// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HYDROGEN_H_
#define V8_HYDROGEN_H_
#include "src/v8.h"
#include "src/accessors.h"
#include "src/allocation.h"
#include "src/ast.h"
#include "src/compiler.h"
#include "src/hydrogen-instructions.h"
#include "src/zone.h"
#include "src/scopes.h"
namespace v8 {
namespace internal {
// Forward declarations.
class BitVector;
class FunctionState;
class HEnvironment;
class HGraph;
class HLoopInformation;
class HOsrBuilder;
class HTracer;
class LAllocator;
class LChunk;
class LiveRange;
class HBasicBlock V8_FINAL : public ZoneObject {
public:
explicit HBasicBlock(HGraph* graph);
~HBasicBlock() { }
// Simple accessors.
int block_id() const { return block_id_; }
void set_block_id(int id) { block_id_ = id; }
HGraph* graph() const { return graph_; }
Isolate* isolate() const;
const ZoneList<HPhi*>* phis() const { return &phis_; }
HInstruction* first() const { return first_; }
HInstruction* last() const { return last_; }
void set_last(HInstruction* instr) { last_ = instr; }
HControlInstruction* end() const { return end_; }
HLoopInformation* loop_information() const { return loop_information_; }
HLoopInformation* current_loop() const {
return IsLoopHeader() ? loop_information()
: (parent_loop_header() != NULL
? parent_loop_header()->loop_information() : NULL);
}
const ZoneList<HBasicBlock*>* predecessors() const { return &predecessors_; }
bool HasPredecessor() const { return predecessors_.length() > 0; }
const ZoneList<HBasicBlock*>* dominated_blocks() const {
return &dominated_blocks_;
}
const ZoneList<int>* deleted_phis() const {
return &deleted_phis_;
}
void RecordDeletedPhi(int merge_index) {
deleted_phis_.Add(merge_index, zone());
}
HBasicBlock* dominator() const { return dominator_; }
HEnvironment* last_environment() const { return last_environment_; }
int argument_count() const { return argument_count_; }
void set_argument_count(int count) { argument_count_ = count; }
int first_instruction_index() const { return first_instruction_index_; }
void set_first_instruction_index(int index) {
first_instruction_index_ = index;
}
int last_instruction_index() const { return last_instruction_index_; }
void set_last_instruction_index(int index) {
last_instruction_index_ = index;
}
bool is_osr_entry() { return is_osr_entry_; }
void set_osr_entry() { is_osr_entry_ = true; }
void AttachLoopInformation();
void DetachLoopInformation();
bool IsLoopHeader() const { return loop_information() != NULL; }
bool IsStartBlock() const { return block_id() == 0; }
void PostProcessLoopHeader(IterationStatement* stmt);
bool IsFinished() const { return end_ != NULL; }
void AddPhi(HPhi* phi);
void RemovePhi(HPhi* phi);
void AddInstruction(HInstruction* instr, HSourcePosition position);
bool Dominates(HBasicBlock* other) const;
bool EqualToOrDominates(HBasicBlock* other) const;
int LoopNestingDepth() const;
void SetInitialEnvironment(HEnvironment* env);
void ClearEnvironment() {
ASSERT(IsFinished());
ASSERT(end()->SuccessorCount() == 0);
last_environment_ = NULL;
}
bool HasEnvironment() const { return last_environment_ != NULL; }
void UpdateEnvironment(HEnvironment* env);
HBasicBlock* parent_loop_header() const { return parent_loop_header_; }
void set_parent_loop_header(HBasicBlock* block) {
ASSERT(parent_loop_header_ == NULL);
parent_loop_header_ = block;
}
bool HasParentLoopHeader() const { return parent_loop_header_ != NULL; }
void SetJoinId(BailoutId ast_id);
int PredecessorIndexOf(HBasicBlock* predecessor) const;
HPhi* AddNewPhi(int merged_index);
HSimulate* AddNewSimulate(BailoutId ast_id,
HSourcePosition position,
RemovableSimulate removable = FIXED_SIMULATE) {
HSimulate* instr = CreateSimulate(ast_id, removable);
AddInstruction(instr, position);
return instr;
}
void AssignCommonDominator(HBasicBlock* other);
void AssignLoopSuccessorDominators();
// If a target block is tagged as an inline function return, all
// predecessors should contain the inlined exit sequence:
//
// LeaveInlined
// Simulate (caller's environment)
// Goto (target block)
bool IsInlineReturnTarget() const { return is_inline_return_target_; }
void MarkAsInlineReturnTarget(HBasicBlock* inlined_entry_block) {
is_inline_return_target_ = true;
inlined_entry_block_ = inlined_entry_block;
}
HBasicBlock* inlined_entry_block() { return inlined_entry_block_; }
bool IsDeoptimizing() const {
return end() != NULL && end()->IsDeoptimize();
}
void MarkUnreachable();
bool IsUnreachable() const { return !is_reachable_; }
bool IsReachable() const { return is_reachable_; }
bool IsLoopSuccessorDominator() const {
return dominates_loop_successors_;
}
void MarkAsLoopSuccessorDominator() {
dominates_loop_successors_ = true;
}
bool IsOrdered() const { return is_ordered_; }
void MarkAsOrdered() { is_ordered_ = true; }
void MarkSuccEdgeUnreachable(int succ);
inline Zone* zone() const;
#ifdef DEBUG
void Verify();
#endif
protected:
friend class HGraphBuilder;
HSimulate* CreateSimulate(BailoutId ast_id, RemovableSimulate removable);
void Finish(HControlInstruction* last, HSourcePosition position);
void FinishExit(HControlInstruction* instruction, HSourcePosition position);
void Goto(HBasicBlock* block,
HSourcePosition position,
FunctionState* state = NULL,
bool add_simulate = true);
void GotoNoSimulate(HBasicBlock* block, HSourcePosition position) {
Goto(block, position, NULL, false);
}
// Add the inlined function exit sequence, adding an HLeaveInlined
// instruction and updating the bailout environment.
void AddLeaveInlined(HValue* return_value,
FunctionState* state,
HSourcePosition position);
private:
void RegisterPredecessor(HBasicBlock* pred);
void AddDominatedBlock(HBasicBlock* block);
int block_id_;
HGraph* graph_;
ZoneList<HPhi*> phis_;
HInstruction* first_;
HInstruction* last_;
HControlInstruction* end_;
HLoopInformation* loop_information_;
ZoneList<HBasicBlock*> predecessors_;
HBasicBlock* dominator_;
ZoneList<HBasicBlock*> dominated_blocks_;
HEnvironment* last_environment_;
// Outgoing parameter count at block exit, set during lithium translation.
int argument_count_;
// Instruction indices into the lithium code stream.
int first_instruction_index_;
int last_instruction_index_;
ZoneList<int> deleted_phis_;
HBasicBlock* parent_loop_header_;
// For blocks marked as inline return target: the block with HEnterInlined.
HBasicBlock* inlined_entry_block_;
bool is_inline_return_target_ : 1;
bool is_reachable_ : 1;
bool dominates_loop_successors_ : 1;
bool is_osr_entry_ : 1;
bool is_ordered_ : 1;
};
class HPredecessorIterator V8_FINAL BASE_EMBEDDED {
public:
explicit HPredecessorIterator(HBasicBlock* block)
: predecessor_list_(block->predecessors()), current_(0) { }
bool Done() { return current_ >= predecessor_list_->length(); }
HBasicBlock* Current() { return predecessor_list_->at(current_); }
void Advance() { current_++; }
private:
const ZoneList<HBasicBlock*>* predecessor_list_;
int current_;
};
class HInstructionIterator V8_FINAL BASE_EMBEDDED {
public:
explicit HInstructionIterator(HBasicBlock* block)
: instr_(block->first()) {
next_ = Done() ? NULL : instr_->next();
}
inline bool Done() const { return instr_ == NULL; }
inline HInstruction* Current() { return instr_; }
inline void Advance() {
instr_ = next_;
next_ = Done() ? NULL : instr_->next();
}
private:
HInstruction* instr_;
HInstruction* next_;
};
class HLoopInformation V8_FINAL : public ZoneObject {
public:
HLoopInformation(HBasicBlock* loop_header, Zone* zone)
: back_edges_(4, zone),
loop_header_(loop_header),
blocks_(8, zone),
stack_check_(NULL) {
blocks_.Add(loop_header, zone);
}
~HLoopInformation() {}
const ZoneList<HBasicBlock*>* back_edges() const { return &back_edges_; }
const ZoneList<HBasicBlock*>* blocks() const { return &blocks_; }
HBasicBlock* loop_header() const { return loop_header_; }
HBasicBlock* GetLastBackEdge() const;
void RegisterBackEdge(HBasicBlock* block);
HStackCheck* stack_check() const { return stack_check_; }
void set_stack_check(HStackCheck* stack_check) {
stack_check_ = stack_check;
}
bool IsNestedInThisLoop(HLoopInformation* other) {
while (other != NULL) {
if (other == this) {
return true;
}
other = other->parent_loop();
}
return false;
}
HLoopInformation* parent_loop() {
HBasicBlock* parent_header = loop_header()->parent_loop_header();
return parent_header != NULL ? parent_header->loop_information() : NULL;
}
private:
void AddBlock(HBasicBlock* block);
ZoneList<HBasicBlock*> back_edges_;
HBasicBlock* loop_header_;
ZoneList<HBasicBlock*> blocks_;
HStackCheck* stack_check_;
};
class BoundsCheckTable;
class InductionVariableBlocksTable;
class HGraph V8_FINAL : public ZoneObject {
public:
explicit HGraph(CompilationInfo* info);
Isolate* isolate() const { return isolate_; }
Zone* zone() const { return zone_; }
CompilationInfo* info() const { return info_; }
const ZoneList<HBasicBlock*>* blocks() const { return &blocks_; }
const ZoneList<HPhi*>* phi_list() const { return phi_list_; }
HBasicBlock* entry_block() const { return entry_block_; }
HEnvironment* start_environment() const { return start_environment_; }
void FinalizeUniqueness();
bool ProcessArgumentsObject();
void OrderBlocks();
void AssignDominators();
void RestoreActualValues();
// Returns false if there are phi-uses of the arguments-object
// which are not supported by the optimizing compiler.
bool CheckArgumentsPhiUses();
// Returns false if there are phi-uses of an uninitialized const
// which are not supported by the optimizing compiler.
