// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/accessors.h"
#include "src/api.h"
#include "src/base/once.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/compilation-cache.h"
#include "src/conversions.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/deoptimizer.h"
#include "src/global-handles.h"
#include "src/heap-profiler.h"
#include "src/incremental-marking.h"
#include "src/isolate-inl.h"
#include "src/mark-compact.h"
#include "src/natives.h"
#include "src/objects-visiting.h"
#include "src/objects-visiting-inl.h"
#include "src/runtime-profiler.h"
#include "src/scopeinfo.h"
#include "src/snapshot.h"
#include "src/store-buffer.h"
#include "src/utils/random-number-generator.h"
#include "src/utils.h"
#include "src/v8threads.h"
#include "src/vm-state-inl.h"
#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
#include "src/regexp-macro-assembler.h"
#include "src/arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
#include "src/regexp-macro-assembler.h"
#include "src/mips/regexp-macro-assembler-mips.h"
#endif
namespace v8 {
namespace internal {
Heap::Heap()
: amount_of_external_allocated_memory_(0),
amount_of_external_allocated_memory_at_last_global_gc_(0),
isolate_(NULL),
code_range_size_(0),
// semispace_size_ should be a power of 2 and old_generation_size_ should be
// a multiple of Page::kPageSize.
reserved_semispace_size_(8 * (kPointerSize / 4) * MB),
max_semi_space_size_(8 * (kPointerSize / 4) * MB),
initial_semispace_size_(Page::kPageSize),
max_old_generation_size_(700ul * (kPointerSize / 4) * MB),
max_executable_size_(256ul * (kPointerSize / 4) * MB),
// Variables set based on semispace_size_ and old_generation_size_ in
// ConfigureHeap.
// Will be 4 * reserved_semispace_size_ to ensure that young
// generation can be aligned to its size.
maximum_committed_(0),
survived_since_last_expansion_(0),
sweep_generation_(0),
always_allocate_scope_depth_(0),
linear_allocation_scope_depth_(0),
contexts_disposed_(0),
global_ic_age_(0),
flush_monomorphic_ics_(false),
scan_on_scavenge_pages_(0),
new_space_(this),
old_pointer_space_(NULL),
old_data_space_(NULL),
code_space_(NULL),
map_space_(NULL),
cell_space_(NULL),
property_cell_space_(NULL),
lo_space_(NULL),
gc_state_(NOT_IN_GC),
gc_post_processing_depth_(0),
ms_count_(0),
gc_count_(0),
remembered_unmapped_pages_index_(0),
unflattened_strings_length_(0),
#ifdef DEBUG
allocation_timeout_(0),
#endif // DEBUG
old_generation_allocation_limit_(kMinimumOldGenerationAllocationLimit),
old_gen_exhausted_(false),
inline_allocation_disabled_(false),
store_buffer_rebuilder_(store_buffer()),
hidden_string_(NULL),
gc_safe_size_of_old_object_(NULL),
total_regexp_code_generated_(0),
tracer_(NULL),
high_survival_rate_period_length_(0),
promoted_objects_size_(0),
promotion_rate_(0),
semi_space_copied_object_size_(0),
semi_space_copied_rate_(0),
maximum_size_scavenges_(0),
max_gc_pause_(0.0),
total_gc_time_ms_(0.0),
max_alive_after_gc_(0),
min_in_mutator_(kMaxInt),
alive_after_last_gc_(0),
last_gc_end_timestamp_(0.0),
marking_time_(0.0),
sweeping_time_(0.0),
mark_compact_collector_(this),
store_buffer_(this),
marking_(this),
incremental_marking_(this),
number_idle_notifications_(0),
last_idle_notification_gc_count_(0),
last_idle_notification_gc_count_init_(false),
mark_sweeps_since_idle_round_started_(0),
gc_count_at_last_idle_gc_(0),
scavenges_since_last_idle_round_(kIdleScavengeThreshold),
full_codegen_bytes_generated_(0),
crankshaft_codegen_bytes_generated_(0),
gcs_since_last_deopt_(0),
#ifdef VERIFY_HEAP
no_weak_object_verification_scope_depth_(0),
#endif
allocation_sites_scratchpad_length_(0),
promotion_queue_(this),
configured_(false),
external_string_table_(this),
chunks_queued_for_free_(NULL),
gc_callbacks_depth_(0) {
// Allow build-time customization of the max semispace size. Building
// V8 with snapshots and a non-default max semispace size is much
// easier if you can define it as part of the build environment.
#if defined(V8_MAX_SEMISPACE_SIZE)
max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
#endif
// Ensure old_generation_size_ is a multiple of kPageSize.
ASSERT(MB >= Page::kPageSize);
memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
set_native_contexts_list(NULL);
set_array_buffers_list(Smi::FromInt(0));
set_allocation_sites_list(Smi::FromInt(0));
set_encountered_weak_collections(Smi::FromInt(0));
// Put a dummy entry in the remembered pages so we can find the list the
// minidump even if there are no real unmapped pages.
RememberUnmappedPage(NULL, false);
ClearObjectStats(true);
}
intptr_t Heap::Capacity() {
if (!HasBeenSetUp()) return 0;
return new_space_.Capacity() +
old_pointer_space_->Capacity() +
old_data_space_->Capacity() +
code_space_->Capacity() +
map_space_->Capacity() +
cell_space_->Capacity() +
property_cell_space_->Capacity();
}
intptr_t Heap::CommittedMemory() {
if (!HasBeenSetUp()) return 0;
return new_space_.CommittedMemory() +
old_pointer_space_->CommittedMemory() +
old_data_space_->CommittedMemory() +
code_space_->CommittedMemory() +
map_space_->CommittedMemory() +
cell_space_->CommittedMemory() +
property_cell_space_->CommittedMemory() +
lo_space_->Size();
}
size_t Heap::CommittedPhysicalMemory() {
if (!HasBeenSetUp()) return 0;
return new_space_.CommittedPhysicalMemory() +
old_pointer_space_->CommittedPhysicalMemory() +
old_data_space_->CommittedPhysicalMemory() +
code_space_->CommittedPhysicalMemory() +
map_space_->CommittedPhysicalMemory() +
cell_space_->CommittedPhysicalMemory() +
property_cell_space_->CommittedPhysicalMemory() +
lo_space_->CommittedPhysicalMemory();
}
intptr_t Heap::CommittedMemoryExecutable() {
if (!HasBeenSetUp()) return 0;
return isolate()->memory_allocator()->SizeExecutable();
}
void Heap::UpdateMaximumCommitted() {
if (!HasBeenSetUp()) return;
intptr_t current_committed_memory = CommittedMemory();
if (current_committed_memory > maximum_committed_) {
maximum_committed_ = current_committed_memory;
}
}
intptr_t Heap::Available() {
if (!HasBeenSetUp()) return 0;
return new_space_.Available() +
old_pointer_space_->Available() +
old_data_space_->Available() +
code_space_->Available() +
map_space_->Available() +
cell_space_->Available() +
property_cell_space_->Available();
}
bool Heap::HasBeenSetUp() {
return old_pointer_space_ != NULL &&
old_data_space_ != NULL &&
code_space_ != NULL &&
map_space_ != NULL &&
cell_space_ != NULL &&
property_cell_space_ != NULL &&
lo_space_ != NULL;
}
int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
if (IntrusiveMarking::IsMarked(object)) {
return IntrusiveMarking::SizeOfMarkedObject(object);
}
return object->SizeFromMap(object->map());
}
GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space,
const char** reason) {
// Is global GC requested?
