr, not_equal);
} else if (type.IsJSArray()) {
ASSERT(!info()->IsStub());
EmitBranch(instr, no_condition);
} else if (type.IsHeapNumber()) {
ASSERT(!info()->IsStub());
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
EmitBranch(instr, not_equal);
} else if (type.IsString()) {
ASSERT(!info()->IsStub());
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
EmitBranch(instr, not_equal);
} else {
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ cmp(reg, factory()->undefined_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// true -> true.
__ cmp(reg, factory()->true_value());
__ j(equal, instr->TrueLabel(chunk_));
// false -> false.
__ cmp(reg, factory()->false_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ cmp(reg, factory()->null_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ test(reg, Operand(reg));
__ j(equal, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ test(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
}
Register map = no_reg; // Keep the compiler happy.
if (expected.NeedsMap()) {
map = ToRegister(instr->temp());
ASSERT(!map.is(reg));
__ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, instr->FalseLabel(chunk_));
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
__ j(above_equal, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, ¬_string, Label::kNear);
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, instr->TrueLabel(chunk_));
__ jmp(instr->FalseLabel(chunk_));
__ bind(¬_string);
}
if (expected.Contains(ToBooleanStub::SYMBOL)) {
// Symbol value -> true.
__ CmpInstanceType(map, SYMBOL_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(not_equal, ¬_heap_number, Label::kNear);
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
__ j(zero, instr->FalseLabel(chunk_));
__ jmp(instr->TrueLabel(chunk_));
__ bind(¬_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(no_condition, instr->environment());
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::NE:
case Token::NE_STRICT:
cond = not_equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->is_double() ||
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cc = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = EvalComparison(instr->op(), left_val, right_val) ?
instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
__ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ j(parity_even, instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
__ cmp(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else if (left->IsConstantOperand()) {
__ cmp(ToOperand(right),
ToImmediate(left, instr->hydrogen()->representation()));
// We commuted the operands, so commute the condition.
cc = CommuteCondition(cc);
} else {
__ cmp(ToRegister(left), ToOperand(right));
}
}
EmitBranch(instr, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
if (instr->right()->IsConstantOperand()) {
Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
__ CmpObject(left, right);
} else {
Operand right = ToOperand(instr->right());
__ cmp(left, right);
}
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ cmp(input_reg, factory()->the_hole_value());
EmitBranch(instr, equal);
return;
}
XMMRegister input_reg = ToDoubleRegister(instr->object());
__ ucomisd(input_reg, input_reg);
EmitFalseBranch(instr, parity_odd);
__ sub(esp, Immediate(kDoubleSize));
__ movsd(MemOperand(esp, 0), input_reg);
__ add(esp, Immediate(kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
EmitBranch(instr, equal);
}
void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
Representation rep = instr->hydrogen()->value()->representation();
ASSERT(!rep.IsInteger32());
Register scratch = ToRegister(instr->temp());
if (rep.IsDouble()) {
XMMRegister value = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(xmm_scratch, value);
EmitFalseBranch(instr, not_equal);
__ movmskpd(scratch, value);
__ test(scratch, Immediate(1));
EmitBranch(instr, not_zero);
} else {
Register value = ToRegister(instr->value());
Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
__ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
__ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
Immediate(0x1));
EmitFalseBranch(instr, no_overflow);
__ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
Immediate(0x00000000));
EmitBranch(instr, equal);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Label* is_not_object,
Label* is_object) {
__ JumpIfSmi(input, is_not_object);
__ cmp(input, isolate()->factory()->null_value());
__ j(equal, is_object);
__ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, is_not_object);
__ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
__ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ j(below, is_not_object);
__ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
return below_equal;
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Condition true_cond = EmitIsObject(
reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
EmitBranch(instr, true_cond);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Condition true_cond = EmitIsString(
reg, temp, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Operand input = ToOperand(instr->value());
__ test(input, Immediate(kSmiTagMask));
EmitBranch(instr, zero);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(temp, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
EmitBranch(instr, not_zero);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = ComputeCompareCondition(op);
__ test(eax, Operand(eax));
EmitBranch(instr, condition);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CmpObjectType(input, TestType(instr->hydrogen()), temp);
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
__ AssertString(input);
__ mov(result, FieldOperand(input, String::kHashFieldOffset));
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->value());
__ test(FieldOperand(input, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
EmitBranch(instr, equal);
}
// Branches to a label or falls through with the answer in the z flag. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
ASSERT(!input.is(temp));
ASSERT(!input.is(temp2));
ASSERT(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
// Assuming the following assertions, we can use the same compares to test
// for both being a function type and being in the object type range.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
__ j(below, is_false);
__ j(equal, is_true);
__ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
__ j(equal, is_true);
} else {
// Faster code path to avoid two compares: subtract lower bound from the
// actual type and do a signed compare with the width of the type range.
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
__ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
__ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ j(above, is_false);
}
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
// Check if the constructor in the map is a function.
__ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
// Objects with a non-function constructor have class 'Object'.
__ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ mov(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
__ cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Register temp2 = ToRegister(instr->temp2());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
__ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(instr, equal);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
// Object and function are in fixed registers defined by the stub.
ASSERT(ToRegister(instr->context()).is(esi));
InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
Label true_value, done;
__ test(eax, Operand(eax));
__ j(zero, &true_value, Label::kNear);
__ mov(ToRegister(instr->result()), factory()->false_value());
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ mov(ToRegister(instr->result()), factory()->true_value());
__ bind(&done);
}
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
public:
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
LInstanceOfKnownGlobal* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
Label* map_check() { return &map_check_; }
private:
LInstanceOfKnownGlobal* instr_;
Label map_check_;
};
DeferredInstanceOfKnownGlobal* deferred;
deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
// A Smi is not an instance of anything.
__ JumpIfSmi(object, &false_result, Label::kNear);
// This is the inlined call site instanceof cache. The two occurences of the
// hole value will be patched to the last map/result pair generated by the
// instanceof stub.
Label cache_miss;
Register map = ToRegister(instr->temp());
__ mov(map, FieldOperand(object, HeapObject::kMapOffset));
__ bind(deferred->map_check()); // Label for calculating code patching.
Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
__ cmp(map, Operand::ForCell(cache_cell)); // Patched to cached map.
__ j(not_equal, &cache_miss, Label::kNear);
__ mov(eax, factory()->the_hole_value()); // Patched to either true or false.
__ jmp(&done, Label::kNear);
// The inlined call site cache did not match. Check for null and string
// before calling the deferred code.
__ bind(&cache_miss);
// Null is not an instance of anything.
__ cmp(object, factory()->null_value());
__ j(equal, &false_result, Label::kNear);
// String values are not instances of anything.
Condition is_string = masm_->IsObjectStringType(object, temp, temp);
__ j(is_string, &false_result, Label::kNear);
// Go to the deferred code.
__ jmp(deferred->entry());
__ bind(&false_result);
__ mov(ToRegister(instr->result()), factory()->false_value());
// Here result has either true or false. Deferred code also produces true or
// false object.
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check) {
PushSafepointRegistersScope scope(this);
InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kArgsInRegisters);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kCallSiteInlineCheck);
flags = static_cast<InstanceofStub::Flags>(
flags | InstanceofStub::kReturnTrueFalseObject);
InstanceofStub stub(isolate(), flags);
// Get the temp register reserved by the instruction. This needs to be a
// register which is pushed last by PushSafepointRegisters as top of the
// stack is used to pass the offset to the location of the map check to
// the stub.
Register temp = ToRegister(instr->temp());
ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
__ LoadHeapObject(InstanceofStub::right(), instr->function());
static const int kAdditionalDelta = 13;
int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
__ mov(temp, Immediate(delta));
__ StoreToSafepointRegisterSlot(temp, temp);
CallCodeGeneric(stub.GetCode(),
RelocInfo::CODE_TARGET,
instr,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
// Get the deoptimization index of the LLazyBailout-environment that
// corresponds to this instruction.
LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
// Put the result value into the eax slot and restore all registers.