bool CheckConstPhiUses();
void CollectPhis();
HConstant* GetConstantUndefined();
HConstant* GetConstant0();
HConstant* GetConstant1();
HConstant* GetConstantMinus1();
HConstant* GetConstantTrue();
HConstant* GetConstantFalse();
HConstant* GetConstantHole();
HConstant* GetConstantNull();
HConstant* GetInvalidContext();
bool IsConstantUndefined(HConstant* constant);
bool IsConstant0(HConstant* constant);
bool IsConstant1(HConstant* constant);
bool IsConstantMinus1(HConstant* constant);
bool IsConstantTrue(HConstant* constant);
bool IsConstantFalse(HConstant* constant);
bool IsConstantHole(HConstant* constant);
bool IsConstantNull(HConstant* constant);
bool IsStandardConstant(HConstant* constant);
HBasicBlock* CreateBasicBlock();
HArgumentsObject* GetArgumentsObject() const {
return arguments_object_.get();
}
void SetArgumentsObject(HArgumentsObject* object) {
arguments_object_.set(object);
}
int GetMaximumValueID() const { return values_.length(); }
int GetNextBlockID() { return next_block_id_++; }
int GetNextValueID(HValue* value) {
ASSERT(!disallow_adding_new_values_);
values_.Add(value, zone());
return values_.length() - 1;
}
HValue* LookupValue(int id) const {
if (id >= 0 && id < values_.length()) return values_[id];
return NULL;
}
void DisallowAddingNewValues() {
disallow_adding_new_values_ = true;
}
bool Optimize(BailoutReason* bailout_reason);
#ifdef DEBUG
void Verify(bool do_full_verify) const;
#endif
bool has_osr() {
return osr_ != NULL;
}
void set_osr(HOsrBuilder* osr) {
osr_ = osr;
}
HOsrBuilder* osr() {
return osr_;
}
int update_type_change_checksum(int delta) {
type_change_checksum_ += delta;
return type_change_checksum_;
}
void update_maximum_environment_size(int environment_size) {
if (environment_size > maximum_environment_size_) {
maximum_environment_size_ = environment_size;
}
}
int maximum_environment_size() { return maximum_environment_size_; }
bool use_optimistic_licm() {
return use_optimistic_licm_;
}
void set_use_optimistic_licm(bool value) {
use_optimistic_licm_ = value;
}
void MarkRecursive() {
is_recursive_ = true;
}
bool is_recursive() const {
return is_recursive_;
}
void MarkDependsOnEmptyArrayProtoElements() {
// Add map dependency if not already added.
if (depends_on_empty_array_proto_elements_) return;
Map::AddDependentCompilationInfo(
handle(isolate()->initial_object_prototype()->map()),
DependentCode::kElementsCantBeAddedGroup, info());
Map::AddDependentCompilationInfo(
handle(isolate()->initial_array_prototype()->map()),
DependentCode::kElementsCantBeAddedGroup, info());
depends_on_empty_array_proto_elements_ = true;
}
bool depends_on_empty_array_proto_elements() {
return depends_on_empty_array_proto_elements_;
}
bool has_uint32_instructions() {
ASSERT(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
return uint32_instructions_ != NULL;
}
ZoneList<HInstruction*>* uint32_instructions() {
ASSERT(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
return uint32_instructions_;
}
void RecordUint32Instruction(HInstruction* instr) {
ASSERT(uint32_instructions_ == NULL || !uint32_instructions_->is_empty());
if (uint32_instructions_ == NULL) {
uint32_instructions_ = new(zone()) ZoneList<HInstruction*>(4, zone());
}
uint32_instructions_->Add(instr, zone());
}
void IncrementInNoSideEffectsScope() { no_side_effects_scope_count_++; }
void DecrementInNoSideEffectsScope() { no_side_effects_scope_count_--; }
bool IsInsideNoSideEffectsScope() { return no_side_effects_scope_count_ > 0; }
// If we are tracking source positions then this function assigns a unique
// identifier to each inlining and dumps function source if it was inlined
// for the first time during the current optimization.
int TraceInlinedFunction(Handle<SharedFunctionInfo> shared,
HSourcePosition position);
// Converts given HSourcePosition to the absolute offset from the start of
// the corresponding script.
int SourcePositionToScriptPosition(HSourcePosition position);
private:
HConstant* ReinsertConstantIfNecessary(HConstant* constant);
HConstant* GetConstant(SetOncePointer<HConstant>* pointer,
int32_t integer_value);
template<class Phase>
void Run() {
Phase phase(this);
phase.Run();
}
void EliminateRedundantBoundsChecksUsingInductionVariables();
Isolate* isolate_;
int next_block_id_;
HBasicBlock* entry_block_;
HEnvironment* start_environment_;
ZoneList<HBasicBlock*> blocks_;
ZoneList<HValue*> values_;
ZoneList<HPhi*>* phi_list_;
ZoneList<HInstruction*>* uint32_instructions_;
SetOncePointer<HConstant> constant_undefined_;
SetOncePointer<HConstant> constant_0_;
SetOncePointer<HConstant> constant_1_;
SetOncePointer<HConstant> constant_minus1_;
SetOncePointer<HConstant> constant_true_;
SetOncePointer<HConstant> constant_false_;
SetOncePointer<HConstant> constant_the_hole_;
SetOncePointer<HConstant> constant_null_;
SetOncePointer<HConstant> constant_invalid_context_;
SetOncePointer<HArgumentsObject> arguments_object_;
HOsrBuilder* osr_;
CompilationInfo* info_;
Zone* zone_;
bool is_recursive_;
bool use_optimistic_licm_;
bool depends_on_empty_array_proto_elements_;
int type_change_checksum_;
int maximum_environment_size_;
int no_side_effects_scope_count_;
bool disallow_adding_new_values_;
class InlinedFunctionInfo {
public:
explicit InlinedFunctionInfo(Handle<SharedFunctionInfo> shared)
: shared_(shared), start_position_(shared->start_position()) {
}
Handle<SharedFunctionInfo> shared() const { return shared_; }
int start_position() const { return start_position_; }
private:
Handle<SharedFunctionInfo> shared_;
int start_position_;
};
int next_inline_id_;
ZoneList<InlinedFunctionInfo> inlined_functions_;
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
Zone* HBasicBlock::zone() const { return graph_->zone(); }
// Type of stack frame an environment might refer to.
enum FrameType {
JS_FUNCTION,
JS_CONSTRUCT,
JS_GETTER,
JS_SETTER,
ARGUMENTS_ADAPTOR,
STUB
};
class HEnvironment V8_FINAL : public ZoneObject {
public:
HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure,
Zone* zone);
HEnvironment(Zone* zone, int parameter_count);
HEnvironment* arguments_environment() {
return outer()->frame_type() == ARGUMENTS_ADAPTOR ? outer() : this;
}
// Simple accessors.
Handle<JSFunction> closure() const { return closure_; }
const ZoneList<HValue*>* values() const { return &values_; }
const GrowableBitVector* assigned_variables() const {
return &assigned_variables_;
}
FrameType frame_type() const { return frame_type_; }
int parameter_count() const { return parameter_count_; }
int specials_count() const { return specials_count_; }
int local_count() const { return local_count_; }
HEnvironment* outer() const { return outer_; }
int pop_count() const { return pop_count_; }
int push_count() const { return push_count_; }
BailoutId ast_id() const { return ast_id_; }
void set_ast_id(BailoutId id) { ast_id_ = id; }
HEnterInlined* entry() const { return entry_; }
void set_entry(HEnterInlined* entry) { entry_ = entry; }
int length() const { return values_.length(); }
int first_expression_index() const {
return parameter_count() + specials_count() + local_count();
}
int first_local_index() const {
return parameter_count() + specials_count();
}
void Bind(Variable* variable, HValue* value) {
Bind(IndexFor(variable), value);
}
void Bind(int index, HValue* value);
void BindContext(HValue* value) {
Bind(parameter_count(), value);
}
HValue* Lookup(Variable* variable) const {
return Lookup(IndexFor(variable));
}
HValue* Lookup(int index) const {
HValue* result = values_[index];
ASSERT(result != NULL);
return result;
}
HValue* context() const {
// Return first special.
return Lookup(parameter_count());
}
void Push(HValue* value) {
ASSERT(value != NULL);
++push_count_;
values_.Add(value, zone());
}
HValue* Pop() {
ASSERT(!ExpressionStackIsEmpty());
if (push_count_ > 0) {
--push_count_;
} else {
++pop_count_;
}
return values_.RemoveLast();
}
void Drop(int count);
HValue* Top() const { return ExpressionStackAt(0); }
bool ExpressionStackIsEmpty() const;
HValue* ExpressionStackAt(int index_from_top) const {
int index = length() - index_from_top - 1;
ASSERT(HasExpressionAt(index));
return values_[index];
}
void SetExpressionStackAt(int index_from_top, HValue* value);
HEnvironment* Copy() const;
HEnvironment* CopyWithoutHistory() const;
HEnvironment* CopyAsLoopHeader(HBasicBlock* block) const;
// Create an "inlined version" of this environment, where the original
// environment is the outer environment but the top expression stack
// elements are moved to an inner environment as parameters.
HEnvironment* CopyForInlining(Handle<JSFunction> target,
int arguments,
FunctionLiteral* function,
HConstant* undefined,
InliningKind inlining_kind) const;
HEnvironment* DiscardInlined(bool drop_extra) {
HEnvironment* outer = outer_;
while (outer->frame_type() != JS_FUNCTION) outer = outer->outer_;
if (drop_extra) outer->Drop(1);
return outer;
}
void AddIncomingEdge(HBasicBlock* block, HEnvironment* other);
void ClearHistory() {
pop_count_ = 0;
push_count_ = 0;
assigned_variables_.Clear();
}
void SetValueAt(int index, HValue* value) {
ASSERT(index < length());
values_[index] = value;
}
// Map a variable to an environment index. Parameter indices are shifted
// by 1 (receiver is parameter index -1 but environment index 0).
// Stack-allocated local indices are shifted by the number of parameters.
int IndexFor(Variable* variable) const {
ASSERT(variable->IsStackAllocated());
int shift = variable->IsParameter()
? 1
: parameter_count_ + specials_count_;
return variable->index() + shift;
}
bool is_local_index(int i) const {
return i >= first_local_index() && i < first_expression_index();
}
bool is_parameter_index(int i) const {
return i >= 0 && i < parameter_count();
}
bool is_special_index(int i) const {
return i >= parameter_count() && i < parameter_count() + specials_count();
}
void PrintTo(StringStream* stream);
void PrintToStd();
Zone* zone() const { return zone_; }
private:
HEnvironment(const HEnvironment* other, Zone* zone);
HEnvironment(HEnvironment* outer,
Handle<JSFunction> closure,
FrameType frame_type,
int arguments,
Zone* zone);
// Create an artificial stub environment (e.g. for argument adaptor or
// constructor stub).