if (space != NEW_SPACE) {
isolate_->counters()->gc_compactor_caused_by_request()->Increment();
*reason = "GC in old space requested";
return MARK_COMPACTOR;
}
if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) {
*reason = "GC in old space forced by flags";
return MARK_COMPACTOR;
}
// Is enough data promoted to justify a global GC?
if (OldGenerationAllocationLimitReached()) {
isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
*reason = "promotion limit reached";
return MARK_COMPACTOR;
}
// Have allocation in OLD and LO failed?
if (old_gen_exhausted_) {
isolate_->counters()->
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
*reason = "old generations exhausted";
return MARK_COMPACTOR;
}
// Is there enough space left in OLD to guarantee that a scavenge can
// succeed?
//
// Note that MemoryAllocator->MaxAvailable() undercounts the memory available
// for object promotion. It counts only the bytes that the memory
// allocator has not yet allocated from the OS and assigned to any space,
// and does not count available bytes already in the old space or code
// space. Undercounting is safe---we may get an unrequested full GC when
// a scavenge would have succeeded.
if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
isolate_->counters()->
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
*reason = "scavenge might not succeed";
return MARK_COMPACTOR;
}
// Default
*reason = NULL;
return SCAVENGER;
}
// TODO(1238405): Combine the infrastructure for --heap-stats and
// --log-gc to avoid the complicated preprocessor and flag testing.
void Heap::ReportStatisticsBeforeGC() {
// Heap::ReportHeapStatistics will also log NewSpace statistics when
// compiled --log-gc is set. The following logic is used to avoid
// double logging.
#ifdef DEBUG
if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
if (FLAG_heap_stats) {
ReportHeapStatistics("Before GC");
} else if (FLAG_log_gc) {
new_space_.ReportStatistics();
}
if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
#else
if (FLAG_log_gc) {
new_space_.CollectStatistics();
new_space_.ReportStatistics();
new_space_.ClearHistograms();
}
#endif // DEBUG
}
void Heap::PrintShortHeapStatistics() {
if (!FLAG_trace_gc_verbose) return;
PrintPID("Memory allocator, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB\n",
isolate_->memory_allocator()->Size() / KB,
isolate_->memory_allocator()->Available() / KB);
PrintPID("New space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
new_space_.Size() / KB,
new_space_.Available() / KB,
new_space_.CommittedMemory() / KB);
PrintPID("Old pointers, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
old_pointer_space_->SizeOfObjects() / KB,
old_pointer_space_->Available() / KB,
old_pointer_space_->CommittedMemory() / KB);
PrintPID("Old data space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
old_data_space_->SizeOfObjects() / KB,
old_data_space_->Available() / KB,
old_data_space_->CommittedMemory() / KB);
PrintPID("Code space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
code_space_->SizeOfObjects() / KB,
code_space_->Available() / KB,
code_space_->CommittedMemory() / KB);
PrintPID("Map space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
map_space_->SizeOfObjects() / KB,
map_space_->Available() / KB,
map_space_->CommittedMemory() / KB);
PrintPID("Cell space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
cell_space_->SizeOfObjects() / KB,
cell_space_->Available() / KB,
cell_space_->CommittedMemory() / KB);
PrintPID("PropertyCell space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
property_cell_space_->SizeOfObjects() / KB,
property_cell_space_->Available() / KB,
property_cell_space_->CommittedMemory() / KB);
PrintPID("Large object space, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
lo_space_->SizeOfObjects() / KB,
lo_space_->Available() / KB,
lo_space_->CommittedMemory() / KB);
PrintPID("All spaces, used: %6" V8_PTR_PREFIX "d KB"
", available: %6" V8_PTR_PREFIX "d KB"
", committed: %6" V8_PTR_PREFIX "d KB\n",
this->SizeOfObjects() / KB,
this->Available() / KB,
this->CommittedMemory() / KB);
PrintPID("External memory reported: %6" V8_PTR_PREFIX "d KB\n",
static_cast<intptr_t>(amount_of_external_allocated_memory_ / KB));
PrintPID("Total time spent in GC : %.1f ms\n", total_gc_time_ms_);
}
// TODO(1238405): Combine the infrastructure for --heap-stats and
// --log-gc to avoid the complicated preprocessor and flag testing.
void Heap::ReportStatisticsAfterGC() {
// Similar to the before GC, we use some complicated logic to ensure that
// NewSpace statistics are logged exactly once when --log-gc is turned on.
#if defined(DEBUG)
if (FLAG_heap_stats) {
new_space_.CollectStatistics();
ReportHeapStatistics("After GC");
} else if (FLAG_log_gc) {
new_space_.ReportStatistics();
}
#else
if (FLAG_log_gc) new_space_.ReportStatistics();
#endif // DEBUG
}
void Heap::GarbageCollectionPrologue() {
{ AllowHeapAllocation for_the_first_part_of_prologue;
ClearJSFunctionResultCaches();
gc_count_++;
unflattened_strings_length_ = 0;
if (FLAG_flush_code && FLAG_flush_code_incrementally) {
mark_compact_collector()->EnableCodeFlushing(true);
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
// Reset GC statistics.
promoted_objects_size_ = 0;
semi_space_copied_object_size_ = 0;
UpdateMaximumCommitted();
#ifdef DEBUG
ASSERT(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC);
if (FLAG_gc_verbose) Print();
ReportStatisticsBeforeGC();
#endif // DEBUG
store_buffer()->GCPrologue();
if (isolate()->concurrent_osr_enabled()) {
isolate()->optimizing_compiler_thread()->AgeBufferedOsrJobs();
}
if (new_space_.IsAtMaximumCapacity()) {
maximum_size_scavenges_++;
} else {
maximum_size_scavenges_ = 0;
}
CheckNewSpaceExpansionCriteria();
}
intptr_t Heap::SizeOfObjects() {
intptr_t total = 0;
AllSpaces spaces(this);
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
total += space->SizeOfObjects();
}
return total;
}
void Heap::ClearAllICsByKind(Code::Kind kind) {
HeapObjectIterator it(code_space());
for (Object* object = it.Next(); object != NULL; object = it.Next()) {
Code* code = Code::cast(object);
Code::Kind current_kind = code->kind();
if (current_kind == Code::FUNCTION ||
current_kind == Code::OPTIMIZED_FUNCTION) {
code->ClearInlineCaches(kind);
}
}
}
void Heap::RepairFreeListsAfterBoot() {
PagedSpaces spaces(this);
for (PagedSpace* space = spaces.next();
space != NULL;
space = spaces.next()) {
space->RepairFreeListsAfterBoot();
}
}
void Heap::ProcessPretenuringFeedback() {
if (FLAG_allocation_site_pretenuring) {
int tenure_decisions = 0;
int dont_tenure_decisions = 0;
int allocation_mementos_found = 0;
int allocation_sites = 0;
int active_allocation_sites = 0;
// If the scratchpad overflowed, we have to iterate over the allocation
// sites list.