__ StoreToSafepointRegisterSlot(eax, eax);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = ComputeCompareCondition(op);
Label true_value, done;
__ test(eax, Operand(eax));
__ j(condition, &true_value, Label::kNear);
__ mov(ToRegister(instr->result()), factory()->false_value());
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ mov(ToRegister(instr->result()), factory()->true_value());
__ bind(&done);
}
void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
int extra_value_count = dynamic_frame_alignment ? 2 : 1;
if (instr->has_constant_parameter_count()) {
int parameter_count = ToInteger32(instr->constant_parameter_count());
if (dynamic_frame_alignment && FLAG_debug_code) {
__ cmp(Operand(esp,
(parameter_count + extra_value_count) * kPointerSize),
Immediate(kAlignmentZapValue));
__ Assert(equal, kExpectedAlignmentMarker);
}
__ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
} else {
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
__ SmiUntag(reg);
Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
if (dynamic_frame_alignment && FLAG_debug_code) {
ASSERT(extra_value_count == 2);
__ cmp(Operand(esp, reg, times_pointer_size,
extra_value_count * kPointerSize),
Immediate(kAlignmentZapValue));
__ Assert(equal, kExpectedAlignmentMarker);
}
// emit code to restore stack based on instr->parameter_count()
__ pop(return_addr_reg); // save return address
if (dynamic_frame_alignment) {
__ inc(reg); // 1 more for alignment
}
__ shl(reg, kPointerSizeLog2);
__ add(esp, reg);
__ jmp(return_addr_reg);
}
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Preserve the return value on the stack and rely on the runtime call
// to return the value in the same register. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ push(eax);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit, 1);
}
if (info()->saves_caller_doubles()) RestoreCallerDoubles();
if (dynamic_frame_alignment_) {
// Fetch the state of the dynamic frame alignment.
__ mov(edx, Operand(ebp,
JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
}
int no_frame_start = -1;
if (NeedsEagerFrame()) {
__ mov(esp, ebp);
__ pop(ebp);
no_frame_start = masm_->pc_offset();
}
if (dynamic_frame_alignment_) {
Label no_padding;
__ cmp(edx, Immediate(kNoAlignmentPadding));
__ j(equal, &no_padding, Label::kNear);
EmitReturn(instr, true);
__ bind(&no_padding);
}
EmitReturn(instr, false);
if (no_frame_start != -1) {
info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
}
}
void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
Register result = ToRegister(instr->result());
__ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(result, factory()->the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
}
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->global_object()).is(edx));
ASSERT(ToRegister(instr->result()).is(eax));
__ mov(ecx, instr->name());
ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
Register value = ToRegister(instr->value());
Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
// If the cell we are storing to contains the hole it could have
// been deleted from the property dictionary. In that case, we need
// to update the property details in the property dictionary to mark
// it as no longer deleted. We deoptimize in that case.
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
// Store the value.
__ mov(Operand::ForCell(cell_handle), value);
// Cells are always rescanned, so no write barrier here.
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ mov(result, ContextOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(result, factory()->the_hole_value());
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr->environment());
} else {
Label is_not_hole;
__ j(not_equal, &is_not_hole, Label::kNear);
__ mov(result, factory()->undefined_value());
__ bind(&is_not_hole);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Label skip_assignment;
Operand target = ContextOperand(context, instr->slot_index());
if (instr->hydrogen()->RequiresHoleCheck()) {
__ cmp(target, factory()->the_hole_value());
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr->environment());
} else {
__ j(not_equal, &skip_assignment, Label::kNear);
}
}
__ mov(target, value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Register temp = ToRegister(instr->temp());
int offset = Context::SlotOffset(instr->slot_index());
__ RecordWriteContextSlot(context,
offset,
value,
temp,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
MemOperand operand = instr->object()->IsConstantOperand()
? MemOperand::StaticVariable(ToExternalReference(
LConstantOperand::cast(instr->object())))
: MemOperand(ToRegister(instr->object()), offset);
__ Load(result, operand, access.representation());
return;
}
Register object = ToRegister(instr->object());
if (instr->hydrogen()->representation().IsDouble()) {
XMMRegister result = ToDoubleRegister(instr->result());
__ movsd(result, FieldOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
object = result;
}
__ Load(result, FieldOperand(object, offset), access.representation());
}
void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
ASSERT(!operand->IsDoubleRegister());
if (operand->IsConstantOperand()) {
Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
AllowDeferredHandleDereference smi_check;
if (object->IsSmi()) {
__ Push(Handle<Smi>::cast(object));
} else {
__ PushHeapObject(Handle<HeapObject>::cast(object));
}
} else if (operand->IsRegister()) {
__ push(ToRegister(operand));
} else {
__ push(ToOperand(operand));
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->result()).is(eax));
__ mov(ecx, instr->name());
Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register temp = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
// Check that the function really is a function.
__ CmpObjectType(function, JS_FUNCTION_TYPE, result);
DeoptimizeIf(not_equal, instr->environment());
// Check whether the function has an instance prototype.
Label non_instance;
__ test_b(FieldOperand(result, Map::kBitFieldOffset),
1 << Map::kHasNonInstancePrototype);
__ j(not_zero, &non_instance, Label::kNear);
// Get the prototype or initial map from the function.
__ mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ cmp(Operand(result), Immediate(factory()->the_hole_value()));
DeoptimizeIf(equal, instr->environment());
// If the function does not have an initial map, we're done.
Label done;
__ CmpObjectType(result, MAP_TYPE, temp);
__ j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
__ mov(result, FieldOperand(result, Map::kPrototypeOffset));
__ jmp(&done, Label::kNear);
// Non-instance prototype: Fetch prototype from constructor field
// in the function's map.
__ bind(&non_instance);
__ mov(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
if (instr->length()->IsConstantOperand() &&
instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
int index = (const_length - const_index) + 1;
__ mov(result, Operand(arguments, index * kPointerSize));
} else {
Register length = ToRegister(instr->length());
Operand index = ToOperand(instr->index());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ sub(length, index);
__ mov(result, Operand(arguments, length, times_4, kPointerSize));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (!key->IsConstantOperand() &&
ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
elements_kind)) {
__ SmiUntag(ToRegister(key));
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
elements_kind == FLOAT32_ELEMENTS) {
XMMRegister result(ToDoubleRegister(instr->result()));
__ movss(result, operand);
__ cvtss2sd(result, result);
} else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
elements_kind == FLOAT64_ELEMENTS) {
__ movsd(ToDoubleRegister(instr->result()), operand);
} else {
Register result(ToRegister(instr->result()));
switch (elements_kind) {
case EXTERNAL_INT8_ELEMENTS:
case INT8_ELEMENTS:
__ movsx_b(result, operand);
break;
case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
case EXTERNAL_UINT8_ELEMENTS:
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ movzx_b(result, operand);
break;
case EXTERNAL_INT16_ELEMENTS:
case INT16_ELEMENTS:
__ movsx_w(result, operand);
break;
case EXTERNAL_UINT16_ELEMENTS:
case UINT16_ELEMENTS:
__ movzx_w(result, operand);
break;
case EXTERNAL_INT32_ELEMENTS:
case INT32_ELEMENTS:
__ mov(result, operand);
break;
case EXTERNAL_UINT32_ELEMENTS:
case UINT32_ELEMENTS:
__ mov(result, operand);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
__ test(result, Operand(result));
DeoptimizeIf(negative, instr->environment());
}
break;
case EXTERNAL_FLOAT32_ELEMENTS:
case EXTERNAL_FLOAT64_ELEMENTS:
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case SLOPPY_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
if (instr->hydrogen()->RequiresHoleCheck()) {
Operand hole_check_operand = BuildFastArrayOperand(
instr->elements(), instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset() + sizeof(kHoleNanLower32));
__ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
DeoptimizeIf(equal, instr->environment());
}
Operand double_load_operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
XMMRegister result = ToDoubleRegister(instr->result());
__ movsd(result, double_load_operand);
}
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
Register result = ToRegister(instr->result());
// Load the result.
__ mov(result,
BuildFastArrayOperand(instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
instr->base_offset()));
// Check for the hole value.
if (instr->hydrogen()->RequiresHoleCheck()) {
if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
__ test(result, Immediate(kSmiTagMask));
DeoptimizeIf(not_equal, instr->environment());
} else {
__ cmp(result, factory()->the_hole_value());
DeoptimizeIf(equal, instr->environment());
}
}
}
void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
if (instr->is_typed_elements()) {
DoLoadKeyedExternalArray(instr);
} else if (instr->hydrogen()->representation().IsDouble()) {
DoLoadKeyedFixedDoubleArray(instr);
} else {
DoLoadKeyedFixedArray(instr);
}
}
Operand LCodeGen::BuildFastArrayOperand(
LOperand* elements_pointer,
LOperand* key,
Representation key_representation,
ElementsKind elements_kind,
uint32_t base_offset) {
Register elements_pointer_reg = ToRegister(elements_pointer);
int element_shift_size = ElementsKindToShiftSize(elements_kind);
int shift_size = element_shift_size;
if (key->IsConstantOperand()) {
int constant_value = ToInteger32(LConstantOperand::cast(key));
if (constant_value & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
return Operand(elements_pointer_reg,
((constant_value) << shift_size)
+ base_offset);
} else {
// Take the tag bit into account while computing the shift size.
if (key_representation.IsSmi() && (shift_size >= 1)) {
shift_size -= kSmiTagSize;
}
ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
return Operand(elements_pointer_reg,
ToRegister(key),
scale_factor,
base_offset);
}
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->key()).is(ecx));
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register result = ToRegister(instr->result());
if (instr->hydrogen()->from_inlined()) {
__ lea(result, Operand(esp, -2 * kPointerSize));
} else {
// Check for arguments adapter frame.