HEnvironment* CreateStubEnvironment(HEnvironment* outer,
Handle<JSFunction> target,
FrameType frame_type,
int arguments) const;
// True if index is included in the expression stack part of the environment.
bool HasExpressionAt(int index) const;
void Initialize(int parameter_count, int local_count, int stack_height);
void Initialize(const HEnvironment* other);
Handle<JSFunction> closure_;
// Value array [parameters] [specials] [locals] [temporaries].
ZoneList<HValue*> values_;
GrowableBitVector assigned_variables_;
FrameType frame_type_;
int parameter_count_;
int specials_count_;
int local_count_;
HEnvironment* outer_;
HEnterInlined* entry_;
int pop_count_;
int push_count_;
BailoutId ast_id_;
Zone* zone_;
};
class HOptimizedGraphBuilder;
enum ArgumentsAllowedFlag {
ARGUMENTS_NOT_ALLOWED,
ARGUMENTS_ALLOWED
};
class HIfContinuation;
// This class is not BASE_EMBEDDED because our inlining implementation uses
// new and delete.
class AstContext {
public:
bool IsEffect() const { return kind_ == Expression::kEffect; }
bool IsValue() const { return kind_ == Expression::kValue; }
bool IsTest() const { return kind_ == Expression::kTest; }
// 'Fill' this context with a hydrogen value. The value is assumed to
// have already been inserted in the instruction stream (or not need to
// be, e.g., HPhi). Call this function in tail position in the Visit
// functions for expressions.
virtual void ReturnValue(HValue* value) = 0;
// Add a hydrogen instruction to the instruction stream (recording an
// environment simulation if necessary) and then fill this context with
// the instruction as value.
virtual void ReturnInstruction(HInstruction* instr, BailoutId ast_id) = 0;
// Finishes the current basic block and materialize a boolean for
// value context, nothing for effect, generate a branch for test context.
// Call this function in tail position in the Visit functions for
// expressions.
virtual void ReturnControl(HControlInstruction* instr, BailoutId ast_id) = 0;
// Finishes the current basic block and materialize a boolean for
// value context, nothing for effect, generate a branch for test context.
// Call this function in tail position in the Visit functions for
// expressions that use an IfBuilder.
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) = 0;
void set_for_typeof(bool for_typeof) { for_typeof_ = for_typeof; }
bool is_for_typeof() { return for_typeof_; }
protected:
AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind);
virtual ~AstContext();
HOptimizedGraphBuilder* owner() const { return owner_; }
inline Zone* zone() const;
// We want to be able to assert, in a context-specific way, that the stack
// height makes sense when the context is filled.
#ifdef DEBUG
int original_length_;
#endif
private:
HOptimizedGraphBuilder* owner_;
Expression::Context kind_;
AstContext* outer_;
bool for_typeof_;
};
class EffectContext V8_FINAL : public AstContext {
public:
explicit EffectContext(HOptimizedGraphBuilder* owner)
: AstContext(owner, Expression::kEffect) {
}
virtual ~EffectContext();
virtual void ReturnValue(HValue* value) V8_OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) V8_OVERRIDE;
};
class ValueContext V8_FINAL : public AstContext {
public:
ValueContext(HOptimizedGraphBuilder* owner, ArgumentsAllowedFlag flag)
: AstContext(owner, Expression::kValue), flag_(flag) {
}
virtual ~ValueContext();
virtual void ReturnValue(HValue* value) V8_OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) V8_OVERRIDE;
bool arguments_allowed() { return flag_ == ARGUMENTS_ALLOWED; }
private:
ArgumentsAllowedFlag flag_;
};
class TestContext V8_FINAL : public AstContext {
public:
TestContext(HOptimizedGraphBuilder* owner,
Expression* condition,
HBasicBlock* if_true,
HBasicBlock* if_false)
: AstContext(owner, Expression::kTest),
condition_(condition),
if_true_(if_true),
if_false_(if_false) {
}
virtual void ReturnValue(HValue* value) V8_OVERRIDE;
virtual void ReturnInstruction(HInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnControl(HControlInstruction* instr,
BailoutId ast_id) V8_OVERRIDE;
virtual void ReturnContinuation(HIfContinuation* continuation,
BailoutId ast_id) V8_OVERRIDE;
static TestContext* cast(AstContext* context) {
ASSERT(context->IsTest());
return reinterpret_cast<TestContext*>(context);
}
Expression* condition() const { return condition_; }
HBasicBlock* if_true() const { return if_true_; }
HBasicBlock* if_false() const { return if_false_; }
private:
// Build the shared core part of the translation unpacking a value into
// control flow.
void BuildBranch(HValue* value);
Expression* condition_;
HBasicBlock* if_true_;
HBasicBlock* if_false_;
};
class FunctionState V8_FINAL {
public:
FunctionState(HOptimizedGraphBuilder* owner,
CompilationInfo* info,
InliningKind inlining_kind,
int inlining_id);
~FunctionState();
CompilationInfo* compilation_info() { return compilation_info_; }
AstContext* call_context() { return call_context_; }
InliningKind inlining_kind() const { return inlining_kind_; }
HBasicBlock* function_return() { return function_return_; }
TestContext* test_context() { return test_context_; }
void ClearInlinedTestContext() {
delete test_context_;
test_context_ = NULL;
}
FunctionState* outer() { return outer_; }
HEnterInlined* entry() { return entry_; }
void set_entry(HEnterInlined* entry) { entry_ = entry; }
HArgumentsObject* arguments_object() { return arguments_object_; }
void set_arguments_object(HArgumentsObject* arguments_object) {
arguments_object_ = arguments_object;
}
HArgumentsElements* arguments_elements() { return arguments_elements_; }
void set_arguments_elements(HArgumentsElements* arguments_elements) {
arguments_elements_ = arguments_elements;
}
bool arguments_pushed() { return arguments_elements() != NULL; }
int inlining_id() const { return inlining_id_; }
private:
HOptimizedGraphBuilder* owner_;
CompilationInfo* compilation_info_;
// During function inlining, expression context of the call being
// inlined. NULL when not inlining.
AstContext* call_context_;
// The kind of call which is currently being inlined.
InliningKind inlining_kind_;
// When inlining in an effect or value context, this is the return block.
// It is NULL otherwise. When inlining in a test context, there are a
// pair of return blocks in the context. When not inlining, there is no
// local return point.
HBasicBlock* function_return_;
// When inlining a call in a test context, a context containing a pair of
// return blocks. NULL in all other cases.
TestContext* test_context_;
// When inlining HEnterInlined instruction corresponding to the function
// entry.
HEnterInlined* entry_;
HArgumentsObject* arguments_object_;
HArgumentsElements* arguments_elements_;
int inlining_id_;
HSourcePosition outer_source_position_;
FunctionState* outer_;
};
class HIfContinuation V8_FINAL {
public:
HIfContinuation()
: continuation_captured_(false),
true_branch_(NULL),
false_branch_(NULL) {}
HIfContinuation(HBasicBlock* true_branch,
HBasicBlock* false_branch)
: continuation_captured_(true), true_branch_(true_branch),
false_branch_(false_branch) {}
~HIfContinuation() { ASSERT(!continuation_captured_); }
void Capture(HBasicBlock* true_branch,
HBasicBlock* false_branch) {
ASSERT(!continuation_captured_);
true_branch_ = true_branch;
false_branch_ = false_branch;
continuation_captured_ = true;
}
void Continue(HBasicBlock** true_branch,
HBasicBlock** false_branch) {
ASSERT(continuation_captured_);
*true_branch = true_branch_;
*false_branch = false_branch_;
continuation_captured_ = false;
}
bool IsTrueReachable() { return true_branch_ != NULL; }
bool IsFalseReachable() { return false_branch_ != NULL; }
bool TrueAndFalseReachable() {
return IsTrueReachable() || IsFalseReachable();
}
HBasicBlock* true_branch() const { return true_branch_; }
HBasicBlock* false_branch() const { return false_branch_; }
private:
bool continuation_captured_;
HBasicBlock* true_branch_;
HBasicBlock* false_branch_;
};
class HAllocationMode V8_FINAL BASE_EMBEDDED {
public:
explicit HAllocationMode(Handle<AllocationSite> feedback_site)
: current_site_(NULL), feedback_site_(feedback_site),
pretenure_flag_(NOT_TENURED) {}
explicit HAllocationMode(HValue* current_site)
: current_site_(current_site), pretenure_flag_(NOT_TENURED) {}
explicit HAllocationMode(PretenureFlag pretenure_flag)
: current_site_(NULL), pretenure_flag_(pretenure_flag) {}
HAllocationMode()
: current_site_(NULL), pretenure_flag_(NOT_TENURED) {}
HValue* current_site() const { return current_site_; }
Handle<AllocationSite> feedback_site() const { return feedback_site_; }
bool CreateAllocationMementos() const V8_WARN_UNUSED_RESULT {
return current_site() != NULL;
}
PretenureFlag GetPretenureMode() const V8_WARN_UNUSED_RESULT {
if (!feedback_site().is_null()) return feedback_site()->GetPretenureMode();
return pretenure_flag_;
}
private:
HValue* current_site_;
Handle<AllocationSite> feedback_site_;
PretenureFlag pretenure_flag_;
};
class HGraphBuilder {
public:
explicit HGraphBuilder(CompilationInfo* info)
: info_(info),
graph_(NULL),
current_block_(NULL),
scope_(info->scope()),
position_(HSourcePosition::Unknown()),
start_position_(0) {}
virtual ~HGraphBuilder() {}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
HBasicBlock* current_block() const { return current_block_; }
void set_current_block(HBasicBlock* block) { current_block_ = block; }
HEnvironment* environment() const {
return current_block()->last_environment();
}
Zone* zone() const { return info_->zone(); }
HGraph* graph() const { return graph_; }
Isolate* isolate() const { return graph_->isolate(); }
CompilationInfo* top_info() { return info_; }
HGraph* CreateGraph();
// Bailout environment manipulation.
void Push(HValue* value) { environment()->Push(value); }
HValue* Pop() { return environment()->Pop(); }
virtual HValue* context() = 0;
// Adding instructions.