// TODO(hpayer): We iterate over the whole list of allocation sites when
// we grew to the maximum semi-space size to deopt maybe tenured
// allocation sites. We could hold the maybe tenured allocation sites
// in a seperate data structure if this is a performance problem.
bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites();
bool use_scratchpad =
allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize &&
!deopt_maybe_tenured;
int i = 0;
Object* list_element = allocation_sites_list();
bool trigger_deoptimization = false;
bool maximum_size_scavenge = MaximumSizeScavenge();
while (use_scratchpad ?
i < allocation_sites_scratchpad_length_ :
list_element->IsAllocationSite()) {
AllocationSite* site = use_scratchpad ?
AllocationSite::cast(allocation_sites_scratchpad()->get(i)) :
AllocationSite::cast(list_element);
allocation_mementos_found += site->memento_found_count();
if (site->memento_found_count() > 0) {
active_allocation_sites++;
if (site->DigestPretenuringFeedback(maximum_size_scavenge)) {
trigger_deoptimization = true;
}
if (site->GetPretenureMode() == TENURED) {
tenure_decisions++;
} else {
dont_tenure_decisions++;
}
allocation_sites++;
}
if (deopt_maybe_tenured && site->IsMaybeTenure()) {
site->set_deopt_dependent_code(true);
trigger_deoptimization = true;
}
if (use_scratchpad) {
i++;
} else {
list_element = site->weak_next();
}
}
if (trigger_deoptimization) {
isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
}
FlushAllocationSitesScratchpad();
if (FLAG_trace_pretenuring_statistics &&
(allocation_mementos_found > 0 ||
tenure_decisions > 0 ||
dont_tenure_decisions > 0)) {
PrintF("GC: (mode, #visited allocation sites, #active allocation sites, "
"#mementos, #tenure decisions, #donttenure decisions) "
"(%s, %d, %d, %d, %d, %d)\n",
use_scratchpad ? "use scratchpad" : "use list",
allocation_sites,
active_allocation_sites,
allocation_mementos_found,
tenure_decisions,
dont_tenure_decisions);
}
}
}
void Heap::DeoptMarkedAllocationSites() {
// TODO(hpayer): If iterating over the allocation sites list becomes a
// performance issue, use a cache heap data structure instead (similar to the
// allocation sites scratchpad).
Object* list_element = allocation_sites_list();
while (list_element->IsAllocationSite()) {
AllocationSite* site = AllocationSite::cast(list_element);
if (site->deopt_dependent_code()) {
site->dependent_code()->MarkCodeForDeoptimization(
isolate_,
DependentCode::kAllocationSiteTenuringChangedGroup);
site->set_deopt_dependent_code(false);
}
list_element = site->weak_next();
}
Deoptimizer::DeoptimizeMarkedCode(isolate_);
}
void Heap::GarbageCollectionEpilogue() {
store_buffer()->GCEpilogue();
// In release mode, we only zap the from space under heap verification.
if (Heap::ShouldZapGarbage()) {
ZapFromSpace();
}
// Process pretenuring feedback and update allocation sites.
ProcessPretenuringFeedback();
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
AllowHeapAllocation for_the_rest_of_the_epilogue;
#ifdef DEBUG
if (FLAG_print_global_handles) isolate_->global_handles()->Print();
if (FLAG_print_handles) PrintHandles();
if (FLAG_gc_verbose) Print();
if (FLAG_code_stats) ReportCodeStatistics("After GC");
#endif
if (FLAG_deopt_every_n_garbage_collections > 0) {
// TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that
// the topmost optimized frame can be deoptimized safely, because it
// might not have a lazy bailout point right after its current PC.
if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) {
Deoptimizer::DeoptimizeAll(isolate());
gcs_since_last_deopt_ = 0;
}
}
UpdateMaximumCommitted();
isolate_->counters()->alive_after_last_gc()->Set(
static_cast<int>(SizeOfObjects()));
isolate_->counters()->string_table_capacity()->Set(
string_table()->Capacity());
isolate_->counters()->number_of_symbols()->Set(
string_table()->NumberOfElements());
if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) {
isolate_->counters()->codegen_fraction_crankshaft()->AddSample(
static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) /
(crankshaft_codegen_bytes_generated_
+ full_codegen_bytes_generated_)));
}
if (CommittedMemory() > 0) {
isolate_->counters()->external_fragmentation_total()->AddSample(
static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_fraction_new_space()->
AddSample(static_cast<int>(
(new_space()->CommittedMemory() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_fraction_old_pointer_space()->AddSample(
static_cast<int>(
(old_pointer_space()->CommittedMemory() * 100.0) /
CommittedMemory()));
isolate_->counters()->heap_fraction_old_data_space()->AddSample(
static_cast<int>(
(old_data_space()->CommittedMemory() * 100.0) /
CommittedMemory()));
isolate_->counters()->heap_fraction_code_space()->
AddSample(static_cast<int>(
(code_space()->CommittedMemory() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_fraction_map_space()->AddSample(
static_cast<int>(
(map_space()->CommittedMemory() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_fraction_cell_space()->AddSample(
static_cast<int>(
(cell_space()->CommittedMemory() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_fraction_property_cell_space()->
AddSample(static_cast<int>(
(property_cell_space()->CommittedMemory() * 100.0) /
CommittedMemory()));
isolate_->counters()->heap_fraction_lo_space()->
AddSample(static_cast<int>(
(lo_space()->CommittedMemory() * 100.0) / CommittedMemory()));
isolate_->counters()->heap_sample_total_committed()->AddSample(
static_cast<int>(CommittedMemory() / KB));
isolate_->counters()->heap_sample_total_used()->AddSample(
static_cast<int>(SizeOfObjects() / KB));
isolate_->counters()->heap_sample_map_space_committed()->AddSample(
static_cast<int>(map_space()->CommittedMemory() / KB));
isolate_->counters()->heap_sample_cell_space_committed()->AddSample(
static_cast<int>(cell_space()->CommittedMemory() / KB));
isolate_->counters()->
heap_sample_property_cell_space_committed()->
AddSample(static_cast<int>(
property_cell_space()->CommittedMemory() / KB));
isolate_->counters()->heap_sample_code_space_committed()->AddSample(
static_cast<int>(code_space()->CommittedMemory() / KB));
isolate_->counters()->heap_sample_maximum_committed()->AddSample(
static_cast<int>(MaximumCommittedMemory() / KB));
}
#define UPDATE_COUNTERS_FOR_SPACE(space) \
isolate_->counters()->space##_bytes_available()->Set( \
static_cast<int>(space()->Available())); \
isolate_->counters()->space##_bytes_committed()->Set( \
static_cast<int>(space()->CommittedMemory())); \
isolate_->counters()->space##_bytes_used()->Set( \
static_cast<int>(space()->SizeOfObjects()));
#define UPDATE_FRAGMENTATION_FOR_SPACE(space) \
if (space()->CommittedMemory() > 0) { \
isolate_->counters()->external_fragmentation_##space()->AddSample( \
static_cast<int>(100 - \
(space()->SizeOfObjects() * 100.0) / space()->CommittedMemory())); \
}
#define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \
UPDATE_COUNTERS_FOR_SPACE(space) \
UPDATE_FRAGMENTATION_FOR_SPACE(space)
UPDATE_COUNTERS_FOR_SPACE(new_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_pointer_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_data_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(cell_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(property_cell_space)
UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space)
#undef UPDATE_COUNTERS_FOR_SPACE
#undef UPDATE_FRAGMENTATION_FOR_SPACE
#undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE
#ifdef DEBUG
ReportStatisticsAfterGC();
#endif // DEBUG
isolate_->debug()->AfterGarbageCollection();
// Remember the last top pointer so that we can later find out
// whether we allocated in new space since the last GC.