Label done, adapted;
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
__ cmp(Operand(result),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adapted, Label::kNear);
// No arguments adaptor frame.
__ mov(result, Operand(ebp));
__ jmp(&done, Label::kNear);
// Arguments adaptor frame present.
__ bind(&adapted);
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ bind(&done);
}
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Operand elem = ToOperand(instr->elements());
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
__ cmp(ebp, elem);
__ mov(result, Immediate(scope()->num_parameters()));
__ j(equal, &done, Label::kNear);
// Arguments adaptor frame present. Get argument length from there.
__ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(result, Operand(result,
ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label receiver_ok, global_object;
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
Register scratch = ToRegister(instr->temp());
if (!instr->hydrogen()->known_function()) {
// Do not transform the receiver to object for strict mode
// functions.
__ mov(scratch,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
1 << SharedFunctionInfo::kStrictModeBitWithinByte);
__ j(not_equal, &receiver_ok, dist);
// Do not transform the receiver to object for builtins.
__ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
1 << SharedFunctionInfo::kNativeBitWithinByte);
__ j(not_equal, &receiver_ok, dist);
}
// Normal function. Replace undefined or null with global receiver.
__ cmp(receiver, factory()->null_value());
__ j(equal, &global_object, Label::kNear);
__ cmp(receiver, factory()->undefined_value());
__ j(equal, &global_object, Label::kNear);
// The receiver should be a JS object.
__ test(receiver, Immediate(kSmiTagMask));
DeoptimizeIf(equal, instr->environment());
__ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
DeoptimizeIf(below, instr->environment());
__ jmp(&receiver_ok, Label::kNear);
__ bind(&global_object);
__ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
__ mov(receiver, Operand(receiver, global_offset));
const int receiver_offset = GlobalObject::kGlobalReceiverOffset;
__ mov(receiver, FieldOperand(receiver, receiver_offset));
__ bind(&receiver_ok);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
ASSERT(receiver.is(eax)); // Used for parameter count.
ASSERT(function.is(edi)); // Required by InvokeFunction.
ASSERT(ToRegister(instr->result()).is(eax));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmp(length, kArgumentsLimit);
DeoptimizeIf(above, instr->environment());
__ push(receiver);
__ mov(receiver, length);
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ test(length, Operand(length));
__ j(zero, &invoke, Label::kNear);
__ bind(&loop);
__ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
__ dec(length);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ASSERT(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(eax);
__ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ int3();
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->value();
EmitPushTaggedOperand(argument);
}
void LCodeGen::DoDrop(LDrop* instr) {
__ Drop(instr->count());
}
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
if (info()->IsOptimizing()) {
__ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
} else {
// If there is no frame, the context must be in esi.
ASSERT(result.is(esi));
}
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
__ push(esi); // The context is the first argument.
__ push(Immediate(instr->hydrogen()->pairs()));
__ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count,
int arity,
LInstruction* instr,
EDIState edi_state) {
bool dont_adapt_arguments =
formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
bool can_invoke_directly =
dont_adapt_arguments || formal_parameter_count == arity;
if (can_invoke_directly) {
if (edi_state == EDI_UNINITIALIZED) {
__ LoadHeapObject(edi, function);
}
// Change context.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Set eax to arguments count if adaption is not needed. Assumes that eax
// is available to write to at this point.
if (dont_adapt_arguments) {
__ mov(eax, arity);
}
// Invoke function directly.
if (function.is_identical_to(info()->closure())) {
__ CallSelf();
} else {
__ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
}
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
} else {
// We need to adapt arguments.
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(arity);
ParameterCount expected(formal_parameter_count);
__ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
}
}
void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
ASSERT(ToRegister(instr->result()).is(eax));
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
__ call(code, RelocInfo::CODE_TARGET);
} else {
ASSERT(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
generator.BeforeCall(__ CallSize(Operand(target)));
__ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(target);
}
generator.AfterCall();
}
void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
ASSERT(ToRegister(instr->function()).is(edi));
ASSERT(ToRegister(instr->result()).is(eax));
if (instr->hydrogen()->pass_argument_count()) {
__ mov(eax, instr->arity());
}
// Change context.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
bool is_self_call = false;
if (instr->hydrogen()->function()->IsConstant()) {
HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
Handle<JSFunction> jsfun =
Handle<JSFunction>::cast(fun_const->handle(isolate()));
is_self_call = jsfun.is_identical_to(info()->closure());
}
if (is_self_call) {
__ CallSelf();
} else {
__ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
}
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
DeoptimizeIf(not_equal, instr->environment());
Label slow, allocated, done;
Register tmp = input_reg.is(eax) ? ecx : eax;
Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
__ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| will be restored
// unchanged by popping safepoint registers.
__ test(tmp, Immediate(HeapNumber::kSignMask));
__ j(zero, &done, Label::kNear);
__ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
__ jmp(&allocated, Label::kNear);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0,
instr, instr->context());
// Set the pointer to the new heap number in tmp.
if (!tmp.is(eax)) __ mov(tmp, eax);
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input_reg, input_reg);
__ bind(&allocated);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
__ and_(tmp2, ~HeapNumber::kSignMask);
__ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
__ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
__ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
__ StoreToSafepointRegisterSlot(input_reg, tmp);
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ test(input_reg, Operand(input_reg));
Label is_positive;
__ j(not_sign, &is_positive, Label::kNear);
__ neg(input_reg); // Sets flags.
DeoptimizeIf(negative, instr->environment());
__ bind(&is_positive);
}
void LCodeGen::DoMathAbs(LMathAbs* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LMathAbs* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LMathAbs* instr_;
};
ASSERT(instr->value()->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
XMMRegister scratch = double_scratch0();
XMMRegister input_reg = ToDoubleRegister(instr->value());
__ xorps(scratch, scratch);
__ subsd(scratch, input_reg);
__ andps(input_reg, scratch);
} else if (r.IsSmiOrInteger32()) {
EmitIntegerMathAbs(instr);
} else { // Tagged case.
DeferredMathAbsTaggedHeapNumber* deferred =
new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
Register input_reg = ToRegister(instr->value());
// Smi check.
__ JumpIfNotSmi(input_reg, deferred->entry());
EmitIntegerMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LMathFloor* instr) {
XMMRegister xmm_scratch = double_scratch0();
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope(masm(), SSE4_1);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Deoptimize on negative zero.
Label non_zero;
__ xorps(xmm_scratch, xmm_scratch); // Zero the register.
__ ucomisd(input_reg, xmm_scratch);
__ j(not_equal, &non_zero, Label::kNear);
__ movmskpd(output_reg, input_reg);
__ test(output_reg, Immediate(1));
DeoptimizeIf(not_zero, instr->environment());
__ bind(&non_zero);
}
__ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
__ cvttsd2si(output_reg, Operand(xmm_scratch));
// Overflow is signalled with minint.
__ cmp(output_reg, 0x1);
DeoptimizeIf(overflow, instr->environment());
} else {
Label negative_sign, done;
// Deoptimize on unordered.
__ xorps(xmm_scratch, xmm_scratch); // Zero the register.
__ ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(parity_even, instr->environment());
__ j(below, &negative_sign, Label::kNear);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Check for negative zero.
Label positive_sign;
__ j(above, &positive_sign, Label::kNear);
__ movmskpd(output_reg, input_reg);
__ test(output_reg, Immediate(1));
DeoptimizeIf(not_zero, instr->environment());
__ Move(output_reg, Immediate(0));
__ jmp(&done, Label::kNear);
__ bind(&positive_sign);
}
// Use truncating instruction (OK because input is positive).