HInstruction* AddInstruction(HInstruction* instr);
void FinishCurrentBlock(HControlInstruction* last);
void FinishExitCurrentBlock(HControlInstruction* instruction);
void Goto(HBasicBlock* from,
HBasicBlock* target,
FunctionState* state = NULL,
bool add_simulate = true) {
from->Goto(target, source_position(), state, add_simulate);
}
void Goto(HBasicBlock* target,
FunctionState* state = NULL,
bool add_simulate = true) {
Goto(current_block(), target, state, add_simulate);
}
void GotoNoSimulate(HBasicBlock* from, HBasicBlock* target) {
Goto(from, target, NULL, false);
}
void GotoNoSimulate(HBasicBlock* target) {
Goto(target, NULL, false);
}
void AddLeaveInlined(HBasicBlock* block,
HValue* return_value,
FunctionState* state) {
block->AddLeaveInlined(return_value, state, source_position());
}
void AddLeaveInlined(HValue* return_value, FunctionState* state) {
return AddLeaveInlined(current_block(), return_value, state);
}
template<class I>
HInstruction* NewUncasted() { return I::New(zone(), context()); }
template<class I>
I* New() { return I::New(zone(), context()); }
template<class I>
HInstruction* AddUncasted() { return AddInstruction(NewUncasted<I>());}
template<class I>
I* Add() { return AddInstructionTyped(New<I>());}
template<class I, class P1>
HInstruction* NewUncasted(P1 p1) {
return I::New(zone(), context(), p1);
}
template<class I, class P1>
I* New(P1 p1) { return I::New(zone(), context(), p1); }
template<class I, class P1>
HInstruction* AddUncasted(P1 p1) {
HInstruction* result = AddInstruction(NewUncasted<I>(p1));
// Specializations must have their parameters properly casted
// to avoid landing here.
ASSERT(!result->IsReturn() && !result->IsSimulate() &&
!result->IsDeoptimize());
return result;
}
template<class I, class P1>
I* Add(P1 p1) {
I* result = AddInstructionTyped(New<I>(p1));
// Specializations must have their parameters properly casted
// to avoid landing here.
ASSERT(!result->IsReturn() && !result->IsSimulate() &&
!result->IsDeoptimize());
return result;
}
template<class I, class P1, class P2>
HInstruction* NewUncasted(P1 p1, P2 p2) {
return I::New(zone(), context(), p1, p2);
}
template<class I, class P1, class P2>
I* New(P1 p1, P2 p2) {
return I::New(zone(), context(), p1, p2);
}
template<class I, class P1, class P2>
HInstruction* AddUncasted(P1 p1, P2 p2) {
HInstruction* result = AddInstruction(NewUncasted<I>(p1, p2));
// Specializations must have their parameters properly casted
// to avoid landing here.
ASSERT(!result->IsSimulate());
return result;
}
template<class I, class P1, class P2>
I* Add(P1 p1, P2 p2) {
I* result = AddInstructionTyped(New<I>(p1, p2));
// Specializations must have their parameters properly casted
// to avoid landing here.
ASSERT(!result->IsSimulate());
return result;
}
template<class I, class P1, class P2, class P3>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3) {
return I::New(zone(), context(), p1, p2, p3);
}
template<class I, class P1, class P2, class P3>
I* New(P1 p1, P2 p2, P3 p3) {
return I::New(zone(), context(), p1, p2, p3);
}
template<class I, class P1, class P2, class P3>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3) {
return AddInstruction(NewUncasted<I>(p1, p2, p3));
}
template<class I, class P1, class P2, class P3>
I* Add(P1 p1, P2 p2, P3 p3) {
return AddInstructionTyped(New<I>(p1, p2, p3));
}
template<class I, class P1, class P2, class P3, class P4>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4) {
return I::New(zone(), context(), p1, p2, p3, p4);
}
template<class I, class P1, class P2, class P3, class P4>
I* New(P1 p1, P2 p2, P3 p3, P4 p4) {
return I::New(zone(), context(), p1, p2, p3, p4);
}
template<class I, class P1, class P2, class P3, class P4>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4));
}
template<class I, class P1, class P2, class P3, class P4>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4));
}
template<class I, class P1, class P2, class P3, class P4, class P5>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return I::New(zone(), context(), p1, p2, p3, p4, p5);
}
template<class I, class P1, class P2, class P3, class P4, class P5>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return I::New(zone(), context(), p1, p2, p3, p4, p5);
}
template<class I, class P1, class P2, class P3, class P4, class P5>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5));
}
template<class I, class P1, class P2, class P3, class P4, class P5>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5));
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6);
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6);
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6));
}
template<class I, class P1, class P2, class P3, class P4, class P5, class P6>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7);
}
template<class I, class P1, class P2, class P3,
class P4, class P5, class P6, class P7>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6, p7));
}
template<class I, class P1, class P2, class P3,
class P4, class P5, class P6, class P7>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6, p7));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
HInstruction* NewUncasted(P1 p1, P2 p2, P3 p3, P4 p4,
P5 p5, P6 p6, P7 p7, P8 p8) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7, p8);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
I* New(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8) {
return I::New(zone(), context(), p1, p2, p3, p4, p5, p6, p7, p8);
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
HInstruction* AddUncasted(P1 p1, P2 p2, P3 p3, P4 p4,
P5 p5, P6 p6, P7 p7, P8 p8) {
return AddInstruction(NewUncasted<I>(p1, p2, p3, p4, p5, p6, p7, p8));
}
template<class I, class P1, class P2, class P3, class P4,
class P5, class P6, class P7, class P8>
I* Add(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8) {
return AddInstructionTyped(New<I>(p1, p2, p3, p4, p5, p6, p7, p8));
}
void AddSimulate(BailoutId id, RemovableSimulate removable = FIXED_SIMULATE);
// When initializing arrays, we'll unfold the loop if the number of elements
// is known at compile time and is <= kElementLoopUnrollThreshold.
static const int kElementLoopUnrollThreshold = 8;
protected:
virtual bool BuildGraph() = 0;
HBasicBlock* CreateBasicBlock(HEnvironment* env);
HBasicBlock* CreateLoopHeaderBlock();
template <class BitFieldClass>
HValue* BuildDecodeField(HValue* encoded_field) {
HValue* shifted_field = AddUncasted<HShr>(encoded_field,
Add<HConstant>(static_cast<int>(BitFieldClass::kShift)));
HValue* mask_value = Add<HConstant>(static_cast<int>(BitFieldClass::kMask));
return AddUncasted<HBitwise>(Token::BIT_AND, shifted_field, mask_value);
}
HValue* BuildGetElementsKind(HValue* object);
HValue* BuildCheckHeapObject(HValue* object);
HValue* BuildCheckString(HValue* string);
HValue* BuildWrapReceiver(HValue* object, HValue* function);
// Building common constructs
HValue* BuildCheckForCapacityGrow(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length,
HValue* key,
bool is_js_array,
PropertyAccessType access_type);
HValue* BuildCopyElementsOnWrite(HValue* object,
HValue* elements,
ElementsKind kind,
HValue* length);
void BuildTransitionElementsKind(HValue* object,
HValue* map,
ElementsKind from_kind,
ElementsKind to_kind,
bool is_jsarray);
HValue* BuildNumberToString(HValue* object, Type* type);
void BuildJSObjectCheck(HValue* receiver,
int bit_field_mask);
// Checks a key value that's being used for a keyed element access context. If
// the key is a index, i.e. a smi or a number in a unique string with a cached
// numeric value, the "true" of the continuation is joined. Otherwise,
// if the key is a name or a unique string, the "false" of the continuation is
// joined. Otherwise, a deoptimization is triggered. In both paths of the
// continuation, the key is pushed on the top of the environment.
void BuildKeyedIndexCheck(HValue* key,
HIfContinuation* join_continuation);
// Checks the properties of an object if they are in dictionary case, in which
// case "true" of continuation is taken, otherwise the "false"
void BuildTestForDictionaryProperties(HValue* object,
HIfContinuation* continuation);
void BuildNonGlobalObjectCheck(HValue* receiver);
HValue* BuildKeyedLookupCacheHash(HValue* object,
HValue* key);
HValue* BuildUncheckedDictionaryElementLoad(HValue* receiver,
HValue* elements,
HValue* key,
HValue* hash);
HValue* BuildRegExpConstructResult(HValue* length,
HValue* index,
HValue* input);
// Allocates a new object according with the given allocation properties.
HAllocate* BuildAllocate(HValue* object_size,
HType type,
InstanceType instance_type,
HAllocationMode allocation_mode);
// Computes the sum of two string lengths, taking care of overflow handling.
HValue* BuildAddStringLengths(HValue* left_length, HValue* right_length);
// Creates a cons string using the two input strings.
HValue* BuildCreateConsString(HValue* length,
HValue* left,
HValue* right,
HAllocationMode allocation_mode);
// Copies characters from one sequential string to another.
void BuildCopySeqStringChars(HValue* src,
HValue* src_offset,
String::Encoding src_encoding,
HValue* dst,
HValue* dst_offset,
String::Encoding dst_encoding,
HValue* length);
// Align an object size to object alignment boundary
HValue* BuildObjectSizeAlignment(HValue* unaligned_size, int header_size);
// Both operands are non-empty strings.
HValue* BuildUncheckedStringAdd(HValue* left,
HValue* right,
HAllocationMode allocation_mode);
// Add two strings using allocation mode, validating type feedback.