new_space_top_after_last_gc_ = new_space()->top();
}
void Heap::CollectAllGarbage(int flags,
const char* gc_reason,
const v8::GCCallbackFlags gc_callback_flags) {
// Since we are ignoring the return value, the exact choice of space does
// not matter, so long as we do not specify NEW_SPACE, which would not
// cause a full GC.
mark_compact_collector_.SetFlags(flags);
CollectGarbage(OLD_POINTER_SPACE, gc_reason, gc_callback_flags);
mark_compact_collector_.SetFlags(kNoGCFlags);
}
void Heap::CollectAllAvailableGarbage(const char* gc_reason) {
// Since we are ignoring the return value, the exact choice of space does
// not matter, so long as we do not specify NEW_SPACE, which would not
// cause a full GC.
// Major GC would invoke weak handle callbacks on weakly reachable
// handles, but won't collect weakly reachable objects until next
// major GC. Therefore if we collect aggressively and weak handle callback
// has been invoked, we rerun major GC to release objects which become
// garbage.
// Note: as weak callbacks can execute arbitrary code, we cannot
// hope that eventually there will be no weak callbacks invocations.
// Therefore stop recollecting after several attempts.
if (isolate()->concurrent_recompilation_enabled()) {
// The optimizing compiler may be unnecessarily holding on to memory.
DisallowHeapAllocation no_recursive_gc;
isolate()->optimizing_compiler_thread()->Flush();
}
mark_compact_collector()->SetFlags(kMakeHeapIterableMask |
kReduceMemoryFootprintMask);
isolate_->compilation_cache()->Clear();
const int kMaxNumberOfAttempts = 7;
const int kMinNumberOfAttempts = 2;
for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL) &&
attempt + 1 >= kMinNumberOfAttempts) {
break;
}
}
mark_compact_collector()->SetFlags(kNoGCFlags);
new_space_.Shrink();
UncommitFromSpace();
incremental_marking()->UncommitMarkingDeque();
}
void Heap::EnsureFillerObjectAtTop() {
// There may be an allocation memento behind every object in new space.
// If we evacuate a not full new space or if we are on the last page of
// the new space, then there may be uninitialized memory behind the top
// pointer of the new space page. We store a filler object there to
// identify the unused space.
Address from_top = new_space_.top();
Address from_limit = new_space_.limit();
if (from_top < from_limit) {
int remaining_in_page = static_cast<int>(from_limit - from_top);
CreateFillerObjectAt(from_top, remaining_in_page);
}
}
bool Heap::CollectGarbage(GarbageCollector collector,
const char* gc_reason,
const char* collector_reason,
const v8::GCCallbackFlags gc_callback_flags) {
// The VM is in the GC state until exiting this function.
VMState<GC> state(isolate_);
#ifdef DEBUG
// Reset the allocation timeout to the GC interval, but make sure to
// allow at least a few allocations after a collection. The reason
// for this is that we have a lot of allocation sequences and we
// assume that a garbage collection will allow the subsequent
// allocation attempts to go through.
allocation_timeout_ = Max(6, FLAG_gc_interval);
#endif
EnsureFillerObjectAtTop();
if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
if (FLAG_trace_incremental_marking) {
PrintF("[IncrementalMarking] Scavenge during marking.\n");
}
}
if (collector == MARK_COMPACTOR &&
!mark_compact_collector()->abort_incremental_marking() &&
!incremental_marking()->IsStopped() &&
!incremental_marking()->should_hurry() &&
FLAG_incremental_marking_steps) {
// Make progress in incremental marking.
const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB;
incremental_marking()->Step(kStepSizeWhenDelayedByScavenge,
IncrementalMarking::NO_GC_VIA_STACK_GUARD);
if (!incremental_marking()->IsComplete() && !FLAG_gc_global) {
if (FLAG_trace_incremental_marking) {
PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
}
collector = SCAVENGER;
collector_reason = "incremental marking delaying mark-sweep";
}
}
bool next_gc_likely_to_collect_more = false;
{ GCTracer tracer(this, gc_reason, collector_reason);
ASSERT(AllowHeapAllocation::IsAllowed());
DisallowHeapAllocation no_allocation_during_gc;
GarbageCollectionPrologue();
// The GC count was incremented in the prologue. Tell the tracer about
// it.
tracer.set_gc_count(gc_count_);
// Tell the tracer which collector we've selected.
tracer.set_collector(collector);
{
HistogramTimerScope histogram_timer_scope(
(collector == SCAVENGER) ? isolate_->counters()->gc_scavenger()
: isolate_->counters()->gc_compactor());
next_gc_likely_to_collect_more =
PerformGarbageCollection(collector, &tracer, gc_callback_flags);
}
GarbageCollectionEpilogue();
}
// Start incremental marking for the next cycle. The heap snapshot
// generator needs incremental marking to stay off after it aborted.