__ cvttsd2si(output_reg, Operand(input_reg));
// Overflow is signalled with minint.
__ cmp(output_reg, 0x1);
DeoptimizeIf(overflow, instr->environment());
__ jmp(&done, Label::kNear);
// Non-zero negative reaches here.
__ bind(&negative_sign);
// Truncate, then compare and compensate.
__ cvttsd2si(output_reg, Operand(input_reg));
__ Cvtsi2sd(xmm_scratch, output_reg);
__ ucomisd(input_reg, xmm_scratch);
__ j(equal, &done, Label::kNear);
__ sub(output_reg, Immediate(1));
DeoptimizeIf(overflow, instr->environment());
__ bind(&done);
}
}
void LCodeGen::DoMathRound(LMathRound* instr) {
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
XMMRegister input_temp = ToDoubleRegister(instr->temp());
ExternalReference one_half = ExternalReference::address_of_one_half();
ExternalReference minus_one_half =
ExternalReference::address_of_minus_one_half();
Label done, round_to_zero, below_one_half, do_not_compensate;
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ movsd(xmm_scratch, Operand::StaticVariable(one_half));
__ ucomisd(xmm_scratch, input_reg);
__ j(above, &below_one_half, Label::kNear);
// CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
__ addsd(xmm_scratch, input_reg);
__ cvttsd2si(output_reg, Operand(xmm_scratch));
// Overflow is signalled with minint.
__ cmp(output_reg, 0x1);
__ RecordComment("D2I conversion overflow");
DeoptimizeIf(overflow, instr->environment());
__ jmp(&done, dist);
__ bind(&below_one_half);
__ movsd(xmm_scratch, Operand::StaticVariable(minus_one_half));
__ ucomisd(xmm_scratch, input_reg);
__ j(below_equal, &round_to_zero, Label::kNear);
// CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
// compare and compensate.
__ movaps(input_temp, input_reg); // Do not alter input_reg.
__ subsd(input_temp, xmm_scratch);
__ cvttsd2si(output_reg, Operand(input_temp));
// Catch minint due to overflow, and to prevent overflow when compensating.
__ cmp(output_reg, 0x1);
__ RecordComment("D2I conversion overflow");
DeoptimizeIf(overflow, instr->environment());
__ Cvtsi2sd(xmm_scratch, output_reg);
__ ucomisd(xmm_scratch, input_temp);
__ j(equal, &done, dist);
__ sub(output_reg, Immediate(1));
// No overflow because we already ruled out minint.
__ jmp(&done, dist);
__ bind(&round_to_zero);
// We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
// we can ignore the difference between a result of -0 and +0.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// If the sign is positive, we return +0.
__ movmskpd(output_reg, input_reg);
__ test(output_reg, Immediate(1));
__ RecordComment("Minus zero");
DeoptimizeIf(not_zero, instr->environment());
}
__ Move(output_reg, Immediate(0));
__ bind(&done);
}
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
Operand input = ToOperand(instr->value());
XMMRegister output = ToDoubleRegister(instr->result());
__ sqrtsd(output, input);
}
void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
XMMRegister xmm_scratch = double_scratch0();
XMMRegister input_reg = ToDoubleRegister(instr->value());
Register scratch = ToRegister(instr->temp());
ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done, sqrt;
// Check base for -Infinity. According to IEEE-754, single-precision
// -Infinity has the highest 9 bits set and the lowest 23 bits cleared.
__ mov(scratch, 0xFF800000);
__ movd(xmm_scratch, scratch);
__ cvtss2sd(xmm_scratch, xmm_scratch);
__ ucomisd(input_reg, xmm_scratch);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &sqrt, Label::kNear);
__ j(carry, &sqrt, Label::kNear);
// If input is -Infinity, return Infinity.
__ xorps(input_reg, input_reg);
__ subsd(input_reg, xmm_scratch);
__ jmp(&done, Label::kNear);
// Square root.
__ bind(&sqrt);
__ xorps(xmm_scratch, xmm_scratch);
__ addsd(input_reg, xmm_scratch); // Convert -0 to +0.
__ sqrtsd(input_reg, input_reg);
__ bind(&done);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
ASSERT(!instr->right()->IsDoubleRegister() ||
ToDoubleRegister(instr->right()).is(xmm1));
ASSERT(!instr->right()->IsRegister() ||
ToRegister(instr->right()).is(eax));
ASSERT(ToDoubleRegister(instr->left()).is(xmm2));
ASSERT(ToDoubleRegister(instr->result()).is(xmm3));
if (exponent_type.IsSmi()) {
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(eax, &no_deopt);
__ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
DeoptimizeIf(not_equal, instr->environment());
__ bind(&no_deopt);
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(isolate(), MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
ASSERT(exponent_type.IsDouble());
MathPowStub stub(isolate(), MathPowStub::DOUBLE);
__ CallStub(&stub);
}
}
void LCodeGen::DoMathLog(LMathLog* instr) {
ASSERT(instr->value()->Equals(instr->result()));
XMMRegister input_reg = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
Label positive, done, zero;
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(input_reg, xmm_scratch);
__ j(above, &positive, Label::kNear);
__ j(not_carry, &zero, Label::kNear);
ExternalReference nan =
ExternalReference::address_of_canonical_non_hole_nan();
__ movsd(input_reg, Operand::StaticVariable(nan));
__ jmp(&done, Label::kNear);
__ bind(&zero);
ExternalReference ninf =
ExternalReference::address_of_negative_infinity();
__ movsd(input_reg, Operand::StaticVariable(ninf));
__ jmp(&done, Label::kNear);
__ bind(&positive);
__ fldln2();
__ sub(Operand(esp), Immediate(kDoubleSize));
__ movsd(Operand(esp, 0), input_reg);
__ fld_d(Operand(esp, 0));
__ fyl2x();
__ fstp_d(Operand(esp, 0));
__ movsd(input_reg, Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
__ bind(&done);
}
void LCodeGen::DoMathClz32(LMathClz32* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Label not_zero_input;
__ bsr(result, input);
__ j(not_zero, ¬_zero_input);
__ Move(result, Immediate(63)); // 63^31 == 32
__ bind(¬_zero_input);
__ xor_(result, Immediate(31)); // for x in [0..31], 31^x == 31-x.
}
void LCodeGen::DoMathExp(LMathExp* instr) {
XMMRegister input = ToDoubleRegister(instr->value());
XMMRegister result = ToDoubleRegister(instr->result());
XMMRegister temp0 = double_scratch0();
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->function()).is(edi));
ASSERT(instr->HasPointerMap());
Handle<JSFunction> known_function = instr->hydrogen()->known_function();
if (known_function.is_null()) {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(instr->arity());
__ InvokeFunction(edi, count, CALL_FUNCTION, generator);
} else {
CallKnownFunction(known_function,
instr->hydrogen()->formal_parameter_count(),
instr->arity(),
instr,
EDI_CONTAINS_TARGET);
}
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->function()).is(edi));
ASSERT(ToRegister(instr->result()).is(eax));
int arity = instr->arity();
CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->constructor()).is(edi));
ASSERT(ToRegister(instr->result()).is(eax));
// No cell in ebx for construct type feedback in optimized code
__ mov(ebx, isolate()->factory()->undefined_value());
CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
__ Move(eax, Immediate(instr->arity()));
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->constructor()).is(edi));
ASSERT(ToRegister(instr->result()).is(eax));
__ Move(eax, Immediate(instr->arity()));
__ mov(ebx, isolate()->factory()->undefined_value());
ElementsKind kind = instr->hydrogen()->elements_kind();
AllocationSiteOverrideMode override_mode =
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
? DISABLE_ALLOCATION_SITES
: DONT_OVERRIDE;
if (instr->arity() == 0) {
ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
} else if (instr->arity() == 1) {
Label done;
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need a change here
// look at the first argument
__ mov(ecx, Operand(esp, 0));
__ test(ecx, ecx);
__ j(zero, &packed_case, Label::kNear);
ElementsKind holey_kind = GetHoleyElementsKind(kind);
ArraySingleArgumentConstructorStub stub(isolate(),
holey_kind,
override_mode);
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
__ jmp(&done, Label::kNear);
__ bind(&packed_case);
}
ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
__ bind(&done);
} else {
ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
}
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
}
void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
Register function = ToRegister(instr->function());
Register code_object = ToRegister(instr->code_object());
__ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
__ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
}
void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
Register result = ToRegister(instr->result());
Register base = ToRegister(instr->base_object());
if (instr->offset()->IsConstantOperand()) {
LConstantOperand* offset = LConstantOperand::cast(instr->offset());
__ lea(result, Operand(base, ToInteger32(offset)));
} else {
Register offset = ToRegister(instr->offset());
__ lea(result, Operand(base, offset, times_1, 0));
}
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Representation representation = instr->hydrogen()->field_representation();
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
MemOperand operand = instr->object()->IsConstantOperand()
? MemOperand::StaticVariable(
ToExternalReference(LConstantOperand::cast(instr->object())))
: MemOperand(ToRegister(instr->object()), offset);
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
__ mov(operand, Immediate(ToInteger32(operand_value)));
} else {
Register value = ToRegister(instr->value());
__ Store(value, operand, representation);
}
return;
}
Register object = ToRegister(instr->object());
__ AssertNotSmi(object);
ASSERT(!representation.IsSmi() ||
!instr->value()->IsConstantOperand() ||
IsSmi(LConstantOperand::cast(instr->value())));
if (representation.IsDouble()) {
ASSERT(access.IsInobject());
ASSERT(!instr->hydrogen()->has_transition());
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
XMMRegister value = ToDoubleRegister(instr->value());
__ movsd(FieldOperand(object, offset), value);
return;
}
if (instr->hydrogen()->has_transition()) {
Handle<Map> transition = instr->hydrogen()->transition_map();
AddDeprecationDependency(transition);
__ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
Register temp = ToRegister(instr->temp());
Register temp_map = ToRegister(instr->temp_map());
// Update the write barrier for the map field.
__ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
}
}
// Do the store.
Register write_register = object;
if (!access.IsInobject()) {
write_register = ToRegister(instr->temp());
__ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
}
MemOperand operand = FieldOperand(write_register, offset);
if (instr->value()->IsConstantOperand()) {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (operand_value->IsRegister()) {
Register value = ToRegister(operand_value);
__ Store(value, operand, representation);
} else if (representation.IsInteger32()) {
Immediate immediate = ToImmediate(operand_value, representation);
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
__ mov(operand, immediate);
} else {
Handle<Object> handle_value = ToHandle(operand_value);
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
__ mov(operand, handle_value);
}
} else {
Register value = ToRegister(instr->value());
__ Store(value, operand, representation);
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
Register value = ToRegister(instr->value());
Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
// Update the write barrier for the object for in-object properties.
__ RecordWriteField(write_register,
offset,
value,
temp,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
instr->hydrogen()->SmiCheckForWriteBarrier(),
instr->hydrogen()->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->value()).is(eax));
__ mov(ecx, instr->name());
Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
if (instr->index()->IsConstantOperand()) {
__ cmp(ToOperand(instr->length()),
ToImmediate(LConstantOperand::cast(instr->index()),
instr->hydrogen()->length()->representation()));
cc = CommuteCondition(cc);
} else if (instr->length()->IsConstantOperand()) {
__ cmp(ToOperand(instr->index()),
ToImmediate(LConstantOperand::cast(instr->length()),
instr->hydrogen()->index()->representation()));
} else {
__ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
}
if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
Label done;
__ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
} else {
DeoptimizeIf(cc, instr->environment());
}
}
void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (!key->IsConstantOperand() &&
ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
elements_kind)) {
__ SmiUntag(ToRegister(key));
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
elements_kind == FLOAT32_ELEMENTS) {
XMMRegister xmm_scratch = double_scratch0();
__ cvtsd2ss(xmm_scratch, ToDoubleRegister(instr->value()));
__ movss(operand, xmm_scratch);
} else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
elements_kind == FLOAT64_ELEMENTS) {
__ movsd(operand, ToDoubleRegister(instr->value()));
} else {
Register value = ToRegister(instr->value());
switch (elements_kind) {
case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
case EXTERNAL_UINT8_ELEMENTS:
case EXTERNAL_INT8_ELEMENTS:
case UINT8_ELEMENTS:
case INT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ mov_b(operand, value);
break;
case EXTERNAL_INT16_ELEMENTS:
case EXTERNAL_UINT16_ELEMENTS:
case UINT16_ELEMENTS:
case INT16_ELEMENTS:
__ mov_w(operand, value);
break;
case EXTERNAL_INT32_ELEMENTS:
case EXTERNAL_UINT32_ELEMENTS:
case UINT32_ELEMENTS:
case INT32_ELEMENTS:
__ mov(operand, value);
break;
case EXTERNAL_FLOAT32_ELEMENTS:
case EXTERNAL_FLOAT64_ELEMENTS:
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case SLOPPY_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
ExternalReference canonical_nan_reference =
ExternalReference::address_of_canonical_non_hole_nan();
Operand double_store_operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
XMMRegister value = ToDoubleRegister(instr->value());
if (instr->NeedsCanonicalization()) {
Label have_value;
__ ucomisd(value, value);
__ j(parity_odd, &have_value, Label::kNear); // NaN.
__ movsd(value, Operand::StaticVariable(canonical_nan_reference));
__ bind(&have_value);
}
__ movsd(double_store_operand, value);
}
void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
Register elements = ToRegister(instr->elements());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
Operand operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
instr->base_offset());
if (instr->value()->IsRegister()) {
__ mov(operand, ToRegister(instr->value()));
} else {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (IsSmi(operand_value)) {
Immediate immediate = ToImmediate(operand_value, Representation::Smi());
__ mov(operand, immediate);
} else {
ASSERT(!IsInteger32(operand_value));
Handle<Object> handle_value = ToHandle(operand_value);
__ mov(operand, handle_value);
}
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
ASSERT(instr->value()->IsRegister());
Register value = ToRegister(instr->value());
ASSERT(!instr->key()->IsConstantOperand());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
__ lea(key, operand);
__ RecordWrite(elements,
key,
value,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed,
instr->hydrogen()->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
// By cases...external, fast-double, fast
if (instr->is_typed_elements()) {
DoStoreKeyedExternalArray(instr);
} else if (instr->hydrogen()->value()->representation().IsDouble()) {
DoStoreKeyedFixedDoubleArray(instr);
} else {
DoStoreKeyedFixedArray(instr);
}
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->object()).is(edx));
ASSERT(ToRegister(instr->key()).is(ecx));
ASSERT(ToRegister(instr->value()).is(eax));
Handle<Code> ic = instr->strict_mode() == STRICT
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
: isolate()->builtins()->KeyedStoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
Register object = ToRegister(instr->object());
Register temp = ToRegister(instr->temp());
Label no_memento_found;
__ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
DeoptimizeIf(equal, instr->environment());
__ bind(&no_memento_found);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = instr->from_kind();
ElementsKind to_kind = instr->to_kind();
Label not_applicable;
bool is_simple_map_transition =
IsSimpleMapChangeTransition(from_kind, to_kind);
Label::Distance branch_distance =
is_simple_map_transition ? Label::kNear : Label::kFar;
__ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
__ j(not_equal, ¬_applicable, branch_distance);
if (is_simple_map_transition) {
Register new_map_reg = ToRegister(instr->new_map_temp());
__ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
Immediate(to_map));
// Write barrier.