HValue* BuildStringAdd(HValue* left,
HValue* right,
HAllocationMode allocation_mode);
HInstruction* BuildUncheckedMonomorphicElementAccess(
HValue* checked_object,
HValue* key,
HValue* val,
bool is_js_array,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode,
KeyedAccessStoreMode store_mode);
HInstruction* AddElementAccess(
HValue* elements,
HValue* checked_key,
HValue* val,
HValue* dependency,
ElementsKind elements_kind,
PropertyAccessType access_type,
LoadKeyedHoleMode load_mode = NEVER_RETURN_HOLE);
HInstruction* AddLoadStringInstanceType(HValue* string);
HInstruction* AddLoadStringLength(HValue* string);
HStoreNamedField* AddStoreMapConstant(HValue* object, Handle<Map> map) {
return Add<HStoreNamedField>(object, HObjectAccess::ForMap(),
Add<HConstant>(map));
}
HLoadNamedField* AddLoadMap(HValue* object,
HValue* dependency = NULL);
HLoadNamedField* AddLoadElements(HValue* object,
HValue* dependency = NULL);
bool MatchRotateRight(HValue* left,
HValue* right,
HValue** operand,
HValue** shift_amount);
HValue* BuildBinaryOperation(Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* result_type,
Maybe<int> fixed_right_arg,
HAllocationMode allocation_mode);
HLoadNamedField* AddLoadFixedArrayLength(HValue *object,
HValue *dependency = NULL);
HLoadNamedField* AddLoadArrayLength(HValue *object,
ElementsKind kind,
HValue *dependency = NULL);
HValue* AddLoadJSBuiltin(Builtins::JavaScript builtin);
HValue* EnforceNumberType(HValue* number, Type* expected);
HValue* TruncateToNumber(HValue* value, Type** expected);
void FinishExitWithHardDeoptimization(const char* reason);
void AddIncrementCounter(StatsCounter* counter);
class IfBuilder V8_FINAL {
public:
explicit IfBuilder(HGraphBuilder* builder);
IfBuilder(HGraphBuilder* builder,
HIfContinuation* continuation);
~IfBuilder() {
if (!finished_) End();
}
template<class Condition>
Condition* If(HValue *p) {
Condition* compare = builder()->New<Condition>(p);
AddCompare(compare);
return compare;
}
template<class Condition, class P2>
Condition* If(HValue* p1, P2 p2) {
Condition* compare = builder()->New<Condition>(p1, p2);
AddCompare(compare);
return compare;
}
template<class Condition, class P2, class P3>
Condition* If(HValue* p1, P2 p2, P3 p3) {
Condition* compare = builder()->New<Condition>(p1, p2, p3);
AddCompare(compare);
return compare;
}
template<class Condition>
Condition* IfNot(HValue* p) {
Condition* compare = If<Condition>(p);
compare->Not();
return compare;
}
template<class Condition, class P2>
Condition* IfNot(HValue* p1, P2 p2) {
Condition* compare = If<Condition>(p1, p2);
compare->Not();
return compare;
}
template<class Condition, class P2, class P3>
Condition* IfNot(HValue* p1, P2 p2, P3 p3) {
Condition* compare = If<Condition>(p1, p2, p3);
compare->Not();
return compare;
}
template<class Condition>
Condition* OrIf(HValue *p) {
Or();
return If<Condition>(p);
}
template<class Condition, class P2>
Condition* OrIf(HValue* p1, P2 p2) {
Or();
return If<Condition>(p1, p2);
}
template<class Condition, class P2, class P3>
Condition* OrIf(HValue* p1, P2 p2, P3 p3) {
Or();
return If<Condition>(p1, p2, p3);
}
template<class Condition>
Condition* AndIf(HValue *p) {
And();
return If<Condition>(p);
}
template<class Condition, class P2>
Condition* AndIf(HValue* p1, P2 p2) {
And();
return If<Condition>(p1, p2);
}
template<class Condition, class P2, class P3>
Condition* AndIf(HValue* p1, P2 p2, P3 p3) {
And();
return If<Condition>(p1, p2, p3);
}
void Or();
void And();
// Captures the current state of this IfBuilder in the specified
// continuation and ends this IfBuilder.
void CaptureContinuation(HIfContinuation* continuation);
// Joins the specified continuation from this IfBuilder and ends this
// IfBuilder. This appends a Goto instruction from the true branch of
// this IfBuilder to the true branch of the continuation unless the
// true branch of this IfBuilder is already finished. And vice versa
// for the false branch.
//
// The basic idea is as follows: You have several nested IfBuilder's
// that you want to join based on two possible outcomes (i.e. success
// and failure, or whatever). You can do this easily using this method
// now, for example:
//
// HIfContinuation cont(graph()->CreateBasicBlock(),
// graph()->CreateBasicBlock());
// ...
// IfBuilder if_whatever(this);
// if_whatever.If<Condition>(arg);
// if_whatever.Then();
// ...
// if_whatever.Else();
// ...
// if_whatever.JoinContinuation(&cont);
// ...
// IfBuilder if_something(this);
// if_something.If<Condition>(arg1, arg2);
// if_something.Then();
// ...
// if_something.Else();
// ...
// if_something.JoinContinuation(&cont);
// ...
// IfBuilder if_finally(this, &cont);
// if_finally.Then();
// // continues after then code of if_whatever or if_something.
// ...
// if_finally.Else();
// // continues after else code of if_whatever or if_something.
// ...
// if_finally.End();
void JoinContinuation(HIfContinuation* continuation);
void Then();
void Else();
void End();
void Deopt(const char* reason);
void ThenDeopt(const char* reason) {
Then();
Deopt(reason);
}
void ElseDeopt(const char* reason) {
Else();
Deopt(reason);
}
void Return(HValue* value);
private:
HControlInstruction* AddCompare(HControlInstruction* compare);
HGraphBuilder* builder() const { return builder_; }
void AddMergeAtJoinBlock(bool deopt);
void Finish();
void Finish(HBasicBlock** then_continuation,
HBasicBlock** else_continuation);
class MergeAtJoinBlock : public ZoneObject {
public:
MergeAtJoinBlock(HBasicBlock* block,
bool deopt,
MergeAtJoinBlock* next)
: block_(block),
deopt_(deopt),
next_(next) {}
HBasicBlock* block_;
bool deopt_;
MergeAtJoinBlock* next_;
};
HGraphBuilder* builder_;
bool finished_ : 1;
bool did_then_ : 1;
bool did_else_ : 1;
bool did_else_if_ : 1;
bool did_and_ : 1;
bool did_or_ : 1;
bool captured_ : 1;
bool needs_compare_ : 1;
bool pending_merge_block_ : 1;
HBasicBlock* first_true_block_;
HBasicBlock* first_false_block_;
HBasicBlock* split_edge_merge_block_;
MergeAtJoinBlock* merge_at_join_blocks_;
int normal_merge_at_join_block_count_;
int deopt_merge_at_join_block_count_;
};
class LoopBuilder V8_FINAL {
public:
enum Direction {
kPreIncrement,
kPostIncrement,
kPreDecrement,
kPostDecrement
};
LoopBuilder(HGraphBuilder* builder,
HValue* context,
Direction direction);
LoopBuilder(HGraphBuilder* builder,
HValue* context,
Direction direction,
HValue* increment_amount);
~LoopBuilder() {
ASSERT(finished_);
}
HValue* BeginBody(
HValue* initial,
HValue* terminating,
Token::Value token);
void Break();
void EndBody();
private:
Zone* zone() { return builder_->zone(); }
HGraphBuilder* builder_;
HValue* context_;
HValue* increment_amount_;
HInstruction* increment_;
HPhi* phi_;
HBasicBlock* header_block_;
HBasicBlock* body_block_;
HBasicBlock* exit_block_;
HBasicBlock* exit_trampoline_block_;
Direction direction_;
bool finished_;
};
template <class A, class P1>
void DeoptimizeIf(P1 p1, char* const reason) {
IfBuilder builder(this);
builder.If<A>(p1);
builder.ThenDeopt(reason);
}
template <class A, class P1, class P2>
void DeoptimizeIf(P1 p1, P2 p2, const char* reason) {
IfBuilder builder(this);
builder.If<A>(p1, p2);
builder.ThenDeopt(reason);
}
template <class A, class P1, class P2, class P3>
void DeoptimizeIf(P1 p1, P2 p2, P3 p3, const char* reason) {
IfBuilder builder(this);
builder.If<A>(p1, p2, p3);
builder.ThenDeopt(reason);
}
HValue* BuildNewElementsCapacity(HValue* old_capacity);
class JSArrayBuilder V8_FINAL {
public:
JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* allocation_site_payload,
HValue* constructor_function,
AllocationSiteOverrideMode override_mode);
JSArrayBuilder(HGraphBuilder* builder,
ElementsKind kind,
HValue* constructor_function = NULL);
enum FillMode {
DONT_FILL_WITH_HOLE,
FILL_WITH_HOLE
};
ElementsKind kind() { return kind_; }
HAllocate* elements_location() { return elements_location_; }
HAllocate* AllocateEmptyArray();
HAllocate* AllocateArray(HValue* capacity,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
// Use these allocators when capacity could be unknown at compile time
// but its limit is known. For constant |capacity| the value of
// |capacity_upper_bound| is ignored and the actual |capacity|
// value is used as an upper bound.
HAllocate* AllocateArray(HValue* capacity,
int capacity_upper_bound,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
HAllocate* AllocateArray(HValue* capacity,
HConstant* capacity_upper_bound,
HValue* length_field,
FillMode fill_mode = FILL_WITH_HOLE);
HValue* GetElementsLocation() { return elements_location_; }
HValue* EmitMapCode();
private:
Zone* zone() const { return builder_->zone(); }
int elements_size() const {
return IsFastDoubleElementsKind(kind_) ? kDoubleSize : kPointerSize;
}
HGraphBuilder* builder() { return builder_; }
HGraph* graph() { return builder_->graph(); }
int initial_capacity() {
STATIC_ASSERT(JSArray::kPreallocatedArrayElements > 0);
return JSArray::kPreallocatedArrayElements;
}
HValue* EmitInternalMapCode();
HGraphBuilder* builder_;
ElementsKind kind_;
AllocationSiteMode mode_;
HValue* allocation_site_payload_;
HValue* constructor_function_;
HAllocate* elements_location_;
};
HValue* BuildAllocateArrayFromLength(JSArrayBuilder* array_builder,
HValue* length_argument);
HValue* BuildCalculateElementsSize(ElementsKind kind,
HValue* capacity);
HAllocate* AllocateJSArrayObject(AllocationSiteMode mode);
HConstant* EstablishElementsAllocationSize(ElementsKind kind, int capacity);
HAllocate* BuildAllocateElements(ElementsKind kind, HValue* size_in_bytes);
void BuildInitializeElementsHeader(HValue* elements,
ElementsKind kind,
HValue* capacity);
HValue* BuildAllocateElementsAndInitializeElementsHeader(ElementsKind kind,
HValue* capacity);
// |array| must have been allocated with enough room for
// 1) the JSArray and 2) an AllocationMemento if mode requires it.