if (!mark_compact_collector()->abort_incremental_marking() &&
incremental_marking()->IsStopped() &&
incremental_marking()->WorthActivating() &&
NextGCIsLikelyToBeFull()) {
incremental_marking()->Start();
}
return next_gc_likely_to_collect_more;
}
int Heap::NotifyContextDisposed() {
if (isolate()->concurrent_recompilation_enabled()) {
// Flush the queued recompilation tasks.
isolate()->optimizing_compiler_thread()->Flush();
}
flush_monomorphic_ics_ = true;
AgeInlineCaches();
return ++contexts_disposed_;
}
void Heap::MoveElements(FixedArray* array,
int dst_index,
int src_index,
int len) {
if (len == 0) return;
ASSERT(array->map() != fixed_cow_array_map());
Object** dst_objects = array->data_start() + dst_index;
MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize);
if (!InNewSpace(array)) {
for (int i = 0; i < len; i++) {
// TODO(hpayer): check store buffer for entries
if (InNewSpace(dst_objects[i])) {
RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i));
}
}
}
incremental_marking()->RecordWrites(array);
}
#ifdef VERIFY_HEAP
// Helper class for verifying the string table.
class StringTableVerifier : public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) {
// Visit all HeapObject pointers in [start, end).
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject()) {
// Check that the string is actually internalized.
CHECK((*p)->IsTheHole() || (*p)->IsUndefined() ||
(*p)->IsInternalizedString());
}
}
}
};
static void VerifyStringTable(Heap* heap) {
StringTableVerifier verifier;
heap->string_table()->IterateElements(&verifier);
}
#endif // VERIFY_HEAP
static bool AbortIncrementalMarkingAndCollectGarbage(
Heap* heap,
AllocationSpace space,
const char* gc_reason = NULL) {
heap->mark_compact_collector()->SetFlags(Heap::kAbortIncrementalMarkingMask);
bool result = heap->CollectGarbage(space, gc_reason);
heap->mark_compact_collector()->SetFlags(Heap::kNoGCFlags);
return result;
}
void Heap::ReserveSpace(int *sizes, Address *locations_out) {
bool gc_performed = true;
int counter = 0;
static const int kThreshold = 20;
while (gc_performed && counter++ < kThreshold) {
gc_performed = false;
ASSERT(NEW_SPACE == FIRST_PAGED_SPACE - 1);
for (int space = NEW_SPACE; space <= LAST_PAGED_SPACE; space++) {
if (sizes[space] != 0) {
AllocationResult allocation;
if (space == NEW_SPACE) {
allocation = new_space()->AllocateRaw(sizes[space]);
} else {
allocation = paged_space(space)->AllocateRaw(sizes[space]);
}
FreeListNode* node;
if (!allocation.To(&node)) {
if (space == NEW_SPACE) {
Heap::CollectGarbage(NEW_SPACE,
"failed to reserve space in the new space");
} else {
AbortIncrementalMarkingAndCollectGarbage(
this,
static_cast<AllocationSpace>(space),
"failed to reserve space in paged space");
}
gc_performed = true;
break;
} else {
// Mark with a free list node, in case we have a GC before
// deserializing.
node->set_size(this, sizes[space]);
locations_out[space] = node->address();
}
}
}
}
if (gc_performed) {
// Failed to reserve the space after several attempts.
V8::FatalProcessOutOfMemory("Heap::ReserveSpace");
}
}
void Heap::EnsureFromSpaceIsCommitted() {
if (new_space_.CommitFromSpaceIfNeeded()) return;
// Committing memory to from space failed.
// Memory is exhausted and we will die.
V8::FatalProcessOutOfMemory("Committing semi space failed.");
}
void Heap::ClearJSFunctionResultCaches() {
if (isolate_->bootstrapper()->IsActive()) return;
Object* context = native_contexts_list();
while (!context->IsUndefined()) {
// Get the caches for this context. GC can happen when the context
// is not fully initialized, so the caches can be undefined.
Object* caches_or_undefined =
Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
if (!caches_or_undefined->IsUndefined()) {
FixedArray* caches = FixedArray::cast(caches_or_undefined);
// Clear the caches:
int length = caches->length();
for (int i = 0; i < length; i++) {
JSFunctionResultCache::cast(caches->get(i))->Clear();
}
}
// Get the next context:
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Heap::ClearNormalizedMapCaches() {
if (isolate_->bootstrapper()->IsActive() &&
!incremental_marking()->IsMarking()) {
return;
}
Object* context = native_contexts_list();
while (!context->IsUndefined()) {
// GC can happen when the context is not fully initialized,
// so the cache can be undefined.
Object* cache =
Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
if (!cache->IsUndefined()) {
NormalizedMapCache::cast(cache)->Clear();
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Heap::UpdateSurvivalStatistics(int start_new_space_size) {
if (start_new_space_size == 0) return;
promotion_rate_ =
(static_cast<double>(promoted_objects_size_) /
static_cast<double>(start_new_space_size) * 100);
semi_space_copied_rate_ =
(static_cast<double>(semi_space_copied_object_size_) /
static_cast<double>(start_new_space_size) * 100);
double survival_rate = promotion_rate_ + semi_space_copied_rate_;
if (survival_rate > kYoungSurvivalRateHighThreshold) {
high_survival_rate_period_length_++;
} else {
high_survival_rate_period_length_ = 0;
}
}
bool Heap::PerformGarbageCollection(
GarbageCollector collector,
GCTracer* tracer,
const v8::GCCallbackFlags gc_callback_flags) {
int freed_global_handles = 0;
if (collector != SCAVENGER) {
PROFILE(isolate_, CodeMovingGCEvent());
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
VerifyStringTable(this);
}
#endif
GCType gc_type =
collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
{ GCCallbacksScope scope(this);
if (scope.CheckReenter()) {
AllowHeapAllocation allow_allocation;
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
VMState<EXTERNAL> state(isolate_);
HandleScope handle_scope(isolate_);
CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags);
}
}
EnsureFromSpaceIsCommitted();
int start_new_space_size = Heap::new_space()->SizeAsInt();
if (IsHighSurvivalRate()) {
// We speed up the incremental marker if it is running so that it
// does not fall behind the rate of promotion, which would cause a
// constantly growing old space.
incremental_marking()->NotifyOfHighPromotionRate();
}
if (collector == MARK_COMPACTOR) {
// Perform mark-sweep with optional compaction.
MarkCompact(tracer);
sweep_generation_++;
// Temporarily set the limit for case when PostGarbageCollectionProcessing
// allocates and triggers GC. The real limit is set at after
// PostGarbageCollectionProcessing.
old_generation_allocation_limit_ =
OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(), 0);
old_gen_exhausted_ = false;
} else {
tracer_ = tracer;
Scavenge();
tracer_ = NULL;
}
UpdateSurvivalStatistics(start_new_space_size);
isolate_->counters()->objs_since_last_young()->Set(0);
// Callbacks that fire after this point might trigger nested GCs and
// restart incremental marking, the assertion can't be moved down.
ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped());
gc_post_processing_depth_++;
{ AllowHeapAllocation allow_allocation;
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
freed_global_handles =
isolate_->global_handles()->PostGarbageCollectionProcessing(
collector, tracer);
}
gc_post_processing_depth_--;
isolate_->eternal_handles()->PostGarbageCollectionProcessing(this);
// Update relocatables.
Relocatable::PostGarbageCollectionProcessing(isolate_);
if (collector == MARK_COMPACTOR) {
// Register the amount of external allocated memory.
amount_of_external_allocated_memory_at_last_global_gc_ =
amount_of_external_allocated_memory_;
old_generation_allocation_limit_ =
OldGenerationAllocationLimit(PromotedSpaceSizeOfObjects(),
freed_global_handles);
}
{ GCCallbacksScope scope(this);
if (scope.CheckReenter()) {
AllowHeapAllocation allow_allocation;
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
VMState<EXTERNAL> state(isolate_);
HandleScope handle_scope(isolate_);
CallGCEpilogueCallbacks(gc_type, gc_callback_flags);
}
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
VerifyStringTable(this);
}
#endif
return freed_global_handles > 0;
}
void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) {
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
if (gc_type & gc_prologue_callbacks_[i].gc_type) {
if (!gc_prologue_callbacks_[i].pass_isolate_) {
v8::GCPrologueCallback callback =
reinterpret_cast<v8::GCPrologueCallback>(
gc_prologue_callbacks_[i].callback);
callback(gc_type, flags);
} else {
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
gc_prologue_callbacks_[i].callback(isolate, gc_type, flags);
}
}
}
}
void Heap::CallGCEpilogueCallbacks(GCType gc_type,
GCCallbackFlags gc_callback_flags) {
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
if (!gc_epilogue_callbacks_[i].pass_isolate_) {
v8::GCPrologueCallback callback =
reinterpret_cast<v8::GCPrologueCallback>(
gc_epilogue_callbacks_[i].callback);
callback(gc_type, gc_callback_flags);
} else {
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate());
gc_epilogue_callbacks_[i].callback(
isolate, gc_type, gc_callback_flags);
}
}
}
}
void Heap::MarkCompact(GCTracer* tracer) {
gc_state_ = MARK_COMPACT;
LOG(isolate_, ResourceEvent("markcompact", "begin"));
uint64_t size_of_objects_before_gc = SizeOfObjects();
mark_compact_collector_.Prepare(tracer);
ms_count_++;
tracer->set_full_gc_count(ms_count_);
MarkCompactPrologue();
mark_compact_collector_.CollectGarbage();
LOG(isolate_, ResourceEvent("markcompact", "end"));
gc_state_ = NOT_IN_GC;
isolate_->counters()->objs_since_last_full()->Set(0);
flush_monomorphic_ics_ = false;
if (FLAG_allocation_site_pretenuring) {
EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc);
}
}
void Heap::MarkCompactPrologue() {
// At any old GC clear the keyed lookup cache to enable collection of unused
// maps.
isolate_->keyed_lookup_cache()->Clear();
isolate_->context_slot_cache()->Clear();
isolate_->descriptor_lookup_cache()->Clear();
RegExpResultsCache::Clear(string_split_cache());
RegExpResultsCache::Clear(regexp_multiple_cache());
isolate_->compilation_cache()->MarkCompactPrologue();
CompletelyClearInstanceofCache();
FlushNumberStringCache();
if (FLAG_cleanup_code_caches_at_gc) {
polymorphic_code_cache()->set_cache(undefined_value());
}
ClearNormalizedMapCaches();
}
// Helper class for copying HeapObjects
class ScavengeVisitor: public ObjectVisitor {
public:
explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
void VisitPointer(Object** p) { ScavengePointer(p); }
void VisitPointers(Object** start, Object** end) {
// Copy all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) ScavengePointer(p);
}
private:
void ScavengePointer(Object** p) {
Object* object = *p;
if (!heap_->InNewSpace(object)) return;
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
reinterpret_cast<HeapObject*>(object));
}
Heap* heap_;
};
#ifdef VERIFY_HEAP
// Visitor class to verify pointers in code or data space do not point into
// new space.
class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
public:
explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {}
void VisitPointers(Object** start, Object**end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsHeapObject()) {
CHECK(!heap_->InNewSpace(HeapObject::cast(*current)));
}
}
}
private:
Heap* heap_;
};
static void VerifyNonPointerSpacePointers(Heap* heap) {
// Verify that there are no pointers to new space in spaces where we
// do not expect them.
VerifyNonPointerSpacePointersVisitor v(heap);
HeapObjectIterator code_it(heap->code_space());
for (HeapObject* object = code_it.Next();
object != NULL; object = code_it.Next())
object->Iterate(&v);
// The old data space was normally swept conservatively so that the iterator
// doesn't work, so we normally skip the next bit.
if (!heap->old_data_space()->was_swept_conservatively()) {
HeapObjectIterator data_it(heap->old_data_space());
for (HeapObject* object = data_it.Next();
object != NULL; object = data_it.Next())
object->Iterate(&v);
}
}
#endif // VERIFY_HEAP
void Heap::CheckNewSpaceExpansionCriteria() {
if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
survived_since_last_expansion_ > new_space_.Capacity()) {
// Grow the size of new space if there is room to grow, enough data
// has survived scavenge since the last expansion and we are not in
// high promotion mode.
new_space_.Grow();
survived_since_last_expansion_ = 0;
}
}
static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
return heap->InNewSpace(*p) &&
!HeapObject::cast(*p)->map_word().IsForwardingAddress();
}
void Heap::ScavengeStoreBufferCallback(
Heap* heap,
MemoryChunk* page,
StoreBufferEvent event) {
heap->store_buffer_rebuilder_.Callback(page, event);
}
void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
if (event == kStoreBufferStartScanningPagesEvent) {
start_of_current_page_ = NULL;
current_page_ = NULL;
} else if (event == kStoreBufferScanningPageEvent) {
if (current_page_ != NULL) {
// If this page already overflowed the store buffer during this iteration.
if (current_page_->scan_on_scavenge()) {
// Then we should wipe out the entries that have been added for it.
store_buffer_->SetTop(start_of_current_page_);
} else if (store_buffer_->Top() - start_of_current_page_ >=
(store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
// Did we find too many pointers in the previous page? The heuristic is
// that no page can take more then 1/5 the remaining slots in the store
// buffer.
current_page_->set_scan_on_scavenge(true);
store_buffer_->SetTop(start_of_current_page_);
} else {
// In this case the page we scanned took a reasonable number of slots in
// the store buffer. It has now been rehabilitated and is no longer
// marked scan_on_scavenge.