ASSERT_NE(instr->temp(), NULL);
__ RecordWriteForMap(object_reg, to_map, new_map_reg,
ToRegister(instr->temp()),
kDontSaveFPRegs);
} else {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(object_reg.is(eax));
PushSafepointRegistersScope scope(this);
__ mov(ebx, to_map);
bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(instr,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
}
__ bind(¬_applicable);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen,
LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredStringCharCodeAt(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new(zone()) DeferredStringCharCodeAt(this, instr);
StringCharLoadGenerator::Generate(masm(),
factory(),
ToRegister(instr->string()),
ToRegister(instr->index()),
ToRegister(instr->result()),
deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(0));
PushSafepointRegistersScope scope(this);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (instr->index()->IsConstantOperand()) {
Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
Representation::Smi());
__ push(immediate);
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2,
instr, instr->context());
__ AssertSmi(eax);
__ SmiUntag(eax);
__ StoreToSafepointRegisterSlot(result, eax);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen,
LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredStringCharFromCode(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new(zone()) DeferredStringCharFromCode(this, instr);
ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
ASSERT(!char_code.is(result));
__ cmp(char_code, String::kMaxOneByteCharCode);
__ j(above, deferred->entry());
__ Move(result, Immediate(factory()->single_character_string_cache()));
__ mov(result, FieldOperand(result,
char_code, times_pointer_size,
FixedArray::kHeaderSize));
__ cmp(result, factory()->undefined_value());
__ j(equal, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(0));
PushSafepointRegistersScope scope(this);
__ SmiTag(char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
__ StoreToSafepointRegisterSlot(result, eax);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->left()).is(edx));
ASSERT(ToRegister(instr->right()).is(eax));
StringAddStub stub(isolate(),
instr->hydrogen()->flags(),
instr->hydrogen()->pretenure_flag());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
ASSERT(input->IsRegister() || input->IsStackSlot());
ASSERT(output->IsDoubleRegister());
__ Cvtsi2sd(ToDoubleRegister(output), ToOperand(input));
}
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
__ LoadUint32(ToDoubleRegister(output), ToRegister(input));
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI V8_FINAL : public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen,
LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredNumberTagIU(
instr_, instr_->value(), instr_->temp(), SIGNED_INT32);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->value();
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagI* deferred =
new(zone()) DeferredNumberTagI(this, instr);
__ SmiTag(reg);
__ j(overflow, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
class DeferredNumberTagU V8_FINAL : public LDeferredCode {
public:
DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredNumberTagIU(
instr_, instr_->value(), instr_->temp(), UNSIGNED_INT32);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LNumberTagU* instr_;
};
LOperand* input = instr->value();
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagU* deferred =
new(zone()) DeferredNumberTagU(this, instr);
__ cmp(reg, Immediate(Smi::kMaxValue));
__ j(above, deferred->entry());
__ SmiTag(reg);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
LOperand* value,
LOperand* temp,
IntegerSignedness signedness) {
Label done, slow;
Register reg = ToRegister(value);
Register tmp = ToRegister(temp);
XMMRegister xmm_scratch = double_scratch0();
if (signedness == SIGNED_INT32) {
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
__ SmiUntag(reg);
__ xor_(reg, 0x80000000);
__ Cvtsi2sd(xmm_scratch, Operand(reg));
} else {
__ LoadUint32(xmm_scratch, reg);
}
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, no_reg, &slow);
__ jmp(&done, Label::kNear);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
{
// TODO(3095996): Put a valid pointer value in the stack slot where the
// result register is stored, as this register is in the pointer map, but
// contains an integer value.
__ Move(reg, Immediate(0));
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
// NumberTagI and NumberTagD use the context from the frame, rather than
// the environment's HContext or HInlinedContext value.
// They only call Runtime::kHiddenAllocateHeapNumber.
// The corresponding HChange instructions are added in a phase that does
// not have easy access to the local context.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(reg, eax);
}
// Done. Put the value in xmm_scratch into the value of the allocated heap
// number.
__ bind(&done);
__ movsd(FieldOperand(reg, HeapNumber::kValueOffset), xmm_scratch);
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD V8_FINAL : public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredNumberTagD(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LNumberTagD* instr_;
};
Register reg = ToRegister(instr->result());
DeferredNumberTagD* deferred =
new(zone()) DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
Register tmp = ToRegister(instr->temp());
__ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
XMMRegister input_reg = ToDoubleRegister(instr->value());
__ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ Move(reg, Immediate(0));
PushSafepointRegistersScope scope(this);
// NumberTagI and NumberTagD use the context from the frame, rather than
// the environment's HContext or HInlinedContext value.
// They only call Runtime::kHiddenAllocateHeapNumber.
// The corresponding HChange instructions are added in a phase that does
// not have easy access to the local context.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(reg, eax);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
HChange* hchange = instr->hydrogen();
Register input = ToRegister(instr->value());
if (hchange->CheckFlag(HValue::kCanOverflow) &&
hchange->value()->CheckFlag(HValue::kUint32)) {
__ test(input, Immediate(0xc0000000));
DeoptimizeIf(not_zero, instr->environment());
}
__ SmiTag(input);
if (hchange->CheckFlag(HValue::kCanOverflow) &&
!hchange->value()->CheckFlag(HValue::kUint32)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
LOperand* input = instr->value();
Register result = ToRegister(input);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
if (instr->needs_check()) {
__ test(result, Immediate(kSmiTagMask));
DeoptimizeIf(not_zero, instr->environment());
} else {
__ AssertSmi(result);
}
__ SmiUntag(result);
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
Register temp_reg,
XMMRegister result_reg,
bool can_convert_undefined_to_nan,
bool deoptimize_on_minus_zero,
LEnvironment* env,
NumberUntagDMode mode) {
Label convert, load_smi, done;
if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
// Smi check.
__ JumpIfSmi(input_reg, &load_smi, Label::kNear);
// Heap number map check.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
if (can_convert_undefined_to_nan) {
__ j(not_equal, &convert, Label::kNear);
} else {
DeoptimizeIf(not_equal, env);
}
// Heap number to XMM conversion.
__ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
if (deoptimize_on_minus_zero) {
XMMRegister xmm_scratch = double_scratch0();
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(result_reg, xmm_scratch);
__ j(not_zero, &done, Label::kNear);
__ movmskpd(temp_reg, result_reg);
__ test_b(temp_reg, 1);
DeoptimizeIf(not_zero, env);
}
__ jmp(&done, Label::kNear);
if (can_convert_undefined_to_nan) {
__ bind(&convert);
// Convert undefined (and hole) to NaN.
__ cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, env);
ExternalReference nan =
ExternalReference::address_of_canonical_non_hole_nan();
__ movsd(result_reg, Operand::StaticVariable(nan));
__ jmp(&done, Label::kNear);
}
} else {
ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
}
__ bind(&load_smi);
// Smi to XMM conversion. Clobbering a temp is faster than re-tagging the
// input register since we avoid dependencies.
__ mov(temp_reg, input_reg);
__ SmiUntag(temp_reg); // Untag smi before converting to float.
__ Cvtsi2sd(result_reg, Operand(temp_reg));
__ bind(&done);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
Register input_reg = ToRegister(instr->value());
// The input was optimistically untagged; revert it.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
if (instr->truncating()) {
Label no_heap_number, check_bools, check_false;
// Heap number map check.
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(not_equal, &no_heap_number, Label::kNear);
__ TruncateHeapNumberToI(input_reg, input_reg);
__ jmp(done);
__ bind(&no_heap_number);
// Check for Oddballs. Undefined/False is converted to zero and True to one
// for truncating conversions.
__ cmp(input_reg, factory()->undefined_value());
__ j(not_equal, &check_bools, Label::kNear);
__ Move(input_reg, Immediate(0));
__ jmp(done);
__ bind(&check_bools);
__ cmp(input_reg, factory()->true_value());
__ j(not_equal, &check_false, Label::kNear);
__ Move(input_reg, Immediate(1));
__ jmp(done);
__ bind(&check_false);
__ cmp(input_reg, factory()->false_value());
__ RecordComment("Deferred TaggedToI: cannot truncate");
DeoptimizeIf(not_equal, instr->environment());
__ Move(input_reg, Immediate(0));
} else {
Label bailout;
XMMRegister scratch = (instr->temp() != NULL)
? ToDoubleRegister(instr->temp())
: no_xmm_reg;
__ TaggedToI(input_reg, input_reg, scratch,
instr->hydrogen()->GetMinusZeroMode(), &bailout);
__ jmp(done);
__ bind(&bailout);
DeoptimizeIf(no_condition, instr->environment());
}
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI V8_FINAL : public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredTaggedToI(instr_, done());
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->value();
ASSERT(input->IsRegister());
Register input_reg = ToRegister(input);
ASSERT(input_reg.is(ToRegister(instr->result())));
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiUntag(input_reg);
} else {
DeferredTaggedToI* deferred =
new(zone()) DeferredTaggedToI(this, instr);
// Optimistically untag the input.
// If the input is a HeapObject, SmiUntag will set the carry flag.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ SmiUntag(input_reg);
// Branch to deferred code if the input was tagged.
// The deferred code will take care of restoring the tag.