// If the |elements| value provided is NULL then the array elements storage
// is initialized with empty array.
void BuildJSArrayHeader(HValue* array,
HValue* array_map,
HValue* elements,
AllocationSiteMode mode,
ElementsKind elements_kind,
HValue* allocation_site_payload,
HValue* length_field);
HValue* BuildGrowElementsCapacity(HValue* object,
HValue* elements,
ElementsKind kind,
ElementsKind new_kind,
HValue* length,
HValue* new_capacity);
void BuildFillElementsWithValue(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to,
HValue* value);
void BuildFillElementsWithHole(HValue* elements,
ElementsKind elements_kind,
HValue* from,
HValue* to);
void BuildCopyElements(HValue* from_elements,
ElementsKind from_elements_kind,
HValue* to_elements,
ElementsKind to_elements_kind,
HValue* length,
HValue* capacity);
HValue* BuildCloneShallowArrayCow(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind);
HValue* BuildCloneShallowArrayEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode);
HValue* BuildCloneShallowArrayNonEmpty(HValue* boilerplate,
HValue* allocation_site,
AllocationSiteMode mode,
ElementsKind kind);
HValue* BuildElementIndexHash(HValue* index);
void BuildCompareNil(
HValue* value,
Type* type,
HIfContinuation* continuation);
void BuildCreateAllocationMemento(HValue* previous_object,
HValue* previous_object_size,
HValue* payload);
HInstruction* BuildConstantMapCheck(Handle<JSObject> constant);
HInstruction* BuildCheckPrototypeMaps(Handle<JSObject> prototype,
Handle<JSObject> holder);
HInstruction* BuildGetNativeContext(HValue* closure);
HInstruction* BuildGetNativeContext();
HInstruction* BuildGetArrayFunction();
protected:
void SetSourcePosition(int position) {
ASSERT(position != RelocInfo::kNoPosition);
position_.set_position(position - start_position_);
}
void EnterInlinedSource(int start_position, int id) {
if (FLAG_hydrogen_track_positions) {
start_position_ = start_position;
position_.set_inlining_id(id);
}
}
// Convert the given absolute offset from the start of the script to
// the HSourcePosition assuming that this position corresponds to the
// same function as current position_.
HSourcePosition ScriptPositionToSourcePosition(int position) {
HSourcePosition pos = position_;
pos.set_position(position - start_position_);
return pos;
}
HSourcePosition source_position() { return position_; }
void set_source_position(HSourcePosition position) {
position_ = position;
}
template <typename ViewClass>
void BuildArrayBufferViewInitialization(HValue* obj,
HValue* buffer,
HValue* byte_offset,
HValue* byte_length);
private:
HGraphBuilder();
HValue* BuildUncheckedDictionaryElementLoadHelper(
HValue* elements,
HValue* key,
HValue* hash,
HValue* mask,
int current_probe);
template <class I>
I* AddInstructionTyped(I* instr) {
return I::cast(AddInstruction(instr));
}
CompilationInfo* info_;
HGraph* graph_;
HBasicBlock* current_block_;
Scope* scope_;
HSourcePosition position_;
int start_position_;
};
template<>
inline HDeoptimize* HGraphBuilder::Add<HDeoptimize>(
const char* reason, Deoptimizer::BailoutType type) {
if (type == Deoptimizer::SOFT) {
isolate()->counters()->soft_deopts_requested()->Increment();
if (FLAG_always_opt) return NULL;
}
if (current_block()->IsDeoptimizing()) return NULL;
HBasicBlock* after_deopt_block = CreateBasicBlock(
current_block()->last_environment());
HDeoptimize* instr = New<HDeoptimize>(reason, type, after_deopt_block);
if (type == Deoptimizer::SOFT) {
isolate()->counters()->soft_deopts_inserted()->Increment();
}
FinishCurrentBlock(instr);
set_current_block(after_deopt_block);
return instr;
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HDeoptimize>(
const char* reason, Deoptimizer::BailoutType type) {
return Add<HDeoptimize>(reason, type);
}
template<>
inline HSimulate* HGraphBuilder::Add<HSimulate>(
BailoutId id,
RemovableSimulate removable) {
HSimulate* instr = current_block()->CreateSimulate(id, removable);
AddInstruction(instr);
return instr;
}
template<>
inline HSimulate* HGraphBuilder::Add<HSimulate>(
BailoutId id) {
return Add<HSimulate>(id, FIXED_SIMULATE);
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HSimulate>(BailoutId id) {
return Add<HSimulate>(id, FIXED_SIMULATE);
}
template<>
inline HReturn* HGraphBuilder::Add<HReturn>(HValue* value) {
int num_parameters = graph()->info()->num_parameters();
HValue* params = AddUncasted<HConstant>(num_parameters);
HReturn* return_instruction = New<HReturn>(value, params);
FinishExitCurrentBlock(return_instruction);
return return_instruction;
}
template<>
inline HReturn* HGraphBuilder::Add<HReturn>(HConstant* value) {
return Add<HReturn>(static_cast<HValue*>(value));
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HReturn>(HValue* value) {
return Add<HReturn>(value);
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HReturn>(HConstant* value) {
return Add<HReturn>(value);
}
template<>
inline HCallRuntime* HGraphBuilder::Add<HCallRuntime>(
Handle<String> name,
const Runtime::Function* c_function,
int argument_count) {
HCallRuntime* instr = New<HCallRuntime>(name, c_function, argument_count);
if (graph()->info()->IsStub()) {
// When compiling code stubs, we don't want to save all double registers
// upon entry to the stub, but instead have the call runtime instruction
// save the double registers only on-demand (in the fallback case).
instr->set_save_doubles(kSaveFPRegs);
}
AddInstruction(instr);
return instr;
}
template<>
inline HInstruction* HGraphBuilder::AddUncasted<HCallRuntime>(
Handle<String> name,
const Runtime::Function* c_function,
int argument_count) {
return Add<HCallRuntime>(name, c_function, argument_count);
}
template<>
inline HContext* HGraphBuilder::New<HContext>() {
return HContext::New(zone());
}
template<>
inline HInstruction* HGraphBuilder::NewUncasted<HContext>() {
return New<HContext>();
}
class HOptimizedGraphBuilder : public HGraphBuilder, public AstVisitor {
public:
// A class encapsulating (lazily-allocated) break and continue blocks for
// a breakable statement. Separated from BreakAndContinueScope so that it
// can have a separate lifetime.
class BreakAndContinueInfo V8_FINAL BASE_EMBEDDED {
public:
explicit BreakAndContinueInfo(BreakableStatement* target,
Scope* scope,
int drop_extra = 0)
: target_(target),
break_block_(NULL),
continue_block_(NULL),
scope_(scope),
drop_extra_(drop_extra) {
}
BreakableStatement* target() { return target_; }
HBasicBlock* break_block() { return break_block_; }
void set_break_block(HBasicBlock* block) { break_block_ = block; }
HBasicBlock* continue_block() { return continue_block_; }
void set_continue_block(HBasicBlock* block) { continue_block_ = block; }
Scope* scope() { return scope_; }
int drop_extra() { return drop_extra_; }
private:
BreakableStatement* target_;
HBasicBlock* break_block_;
HBasicBlock* continue_block_;
Scope* scope_;
int drop_extra_;
};
// A helper class to maintain a stack of current BreakAndContinueInfo
// structures mirroring BreakableStatement nesting.
class BreakAndContinueScope V8_FINAL BASE_EMBEDDED {
public:
BreakAndContinueScope(BreakAndContinueInfo* info,
HOptimizedGraphBuilder* owner)
: info_(info), owner_(owner), next_(owner->break_scope()) {
owner->set_break_scope(this);
}
~BreakAndContinueScope() { owner_->set_break_scope(next_); }
BreakAndContinueInfo* info() { return info_; }
HOptimizedGraphBuilder* owner() { return owner_; }
BreakAndContinueScope* next() { return next_; }
// Search the break stack for a break or continue target.
enum BreakType { BREAK, CONTINUE };
HBasicBlock* Get(BreakableStatement* stmt, BreakType type,
Scope** scope, int* drop_extra);
private:
BreakAndContinueInfo* info_;
HOptimizedGraphBuilder* owner_;
BreakAndContinueScope* next_;
};
explicit HOptimizedGraphBuilder(CompilationInfo* info);
virtual bool BuildGraph() V8_OVERRIDE;
// Simple accessors.
BreakAndContinueScope* break_scope() const { return break_scope_; }
void set_break_scope(BreakAndContinueScope* head) { break_scope_ = head; }
bool inline_bailout() { return inline_bailout_; }
HValue* context() { return environment()->context(); }
HOsrBuilder* osr() const { return osr_; }
void Bailout(BailoutReason reason);
HBasicBlock* CreateJoin(HBasicBlock* first,
HBasicBlock* second,
BailoutId join_id);
FunctionState* function_state() const { return function_state_; }
void VisitDeclarations(ZoneList<Declaration*>* declarations);
void* operator new(size_t size, Zone* zone) {
return zone->New(static_cast<int>(size));
}
void operator delete(void* pointer, Zone* zone) { }
void operator delete(void* pointer) { }
DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
protected:
// Type of a member function that generates inline code for a native function.
typedef void (HOptimizedGraphBuilder::*InlineFunctionGenerator)
(CallRuntime* call);
// Forward declarations for inner scope classes.
class SubgraphScope;
static const InlineFunctionGenerator kInlineFunctionGenerators[];
static const int kMaxCallPolymorphism = 4;
static const int kMaxLoadPolymorphism = 4;
static const int kMaxStorePolymorphism = 4;
// Even in the 'unlimited' case we have to have some limit in order not to
// overflow the stack.
static const int kUnlimitedMaxInlinedSourceSize = 100000;
static const int kUnlimitedMaxInlinedNodes = 10000;
static const int kUnlimitedMaxInlinedNodesCumulative = 10000;
// Maximum depth and total number of elements and properties for literal
// graphs to be considered for fast deep-copying.
static const int kMaxFastLiteralDepth = 3;
static const int kMaxFastLiteralProperties = 8;
// Simple accessors.
void set_function_state(FunctionState* state) { function_state_ = state; }
AstContext* ast_context() const { return ast_context_; }
void set_ast_context(AstContext* context) { ast_context_ = context; }
// Accessors forwarded to the function state.
CompilationInfo* current_info() const {
return function_state()->compilation_info();
}
AstContext* call_context() const {
return function_state()->call_context();
}
HBasicBlock* function_return() const {
return function_state()->function_return();
}
TestContext* inlined_test_context() const {
return function_state()->test_context();
}
void ClearInlinedTestContext() {
function_state()->ClearInlinedTestContext();
}
StrictMode function_strict_mode() {
return function_state()->compilation_info()->strict_mode();
}
// Generators for inline runtime functions.