ASSERT(!current_page_->scan_on_scavenge());
}
}
start_of_current_page_ = store_buffer_->Top();
current_page_ = page;
} else if (event == kStoreBufferFullEvent) {
// The current page overflowed the store buffer again. Wipe out its entries
// in the store buffer and mark it scan-on-scavenge again. This may happen
// several times while scanning.
if (current_page_ == NULL) {
// Store Buffer overflowed while scanning promoted objects. These are not
// in any particular page, though they are likely to be clustered by the
// allocation routines.
store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2);
} else {
// Store Buffer overflowed while scanning a particular old space page for
// pointers to new space.
ASSERT(current_page_ == page);
ASSERT(page != NULL);
current_page_->set_scan_on_scavenge(true);
ASSERT(start_of_current_page_ != store_buffer_->Top());
store_buffer_->SetTop(start_of_current_page_);
}
} else {
UNREACHABLE();
}
}
void PromotionQueue::Initialize() {
// Assumes that a NewSpacePage exactly fits a number of promotion queue
// entries (where each is a pair of intptr_t). This allows us to simplify
// the test fpr when to switch pages.
ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
== 0);
limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
front_ = rear_ =
reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
emergency_stack_ = NULL;
guard_ = false;
}
void PromotionQueue::RelocateQueueHead() {
ASSERT(emergency_stack_ == NULL);
Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
intptr_t* head_start = rear_;
intptr_t* head_end =
Min(front_, reinterpret_cast<intptr_t*>(p->area_end()));
int entries_count =
static_cast<int>(head_end - head_start) / kEntrySizeInWords;
emergency_stack_ = new List<Entry>(2 * entries_count);
while (head_start != head_end) {
int size = static_cast<int>(*(head_start++));
HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
emergency_stack_->Add(Entry(obj, size));
}
rear_ = head_end;
}
class ScavengeWeakObjectRetainer : public WeakObjectRetainer {
public:
explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) { }
virtual Object* RetainAs(Object* object) {
if (!heap_->InFromSpace(object)) {
return object;
}
MapWord map_word = HeapObject::cast(object)->map_word();
if (map_word.IsForwardingAddress()) {
return map_word.ToForwardingAddress();
}
return NULL;
}
private:
Heap* heap_;
};
void Heap::Scavenge() {
RelocationLock relocation_lock(this);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this);
#endif
gc_state_ = SCAVENGE;
// Implements Cheney's copying algorithm
LOG(isolate_, ResourceEvent("scavenge", "begin"));
// Clear descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Used for updating survived_since_last_expansion_ at function end.
intptr_t survived_watermark = PromotedSpaceSizeOfObjects();
SelectScavengingVisitorsTable();
incremental_marking()->PrepareForScavenge();
// Flip the semispaces. After flipping, to space is empty, from space has
// live objects.
new_space_.Flip();
new_space_.ResetAllocationInfo();
// We need to sweep newly copied objects which can be either in the
// to space or promoted to the old generation. For to-space
// objects, we treat the bottom of the to space as a queue. Newly
// copied and unswept objects lie between a 'front' mark and the
// allocation pointer.
//
// Promoted objects can go into various old-generation spaces, and
// can be allocated internally in the spaces (from the free list).
// We treat the top of the to space as a queue of addresses of
// promoted objects. The addresses of newly promoted and unswept
// objects lie between a 'front' mark and a 'rear' mark that is
// updated as a side effect of promoting an object.
//
// There is guaranteed to be enough room at the top of the to space
// for the addresses of promoted objects: every object promoted
// frees up its size in bytes from the top of the new space, and
// objects are at least one pointer in size.
Address new_space_front = new_space_.ToSpaceStart();
promotion_queue_.Initialize();
#ifdef DEBUG
store_buffer()->Clean();
#endif
ScavengeVisitor scavenge_visitor(this);
// Copy roots.
IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
// Copy objects reachable from the old generation.
{
StoreBufferRebuildScope scope(this,
store_buffer(),
&ScavengeStoreBufferCallback);
store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
}
// Copy objects reachable from simple cells by scavenging cell values
// directly.
HeapObjectIterator cell_iterator(cell_space_);
for (HeapObject* heap_object = cell_iterator.Next();
heap_object != NULL;
heap_object = cell_iterator.Next()) {
if (heap_object->IsCell()) {
Cell* cell = Cell::cast(heap_object);
Address value_address = cell->ValueAddress();
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
}
}
// Copy objects reachable from global property cells by scavenging global
// property cell values directly.
HeapObjectIterator js_global_property_cell_iterator(property_cell_space_);
for (HeapObject* heap_object = js_global_property_cell_iterator.Next();
heap_object != NULL;
heap_object = js_global_property_cell_iterator.Next()) {
if (heap_object->IsPropertyCell()) {
PropertyCell* cell = PropertyCell::cast(heap_object);
Address value_address = cell->ValueAddress();
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
Address type_address = cell->TypeAddress();
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(type_address));
}
}
// Copy objects reachable from the encountered weak collections list.
scavenge_visitor.VisitPointer(&encountered_weak_collections_);
// Copy objects reachable from the code flushing candidates list.
MarkCompactCollector* collector = mark_compact_collector();
if (collector->is_code_flushing_enabled()) {
collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor);
}
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
while (isolate()->global_handles()->IterateObjectGroups(
&scavenge_visitor, &IsUnscavengedHeapObject)) {
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
}
isolate()->global_handles()->RemoveObjectGroups();
isolate()->global_handles()->RemoveImplicitRefGroups();
isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
&IsUnscavengedHeapObject);
isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
&scavenge_visitor);
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
UpdateNewSpaceReferencesInExternalStringTable(
&UpdateNewSpaceReferenceInExternalStringTableEntry);
promotion_queue_.Destroy();
incremental_marking()->UpdateMarkingDequeAfterScavenge();
ScavengeWeakObjectRetainer weak_object_retainer(this);
ProcessWeakReferences(&weak_object_retainer);
ASSERT(new_space_front == new_space_.top());
// Set age mark.
new_space_.set_age_mark(new_space_.top());
new_space_.LowerInlineAllocationLimit(
new_space_.inline_allocation_limit_step());
// Update how much has survived scavenge.
IncrementYoungSurvivorsCounter(static_cast<int>(
(PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size()));
LOG(isolate_, ResourceEvent("scavenge", "end"));
gc_state_ = NOT_IN_GC;
scavenges_since_last_idle_round_++;
}
String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
Object** p) {
MapWord first_word = HeapObject::cast(*p)->map_word();
if (!first_word.IsForwardingAddress()) {
// Unreachable external string can be finalized.
heap->FinalizeExternalString(String::cast(*p));
return NULL;
}
// String is still reachable.
return String::cast(first_word.ToForwardingAddress());
}
void Heap::UpdateNewSpaceReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func) {
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
external_string_table_.Verify();
}
#endif
if (external_string_table_.new_space_strings_.is_empty()) return;
Object** start = &external_string_table_.new_space_strings_[0];
Object** end = start + external_string_table_.new_space_strings_.length();
Object** last = start;
for (Object** p = start; p < end; ++p) {
ASSERT(InFromSpace(*p));
String* target = updater_func(this, p);
if (target == NULL) continue;
ASSERT(target->IsExternalString());
if (InNewSpace(target)) {
// String is still in new space. Update the table entry.