__ j(carry, deferred->entry());
__ bind(deferred->exit());
}
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->value();
ASSERT(input->IsRegister());
LOperand* temp = instr->temp();
ASSERT(temp->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
bool deoptimize_on_minus_zero =
instr->hydrogen()->deoptimize_on_minus_zero();
Register temp_reg = ToRegister(temp);
HValue* value = instr->hydrogen()->value();
NumberUntagDMode mode = value->representation().IsSmi()
? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
XMMRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg,
temp_reg,
result_reg,
instr->hydrogen()->can_convert_undefined_to_nan(),
deoptimize_on_minus_zero,
instr->environment(),
mode);
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
LOperand* input = instr->value();
ASSERT(input->IsDoubleRegister());
LOperand* result = instr->result();
ASSERT(result->IsRegister());
Register result_reg = ToRegister(result);
if (instr->truncating()) {
XMMRegister input_reg = ToDoubleRegister(input);
__ TruncateDoubleToI(result_reg, input_reg);
} else {
Label bailout, done;
XMMRegister input_reg = ToDoubleRegister(input);
XMMRegister xmm_scratch = double_scratch0();
__ DoubleToI(result_reg, input_reg, xmm_scratch,
instr->hydrogen()->GetMinusZeroMode(), &bailout, Label::kNear);
__ jmp(&done, Label::kNear);
__ bind(&bailout);
DeoptimizeIf(no_condition, instr->environment());
__ bind(&done);
}
}
void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
LOperand* input = instr->value();
ASSERT(input->IsDoubleRegister());
LOperand* result = instr->result();
ASSERT(result->IsRegister());
Register result_reg = ToRegister(result);
Label bailout, done;
XMMRegister input_reg = ToDoubleRegister(input);
XMMRegister xmm_scratch = double_scratch0();
__ DoubleToI(result_reg, input_reg, xmm_scratch,
instr->hydrogen()->GetMinusZeroMode(), &bailout, Label::kNear);
__ jmp(&done, Label::kNear);
__ bind(&bailout);
DeoptimizeIf(no_condition, instr->environment());
__ bind(&done);
__ SmiTag(result_reg);
DeoptimizeIf(overflow, instr->environment());
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->value();
__ test(ToOperand(input), Immediate(kSmiTagMask));
DeoptimizeIf(not_zero, instr->environment());
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
LOperand* input = instr->value();
__ test(ToOperand(input), Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
}
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
__ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
static_cast<int8_t>(first));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(not_equal, instr->environment());
} else {
DeoptimizeIf(below, instr->environment());
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
static_cast<int8_t>(last));
DeoptimizeIf(above, instr->environment());
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
if (IsPowerOf2(mask)) {
ASSERT(tag == 0 || IsPowerOf2(tag));
__ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
} else {
__ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
__ and_(temp, mask);
__ cmp(temp, tag);
DeoptimizeIf(not_equal, instr->environment());
}
}
}
void LCodeGen::DoCheckValue(LCheckValue* instr) {
Handle<HeapObject> object = instr->hydrogen()->object().handle();
if (instr->hydrogen()->object_in_new_space()) {
Register reg = ToRegister(instr->value());
Handle<Cell> cell = isolate()->factory()->NewCell(object);
__ cmp(reg, Operand::ForCell(cell));
} else {
Operand operand = ToOperand(instr->value());
__ cmp(operand, object);
}
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
{
PushSafepointRegistersScope scope(this);
__ push(object);
__ xor_(esi, esi);
__ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
RecordSafepointWithRegisters(
instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
__ test(eax, Immediate(kSmiTagMask));
}
DeoptimizeIf(zero, instr->environment());
}
void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
class DeferredCheckMaps V8_FINAL : public LDeferredCode {
public:
DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
: LDeferredCode(codegen), instr_(instr), object_(object) {
SetExit(check_maps());
}
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredInstanceMigration(instr_, object_);
}
Label* check_maps() { return &check_maps_; }
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LCheckMaps* instr_;
Label check_maps_;
Register object_;
};
if (instr->hydrogen()->IsStabilityCheck()) {
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
for (int i = 0; i < maps->size(); ++i) {
AddStabilityDependency(maps->at(i).handle());
}
return;
}
LOperand* input = instr->value();
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
DeferredCheckMaps* deferred = NULL;
if (instr->hydrogen()->HasMigrationTarget()) {
deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
__ bind(deferred->check_maps());
}
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
Label success;
for (int i = 0; i < maps->size() - 1; i++) {
Handle<Map> map = maps->at(i).handle();
__ CompareMap(reg, map);
__ j(equal, &success, Label::kNear);
}
Handle<Map> map = maps->at(maps->size() - 1).handle();
__ CompareMap(reg, map);
if (instr->hydrogen()->HasMigrationTarget()) {
__ j(not_equal, deferred->entry());
} else {
DeoptimizeIf(not_equal, instr->environment());
}
__ bind(&success);
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
XMMRegister xmm_scratch = double_scratch0();
Register result_reg = ToRegister(instr->result());
__ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
ASSERT(instr->unclamped()->Equals(instr->result()));
Register value_reg = ToRegister(instr->result());
__ ClampUint8(value_reg);
}
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
ASSERT(instr->unclamped()->Equals(instr->result()));
Register input_reg = ToRegister(instr->unclamped());
XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
XMMRegister xmm_scratch = double_scratch0();
Label is_smi, done, heap_number;
__ JumpIfSmi(input_reg, &is_smi);
// Check for heap number
__ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, instr->environment());
__ mov(input_reg, 0);
__ jmp(&done, Label::kNear);
// Heap number
__ bind(&heap_number);
__ movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
__ jmp(&done, Label::kNear);
// smi
__ bind(&is_smi);
__ SmiUntag(input_reg);
__ ClampUint8(input_reg);
__ bind(&done);
}
void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
XMMRegister value_reg = ToDoubleRegister(instr->value());
Register result_reg = ToRegister(instr->result());
if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope2(masm(), SSE4_1);
__ pextrd(result_reg, value_reg, 1);
} else {
XMMRegister xmm_scratch = double_scratch0();
__ pshufd(xmm_scratch, value_reg, 1);
__ movd(result_reg, xmm_scratch);
}
} else {
__ movd(result_reg, value_reg);
}
}
void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
Register hi_reg = ToRegister(instr->hi());
Register lo_reg = ToRegister(instr->lo());
XMMRegister result_reg = ToDoubleRegister(instr->result());
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope2(masm(), SSE4_1);
__ movd(result_reg, lo_reg);
__ pinsrd(result_reg, hi_reg, 1);
} else {
XMMRegister xmm_scratch = double_scratch0();
__ movd(result_reg, hi_reg);
__ psllq(result_reg, 32);
__ movd(xmm_scratch, lo_reg);
__ orps(result_reg, xmm_scratch);
}
}
void LCodeGen::DoAllocate(LAllocate* instr) {
class DeferredAllocate V8_FINAL : public LDeferredCode {
public:
DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredAllocate(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LAllocate* instr_;
};
DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->temp());
// Allocate memory for the object.
AllocationFlags flags = TAG_OBJECT;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
} else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
}
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
if (size <= Page::kMaxRegularHeapObjectSize) {
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
} else {
__ jmp(deferred->entry());
}
} else {
Register size = ToRegister(instr->size());
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
}
__ bind(deferred->exit());
if (instr->hydrogen()->MustPrefillWithFiller()) {
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
__ mov(temp, (size / kPointerSize) - 1);
} else {
temp = ToRegister(instr->size());
__ shr(temp, kPointerSizeLog2);
__ dec(temp);
}
Label loop;
__ bind(&loop);
__ mov(FieldOperand(result, temp, times_pointer_size, 0),
isolate()->factory()->one_pointer_filler_map());
__ dec(temp);
__ j(not_zero, &loop);
}
}
void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Immediate(Smi::FromInt(0)));
PushSafepointRegistersScope scope(this);
if (instr->size()->IsRegister()) {
Register size = ToRegister(instr->size());
ASSERT(!size.is(result));
__ SmiTag(ToRegister(instr->size()));
__ push(size);
} else {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
if (size >= 0 && size <= Smi::kMaxValue) {
__ push(Immediate(Smi::FromInt(size)));
} else {
// We should never get here at runtime => abort
__ int3();
return;
}
}
int flags = AllocateDoubleAlignFlag::encode(
instr->hydrogen()->MustAllocateDoubleAligned());
if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
} else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
} else {
flags = AllocateTargetSpace::update(flags, NEW_SPACE);
}
__ push(Immediate(Smi::FromInt(flags)));
CallRuntimeFromDeferred(
Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
__ StoreToSafepointRegisterSlot(result, eax);
}
void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
ASSERT(ToRegister(instr->value()).is(eax));
__ push(eax);
CallRuntime(Runtime::kToFastProperties, 1, instr);
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
Label materialized;
// Registers will be used as follows:
// ecx = literals array.
// ebx = regexp literal.
// eax = regexp literal clone.