#define INLINE_FUNCTION_GENERATOR_DECLARATION(Name, argc, ressize) \
void Generate##Name(CallRuntime* call);
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_DECLARATION)
INLINE_OPTIMIZED_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_DECLARATION)
#undef INLINE_FUNCTION_GENERATOR_DECLARATION
void VisitDelete(UnaryOperation* expr);
void VisitVoid(UnaryOperation* expr);
void VisitTypeof(UnaryOperation* expr);
void VisitNot(UnaryOperation* expr);
void VisitComma(BinaryOperation* expr);
void VisitLogicalExpression(BinaryOperation* expr);
void VisitArithmeticExpression(BinaryOperation* expr);
bool PreProcessOsrEntry(IterationStatement* statement);
void VisitLoopBody(IterationStatement* stmt,
HBasicBlock* loop_entry);
// Create a back edge in the flow graph. body_exit is the predecessor
// block and loop_entry is the successor block. loop_successor is the
// block where control flow exits the loop normally (e.g., via failure of
// the condition) and break_block is the block where control flow breaks
// from the loop. All blocks except loop_entry can be NULL. The return
// value is the new successor block which is the join of loop_successor
// and break_block, or NULL.
HBasicBlock* CreateLoop(IterationStatement* statement,
HBasicBlock* loop_entry,
HBasicBlock* body_exit,
HBasicBlock* loop_successor,
HBasicBlock* break_block);
// Build a loop entry
HBasicBlock* BuildLoopEntry();
// Builds a loop entry respectful of OSR requirements
HBasicBlock* BuildLoopEntry(IterationStatement* statement);
HBasicBlock* JoinContinue(IterationStatement* statement,
HBasicBlock* exit_block,
HBasicBlock* continue_block);
HValue* Top() const { return environment()->Top(); }
void Drop(int n) { environment()->Drop(n); }
void Bind(Variable* var, HValue* value) { environment()->Bind(var, value); }
bool IsEligibleForEnvironmentLivenessAnalysis(Variable* var,
int index,
HValue* value,
HEnvironment* env) {
if (!FLAG_analyze_environment_liveness) return false;
// |this| and |arguments| are always live; zapping parameters isn't
// safe because function.arguments can inspect them at any time.
return !var->is_this() &&
!var->is_arguments() &&
!value->IsArgumentsObject() &&
env->is_local_index(index);
}
void BindIfLive(Variable* var, HValue* value) {
HEnvironment* env = environment();
int index = env->IndexFor(var);
env->Bind(index, value);
if (IsEligibleForEnvironmentLivenessAnalysis(var, index, value, env)) {
HEnvironmentMarker* bind =
Add<HEnvironmentMarker>(HEnvironmentMarker::BIND, index);
USE(bind);
#ifdef DEBUG
bind->set_closure(env->closure());
#endif
}
}
HValue* LookupAndMakeLive(Variable* var) {
HEnvironment* env = environment();
int index = env->IndexFor(var);
HValue* value = env->Lookup(index);
if (IsEligibleForEnvironmentLivenessAnalysis(var, index, value, env)) {
HEnvironmentMarker* lookup =
Add<HEnvironmentMarker>(HEnvironmentMarker::LOOKUP, index);
USE(lookup);
#ifdef DEBUG
lookup->set_closure(env->closure());
#endif
}
return value;
}
// The value of the arguments object is allowed in some but not most value
// contexts. (It's allowed in all effect contexts and disallowed in all
// test contexts.)
void VisitForValue(Expression* expr,
ArgumentsAllowedFlag flag = ARGUMENTS_NOT_ALLOWED);
void VisitForTypeOf(Expression* expr);
void VisitForEffect(Expression* expr);
void VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block);
// Visit a list of expressions from left to right, each in a value context.
void VisitExpressions(ZoneList<Expression*>* exprs);
// Remove the arguments from the bailout environment and emit instructions
// to push them as outgoing parameters.
template <class Instruction> HInstruction* PreProcessCall(Instruction* call);
void PushArgumentsFromEnvironment(int count);
void SetUpScope(Scope* scope);
virtual void VisitStatements(ZoneList<Statement*>* statements) V8_OVERRIDE;
#define DECLARE_VISIT(type) virtual void Visit##type(type* node) V8_OVERRIDE;
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
Type* ToType(Handle<Map> map) { return IC::MapToType<Type>(map, zone()); }
private:
// Helpers for flow graph construction.
enum GlobalPropertyAccess {
kUseCell,
kUseGeneric
};
GlobalPropertyAccess LookupGlobalProperty(Variable* var,
LookupResult* lookup,
PropertyAccessType access_type);
void EnsureArgumentsArePushedForAccess();
bool TryArgumentsAccess(Property* expr);
// Try to optimize fun.apply(receiver, arguments) pattern.
bool TryCallApply(Call* expr);
bool TryHandleArrayCall(Call* expr, HValue* function);
bool TryHandleArrayCallNew(CallNew* expr, HValue* function);
void BuildArrayCall(Expression* expr, int arguments_count, HValue* function,
Handle<AllocationSite> cell);
enum ArrayIndexOfMode { kFirstIndexOf, kLastIndexOf };
HValue* BuildArrayIndexOf(HValue* receiver,
HValue* search_element,
ElementsKind kind,
ArrayIndexOfMode mode);
HValue* ImplicitReceiverFor(HValue* function,
Handle<JSFunction> target);
int InliningAstSize(Handle<JSFunction> target);
bool TryInline(Handle<JSFunction> target,
int arguments_count,
HValue* implicit_return_value,
BailoutId ast_id,
BailoutId return_id,
InliningKind inlining_kind,
HSourcePosition position);
bool TryInlineCall(Call* expr);
bool TryInlineConstruct(CallNew* expr, HValue* implicit_return_value);
bool TryInlineGetter(Handle<JSFunction> getter,
Handle<Map> receiver_map,
BailoutId ast_id,
BailoutId return_id);
bool TryInlineSetter(Handle<JSFunction> setter,
Handle<Map> receiver_map,
BailoutId id,
BailoutId assignment_id,
HValue* implicit_return_value);
bool TryInlineApply(Handle<JSFunction> function,
Call* expr,
int arguments_count);
bool TryInlineBuiltinMethodCall(Call* expr,
HValue* receiver,
Handle<Map> receiver_map);
bool TryInlineBuiltinFunctionCall(Call* expr);
enum ApiCallType {
kCallApiFunction,
kCallApiMethod,
kCallApiGetter,
kCallApiSetter
};
bool TryInlineApiMethodCall(Call* expr,
HValue* receiver,
SmallMapList* receiver_types);
bool TryInlineApiFunctionCall(Call* expr, HValue* receiver);
bool TryInlineApiGetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id);
bool TryInlineApiSetter(Handle<JSFunction> function,
Handle<Map> receiver_map,
BailoutId ast_id);
bool TryInlineApiCall(Handle<JSFunction> function,
HValue* receiver,
SmallMapList* receiver_maps,
int argc,
BailoutId ast_id,
ApiCallType call_type);
// If --trace-inlining, print a line of the inlining trace. Inlining
// succeeded if the reason string is NULL and failed if there is a
// non-NULL reason string.
void TraceInline(Handle<JSFunction> target,
Handle<JSFunction> caller,
const char* failure_reason);
void HandleGlobalVariableAssignment(Variable* var,
HValue* value,
BailoutId ast_id);
void HandlePropertyAssignment(Assignment* expr);
void HandleCompoundAssignment(Assignment* expr);
void HandlePolymorphicNamedFieldAccess(PropertyAccessType access_type,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* value,
SmallMapList* types,
Handle<String> name);
HValue* BuildAllocateExternalElements(
ExternalArrayType array_type,
bool is_zero_byte_offset,
HValue* buffer, HValue* byte_offset, HValue* length);
HValue* BuildAllocateFixedTypedArray(
ExternalArrayType array_type, size_t element_size,
ElementsKind fixed_elements_kind,
HValue* byte_length, HValue* length);
Handle<JSFunction> array_function() {
return handle(isolate()->native_context()->array_function());
}
bool IsCallArrayInlineable(int argument_count, Handle<AllocationSite> site);
void BuildInlinedCallArray(Expression* expression, int argument_count,
Handle<AllocationSite> site);
class PropertyAccessInfo {
public:
PropertyAccessInfo(HOptimizedGraphBuilder* builder,
PropertyAccessType access_type,
Type* type,
Handle<String> name)
: lookup_(builder->isolate()),
builder_(builder),
access_type_(access_type),
type_(type),
name_(name),
field_type_(HType::Tagged()),
access_(HObjectAccess::ForMap()) { }
// Checkes whether this PropertyAccessInfo can be handled as a monomorphic
// load named. It additionally fills in the fields necessary to generate the
// lookup code.
bool CanAccessMonomorphic();
// Checks whether all types behave uniform when loading name. If all maps
// behave the same, a single monomorphic load instruction can be emitted,
// guarded by a single map-checks instruction that whether the receiver is
// an instance of any of the types.
// This method skips the first type in types, assuming that this
// PropertyAccessInfo is built for types->first().
bool CanAccessAsMonomorphic(SmallMapList* types);
Handle<Map> map() {
if (type_->Is(Type::Number())) {
Context* context = current_info()->closure()->context();
context = context->native_context();
return handle(context->number_function()->initial_map());
} else if (type_->Is(Type::Boolean())) {
Context* context = current_info()->closure()->context();
context = context->native_context();
return handle(context->boolean_function()->initial_map());
} else if (type_->Is(Type::String())) {
Context* context = current_info()->closure()->context();
context = context->native_context();
return handle(context->string_function()->initial_map());
} else {
return type_->AsClass()->Map();
}
}
Type* type() const { return type_; }
Handle<String> name() const { return name_; }
bool IsJSObjectFieldAccessor() {
int offset; // unused
return Accessors::IsJSObjectFieldAccessor<Type>(type_, name_, &offset);
}
bool GetJSObjectFieldAccess(HObjectAccess* access) {
int offset;
if (Accessors::IsJSObjectFieldAccessor<Type>(type_, name_, &offset)) {
if (type_->Is(Type::String())) {
ASSERT(String::Equals(isolate()->factory()->length_string(), name_));
*access = HObjectAccess::ForStringLength();
} else if (type_->Is(Type::Array())) {
ASSERT(String::Equals(isolate()->factory()->length_string(), name_));
*access = HObjectAccess::ForArrayLength(map()->elements_kind());
} else {
*access = HObjectAccess::ForMapAndOffset(map(), offset);
}
return true;
}
return false;
}
bool has_holder() { return !holder_.is_null(); }
bool IsLoad() const { return access_type_ == LOAD; }
LookupResult* lookup() { return &lookup_; }
Handle<JSObject> holder() { return holder_; }
Handle<JSFunction> accessor() { return accessor_; }
Handle<Object> constant() { return constant_; }
Handle<Map> transition() { return handle(lookup_.GetTransitionTarget()); }
SmallMapList* field_maps() { return &field_maps_; }
HType field_type() const { return field_type_; }
HObjectAccess access() { return access_; }
private:
Type* ToType(Handle<Map> map) { return builder_->ToType(map); }
Zone* zone() { return builder_->zone(); }
Isolate* isolate() { return lookup_.isolate(); }
CompilationInfo* top_info() { return builder_->top_info(); }
CompilationInfo* current_info() { return builder_->current_info(); }
bool LoadResult(Handle<Map> map);
void LoadFieldMaps(Handle<Map> map);
bool LookupDescriptor();
bool LookupInPrototypes();
bool IsCompatible(PropertyAccessInfo* other);
void GeneralizeRepresentation(Representation r) {
access_ = access_.WithRepresentation(
access_.representation().generalize(r));
}
LookupResult lookup_;
HOptimizedGraphBuilder* builder_;
PropertyAccessType access_type_;
Type* type_;
Handle<String> name_;
Handle<JSObject> holder_;
Handle<JSFunction> accessor_;
Handle<JSObject> api_holder_;
Handle<Object> constant_;
SmallMapList field_maps_;
HType field_type_;
HObjectAccess access_;
};
HInstruction* BuildMonomorphicAccess(PropertyAccessInfo* info,
HValue* object,
HValue* checked_object,
HValue* value,
BailoutId ast_id,
BailoutId return_id,
bool can_inline_accessor = true);
HInstruction* BuildNamedAccess(PropertyAccessType access,
BailoutId ast_id,
BailoutId reutrn_id,
Expression* expr,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized = false);
void HandlePolymorphicCallNamed(Call* expr,
HValue* receiver,
SmallMapList* types,
Handle<String> name);
void HandleLiteralCompareTypeof(CompareOperation* expr,
Expression* sub_expr,
Handle<String> check);
void HandleLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil);
enum PushBeforeSimulateBehavior {
PUSH_BEFORE_SIMULATE,
NO_PUSH_BEFORE_SIMULATE
};
HControlInstruction* BuildCompareInstruction(
Token::Value op,
HValue* left,
HValue* right,
Type* left_type,
Type* right_type,
Type* combined_type,
HSourcePosition left_position,
HSourcePosition right_position,
PushBeforeSimulateBehavior push_sim_result,
BailoutId bailout_id);
HInstruction* BuildStringCharCodeAt(HValue* string,
HValue* index);
HValue* BuildBinaryOperation(
BinaryOperation* expr,
HValue* left,
HValue* right,
PushBeforeSimulateBehavior push_sim_result);
HInstruction* BuildIncrement(bool returns_original_input,
CountOperation* expr);
HInstruction* BuildKeyedGeneric(PropertyAccessType access_type,
HValue* object,
HValue* key,
HValue* value);
HInstruction* TryBuildConsolidatedElementLoad(HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps);
LoadKeyedHoleMode BuildKeyedHoleMode(Handle<Map> map);
HInstruction* BuildMonomorphicElementAccess(HValue* object,
HValue* key,
HValue* val,
HValue* dependency,
Handle<Map> map,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode);
HValue* HandlePolymorphicElementAccess(HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps,
PropertyAccessType access_type,
KeyedAccessStoreMode store_mode,
bool* has_side_effects);
HValue* HandleKeyedElementAccess(HValue* obj,
HValue* key,
HValue* val,
Expression* expr,
PropertyAccessType access_type,
bool* has_side_effects);
HInstruction* BuildNamedGeneric(PropertyAccessType access,
HValue* object,
Handle<String> name,
HValue* value,
bool is_uninitialized = false);
HCheckMaps* AddCheckMap(HValue* object, Handle<Map> map);
void BuildLoad(Property* property,
BailoutId ast_id);
void PushLoad(Property* property,
HValue* object,
HValue* key);
void BuildStoreForEffect(Expression* expression,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
HValue* object,
HValue* key,
HValue* value);
void BuildStore(Expression* expression,
Property* prop,
BailoutId ast_id,
BailoutId return_id,
bool is_uninitialized = false);
HInstruction* BuildLoadNamedField(PropertyAccessInfo* info,
HValue* checked_object);
HInstruction* BuildStoreNamedField(PropertyAccessInfo* info,
HValue* checked_object,
HValue* value);
HValue* BuildContextChainWalk(Variable* var);
HInstruction* BuildThisFunction();
HInstruction* BuildFastLiteral(Handle<JSObject> boilerplate_object,
AllocationSiteUsageContext* site_context);
void BuildEmitObjectHeader(Handle<JSObject> boilerplate_object,
HInstruction* object);
void BuildInitElementsInObjectHeader(Handle<JSObject> boilerplate_object,
HInstruction* object,
HInstruction* object_elements);
void BuildEmitInObjectProperties(Handle<JSObject> boilerplate_object,
HInstruction* object,
AllocationSiteUsageContext* site_context,
PretenureFlag pretenure_flag);
void BuildEmitElements(Handle<JSObject> boilerplate_object,
Handle<FixedArrayBase> elements,
HValue* object_elements,
AllocationSiteUsageContext* site_context);
void BuildEmitFixedDoubleArray(Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements);
void BuildEmitFixedArray(Handle<FixedArrayBase> elements,
ElementsKind kind,
HValue* object_elements,
AllocationSiteUsageContext* site_context);
void AddCheckPrototypeMaps(Handle<JSObject> holder,
Handle<Map> receiver_map);
HInstruction* NewPlainFunctionCall(HValue* fun,
int argument_count,
bool pass_argument_count);
HInstruction* NewArgumentAdaptorCall(HValue* fun, HValue* context,
int argument_count,
HValue* expected_param_count);
HInstruction* BuildCallConstantFunction(Handle<JSFunction> target,
int argument_count);
// The translation state of the currently-being-translated function.
FunctionState* function_state_;
// The base of the function state stack.
FunctionState initial_function_state_;
// Expression context of the currently visited subexpression. NULL when
// visiting statements.
AstContext* ast_context_;
// A stack of breakable statements entered.
BreakAndContinueScope* break_scope_;
int inlined_count_;
ZoneList<Handle<Object> > globals_;
bool inline_bailout_;
HOsrBuilder* osr_;
friend class FunctionState; // Pushes and pops the state stack.
friend class AstContext; // Pushes and pops the AST context stack.
friend class KeyedLoadFastElementStub;
friend class HOsrBuilder;
DISALLOW_COPY_AND_ASSIGN(HOptimizedGraphBuilder);
};
Zone* AstContext::zone() const { return owner_->zone(); }
class HStatistics V8_FINAL: public Malloced {
public:
HStatistics()
: times_(5),
names_(5),
sizes_(5),
total_size_(0),
source_size_(0) { }
void Initialize(CompilationInfo* info);
void Print();
void SaveTiming(const char* name, TimeDelta time, unsigned size);
void IncrementFullCodeGen(TimeDelta full_code_gen) {
full_code_gen_ += full_code_gen;
}
void IncrementSubtotals(TimeDelta create_graph,
TimeDelta optimize_graph,
TimeDelta generate_code) {
create_graph_ += create_graph;
optimize_graph_ += optimize_graph;
generate_code_ += generate_code;
}
private:
List<TimeDelta> times_;
List<const char*> names_;
List<unsigned> sizes_;
TimeDelta create_graph_;
TimeDelta optimize_graph_;
TimeDelta generate_code_;
unsigned total_size_;
TimeDelta full_code_gen_;
double source_size_;
};
class HPhase : public CompilationPhase {
public:
HPhase(const char* name, HGraph* graph)
: CompilationPhase(name, graph->info()),
graph_(graph) { }
~HPhase();
protected:
HGraph* graph() const { return graph_; }
private:
HGraph* graph_;
DISALLOW_COPY_AND_ASSIGN(HPhase);
};
class HTracer V8_FINAL : public Malloced {
public:
explicit HTracer(int isolate_id)
: trace_(&string_allocator_), indent_(0) {
if (FLAG_trace_hydrogen_file == NULL) {
SNPrintF(filename_,
"hydrogen-%d-%d.cfg",
OS::GetCurrentProcessId(),
isolate_id);
} else {
StrNCpy(filename_, FLAG_trace_hydrogen_file, filename_.length());
}
WriteChars(filename_.start(), "", 0, false);
}
void TraceCompilation(CompilationInfo* info);
void TraceHydrogen(const char* name, HGraph* graph);
void TraceLithium(const char* name, LChunk* chunk);
void TraceLiveRanges(const char* name, LAllocator* allocator);
private:
class Tag V8_FINAL BASE_EMBEDDED {
public:
Tag(HTracer* tracer, const char* name) {
name_ = name;
tracer_ = tracer;
tracer->PrintIndent();
tracer->trace_.Add("begin_%s\n", name);
tracer->indent_++;
}
~Tag() {
tracer_->indent_--;
tracer_->PrintIndent();
tracer_->trace_.Add("end_%s\n", name_);
ASSERT(tracer_->indent_ >= 0);
tracer_->FlushToFile();
}
private:
HTracer* tracer_;
const char* name_;
};
void TraceLiveRange(LiveRange* range, const char* type, Zone* zone);
void Trace(const char* name, HGraph* graph, LChunk* chunk);
void FlushToFile();
void PrintEmptyProperty(const char* name) {
PrintIndent();
trace_.Add("%s\n", name);
}
void PrintStringProperty(const char* name, const char* value) {
PrintIndent();
trace_.Add("%s \"%s\"\n", name, value);
}
void PrintLongProperty(const char* name, int64_t value) {
PrintIndent();
trace_.Add("%s %d000\n", name, static_cast<int>(value / 1000));
}
void PrintBlockProperty(const char* name, int block_id) {
PrintIndent();
trace_.Add("%s \"B%d\"\n", name, block_id);
}
void PrintIntProperty(const char* name, int value) {
PrintIndent();
trace_.Add("%s %d\n", name, value);
}
void PrintIndent() {
for (int i = 0; i < indent_; i++) {
trace_.Add(" ");
}
}
EmbeddedVector<char, 64> filename_;
HeapStringAllocator string_allocator_;
StringStream trace_;
int indent_;
};
class NoObservableSideEffectsScope V8_FINAL {
public:
explicit NoObservableSideEffectsScope(HGraphBuilder* builder) :
builder_(builder) {
builder_->graph()->IncrementInNoSideEffectsScope();
}
~NoObservableSideEffectsScope() {
builder_->graph()->DecrementInNoSideEffectsScope();
}
private:
HGraphBuilder* builder_;
};
} } // namespace v8::internal
#endif // V8_HYDROGEN_H_