// esi = context.
int literal_offset =
FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
__ LoadHeapObject(ecx, instr->hydrogen()->literals());
__ mov(ebx, FieldOperand(ecx, literal_offset));
__ cmp(ebx, factory()->undefined_value());
__ j(not_equal, &materialized, Label::kNear);
// Create regexp literal using runtime function
// Result will be in eax.
__ push(ecx);
__ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
__ push(Immediate(instr->hydrogen()->pattern()));
__ push(Immediate(instr->hydrogen()->flags()));
CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
__ mov(ebx, eax);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated, Label::kNear);
__ bind(&runtime_allocate);
__ push(ebx);
__ push(Immediate(Smi::FromInt(size)));
CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
__ pop(ebx);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ mov(edx, FieldOperand(ebx, i));
__ mov(ecx, FieldOperand(ebx, i + kPointerSize));
__ mov(FieldOperand(eax, i), edx);
__ mov(FieldOperand(eax, i + kPointerSize), ecx);
}
if ((size % (2 * kPointerSize)) != 0) {
__ mov(edx, FieldOperand(ebx, size - kPointerSize));
__ mov(FieldOperand(eax, size - kPointerSize), edx);
}
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
bool pretenure = instr->hydrogen()->pretenure();
if (!pretenure && instr->hydrogen()->has_no_literals()) {
FastNewClosureStub stub(isolate(),
instr->hydrogen()->strict_mode(),
instr->hydrogen()->is_generator());
__ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else {
__ push(esi);
__ push(Immediate(instr->hydrogen()->shared_info()));
__ push(Immediate(pretenure ? factory()->true_value()
: factory()->false_value()));
CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
LOperand* input = instr->value();
EmitPushTaggedOperand(input);
CallRuntime(Runtime::kTypeof, 1, instr);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->value());
Condition final_branch_condition = EmitTypeofIs(instr, input);
if (final_branch_condition != no_condition) {
EmitBranch(instr, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
Label* true_label = instr->TrueLabel(chunk_);
Label* false_label = instr->FalseLabel(chunk_);
Handle<String> type_name = instr->type_literal();
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
Label::Distance true_distance = left_block == next_block ? Label::kNear
: Label::kFar;
Label::Distance false_distance = right_block == next_block ? Label::kNear
: Label::kFar;
Condition final_branch_condition = no_condition;
if (String::Equals(type_name, factory()->number_string())) {
__ JumpIfSmi(input, true_label, true_distance);
__ cmp(FieldOperand(input, HeapObject::kMapOffset),
factory()->heap_number_map());
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->string_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
__ j(above_equal, false_label, false_distance);
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
final_branch_condition = zero;
} else if (String::Equals(type_name, factory()->symbol_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, SYMBOL_TYPE, input);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->boolean_string())) {
__ cmp(input, factory()->true_value());
__ j(equal, true_label, true_distance);
__ cmp(input, factory()->false_value());
final_branch_condition = equal;
} else if (FLAG_harmony_typeof &&
String::Equals(type_name, factory()->null_string())) {
__ cmp(input, factory()->null_value());
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->undefined_string())) {
__ cmp(input, factory()->undefined_value());
__ j(equal, true_label, true_distance);
__ JumpIfSmi(input, false_label, false_distance);
// Check for undetectable objects => true.
__ mov(input, FieldOperand(input, HeapObject::kMapOffset));
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
final_branch_condition = not_zero;
} else if (String::Equals(type_name, factory()->function_string())) {
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, JS_FUNCTION_TYPE, input);
__ j(equal, true_label, true_distance);
__ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory()->object_string())) {
__ JumpIfSmi(input, false_label, false_distance);
if (!FLAG_harmony_typeof) {
__ cmp(input, factory()->null_value());
__ j(equal, true_label, true_distance);
}
__ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
__ j(below, false_label, false_distance);
__ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ j(above, false_label, false_distance);
// Check for undetectable objects => false.
__ test_b(FieldOperand(input, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
final_branch_condition = zero;
} else {
__ jmp(false_label, false_distance);
}
return final_branch_condition;
}
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
Register temp = ToRegister(instr->temp());
EmitIsConstructCall(temp);
EmitBranch(instr, equal);
}
void LCodeGen::EmitIsConstructCall(Register temp) {
// Get the frame pointer for the calling frame.
__ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &check_frame_marker, Label::kNear);
__ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
}
void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
if (!info()->IsStub()) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
last_lazy_deopt_pc_ = masm()->pc_offset();
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
last_lazy_deopt_pc_ = masm()->pc_offset();
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
Deoptimizer::BailoutType type = instr->hydrogen()->type();
// TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
// needed return address), even though the implementation of LAZY and EAGER is
// now identical. When LAZY is eventually completely folded into EAGER, remove
// the special case below.
if (info()->IsStub() && type == Deoptimizer::EAGER) {
type = Deoptimizer::LAZY;
}
Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
DeoptimizeIf(no_condition, instr->environment(), type);
}
void LCodeGen::DoDummy(LDummy* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDummyUse(LDummyUse* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this);
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kHiddenStackGuard);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck V8_FINAL : public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredStackCheck(instr_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LStackCheck* instr_;
};
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &done, Label::kNear);
ASSERT(instr->context()->IsRegister());
ASSERT(ToRegister(instr->context()).is(esi));
CallCode(isolate()->builtins()->StackCheck(),
RelocInfo::CODE_TARGET,
instr);
__ bind(&done);
} else {
ASSERT(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new(zone()) DeferredStackCheck(this, instr);
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(below, deferred_stack_check->entry());
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
ASSERT(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
GenerateOsrPrologue();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
__ cmp(eax, isolate()->factory()->undefined_value());
DeoptimizeIf(equal, instr->environment());
__ cmp(eax, isolate()->factory()->null_value());
DeoptimizeIf(equal, instr->environment());
__ test(eax, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
DeoptimizeIf(below_equal, instr->environment());
Label use_cache, call_runtime;
__ CheckEnumCache(&call_runtime);
__ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(eax);
CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
isolate()->factory()->meta_map());
DeoptimizeIf(not_equal, instr->environment());
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
Label load_cache, done;
__ EnumLength(result, map);
__ cmp(result, Immediate(Smi::FromInt(0)));
__ j(not_equal, &load_cache, Label::kNear);
__ mov(result, isolate()->factory()->empty_fixed_array());
__ jmp(&done, Label::kNear);
__ bind(&load_cache);
__ LoadInstanceDescriptors(map, result);
__ mov(result,
FieldOperand(result, DescriptorArray::kEnumCacheOffset));
__ mov(result,
FieldOperand(result, FixedArray::SizeFor(instr->idx())));
__ bind(&done);
__ test(result, result);
DeoptimizeIf(equal, instr->environment());
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
__ cmp(ToRegister(instr->map()),
FieldOperand(object, HeapObject::kMapOffset));
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
Register object,
Register index) {
PushSafepointRegistersScope scope(this);
__ push(object);
__ push(index);
__ xor_(esi, esi);
__ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
RecordSafepointWithRegisters(
instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(object, eax);
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
public:
DeferredLoadMutableDouble(LCodeGen* codegen,
LLoadFieldByIndex* instr,
Register object,
Register index)
: LDeferredCode(codegen),
instr_(instr),
object_(object),
index_(index) {
}
virtual void Generate() V8_OVERRIDE {
codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
}
virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
private:
LLoadFieldByIndex* instr_;
Register object_;
Register index_;
};
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
DeferredLoadMutableDouble* deferred;
deferred = new(zone()) DeferredLoadMutableDouble(
this, instr, object, index);
Label out_of_object, done;
__ test(index, Immediate(Smi::FromInt(1)));
__ j(not_zero, deferred->entry());
__ sar(index, 1);
__ cmp(index, Immediate(0));
__ j(less, &out_of_object, Label::kNear);
__ mov(object, FieldOperand(object,
index,
times_half_pointer_size,
JSObject::kHeaderSize));
__ jmp(&done, Label::kNear);
__ bind(&out_of_object);
__ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
__ neg(index);
// Index is now equal to out of object property index plus 1.
__ mov(object, FieldOperand(object,
index,
times_half_pointer_size,
FixedArray::kHeaderSize - kPointerSize));
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
Register context = ToRegister(instr->context());
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
}
void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
Handle<ScopeInfo> scope_info = instr->scope_info();
__ Push(scope_info);
__ push(ToRegister(instr->function()));
CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
RecordSafepoint(Safepoint::kNoLazyDeopt);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32