*last = target;
++last;
} else {
// String got promoted. Move it to the old string list.
external_string_table_.AddOldString(target);
}
}
ASSERT(last <= end);
external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
}
void Heap::UpdateReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func) {
// Update old space string references.
if (external_string_table_.old_space_strings_.length() > 0) {
Object** start = &external_string_table_.old_space_strings_[0];
Object** end = start + external_string_table_.old_space_strings_.length();
for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
}
UpdateNewSpaceReferencesInExternalStringTable(updater_func);
}
void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
ProcessArrayBuffers(retainer);
ProcessNativeContexts(retainer);
// TODO(mvstanton): AllocationSites only need to be processed during
// MARK_COMPACT, as they live in old space. Verify and address.
ProcessAllocationSites(retainer);
}
void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) {
Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer);
// Update the head of the list of contexts.
set_native_contexts_list(head);
}
void Heap::ProcessArrayBuffers(WeakObjectRetainer* retainer) {
Object* array_buffer_obj =
VisitWeakList<JSArrayBuffer>(this, array_buffers_list(), retainer);
set_array_buffers_list(array_buffer_obj);
}
void Heap::TearDownArrayBuffers() {
Object* undefined = undefined_value();
for (Object* o = array_buffers_list(); o != undefined;) {
JSArrayBuffer* buffer = JSArrayBuffer::cast(o);
Runtime::FreeArrayBuffer(isolate(), buffer);
o = buffer->weak_next();
}
set_array_buffers_list(undefined);
}
void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) {
Object* allocation_site_obj =
VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer);
set_allocation_sites_list(allocation_site_obj);
}
void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) {
DisallowHeapAllocation no_allocation_scope;
Object* cur = allocation_sites_list();
bool marked = false;
while (cur->IsAllocationSite()) {
AllocationSite* casted = AllocationSite::cast(cur);
if (casted->GetPretenureMode() == flag) {
casted->ResetPretenureDecision();
casted->set_deopt_dependent_code(true);
marked = true;
}
cur = casted->weak_next();
}
if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites();
}
void Heap::EvaluateOldSpaceLocalPretenuring(
uint64_t size_of_objects_before_gc) {
uint64_t size_of_objects_after_gc = SizeOfObjects();
double old_generation_survival_rate =
(static_cast<double>(size_of_objects_after_gc) * 100) /
static_cast<double>(size_of_objects_before_gc);
if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) {
// Too many objects died in the old generation, pretenuring of wrong
// allocation sites may be the cause for that. We have to deopt all
// dependent code registered in the allocation sites to re-evaluate
// our pretenuring decisions.
ResetAllAllocationSitesDependentCode(TENURED);
if (FLAG_trace_pretenuring) {
PrintF("Deopt all allocation sites dependent code due to low survival "
"rate in the old generation %f\n", old_generation_survival_rate);
}
}
}
void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) {
DisallowHeapAllocation no_allocation;
// All external strings are listed in the external string table.
class ExternalStringTableVisitorAdapter : public ObjectVisitor {
public:
explicit ExternalStringTableVisitorAdapter(
v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {}
virtual void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
ASSERT((*p)->IsExternalString());
visitor_->VisitExternalString(Utils::ToLocal(
Handle<String>(String::cast(*p))));
}
}
private:
v8::ExternalResourceVisitor* visitor_;
} external_string_table_visitor(visitor);
external_string_table_.Iterate(&external_string_table_visitor);
}
class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
public:
static inline void VisitPointer(Heap* heap, Object** p) {
Object* object = *p;
if (!heap->InNewSpace(object)) return;
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
reinterpret_cast<HeapObject*>(object));
}
};
Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
Address new_space_front) {
do {
SemiSpace::AssertValidRange(new_space_front, new_space_.top());
// The addresses new_space_front and new_space_.top() define a
// queue of unprocessed copied objects. Process them until the
// queue is empty.
while (new_space_front != new_space_.top()) {
if (!NewSpacePage::IsAtEnd(new_space_front)) {
HeapObject* object = HeapObject::FromAddress(new_space_front);
new_space_front +=
NewSpaceScavenger::IterateBody(object->map(), object);
} else {
new_space_front =
NewSpacePage::FromLimit(new_space_front)->next_page()->area_start();
}
}
// Promote and process all the to-be-promoted objects.
{
StoreBufferRebuildScope scope(this,
store_buffer(),
&ScavengeStoreBufferCallback);
while (!promotion_queue()->is_empty()) {
HeapObject* target;
int size;
promotion_queue()->remove(&target, &size);
// Promoted object might be already partially visited
// during old space pointer iteration. Thus we search specificly
// for pointers to from semispace instead of looking for pointers
// to new space.
ASSERT(!target->IsMap());
IterateAndMarkPointersToFromSpace(target->address(),
target->address() + size,
&ScavengeObject);
}
}
// Take another spin if there are now unswept objects in new space
// (there are currently no more unswept promoted objects).
} while (new_space_front != new_space_.top());
return new_space_front;
}
STATIC_ASSERT((FixedDoubleArray::kHeaderSize &
kDoubleAlignmentMask) == 0); // NOLINT
STATIC_ASSERT((ConstantPoolArray::kFirstEntryOffset &
kDoubleAlignmentMask) == 0); // NOLINT
STATIC_ASSERT((ConstantPoolArray::kExtendedFirstOffset &
kDoubleAlignmentMask) == 0); // NOLINT
INLINE(static HeapObject* EnsureDoubleAligned(Heap* heap,
HeapObject* object,
int size));
static HeapObject* EnsureDoubleAligned(Heap* heap,
HeapObject* object,
int size) {
if ((OffsetFrom(object->address()) & kDoubleAlignmentMask) != 0) {
heap->CreateFillerObjectAt(object->address(), kPointerSize);
return HeapObject::FromAddress(object->address() + kPointerSize);
} else {
heap->CreateFillerObjectAt(object->address() + size - kPointerSize,
kPointerSize);
return object;
}
}
enum LoggingAndProfiling {
LOGGING_AND_PROFILING_ENABLED,
LOGGING_AND_PROFILING_DISABLED
};
enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
template<MarksHandling marks_handling,
LoggingAndProfiling logging_and_profiling_mode>
class ScavengingVisitor : public StaticVisitorBase {
public:
static void Initialize() {
table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString);
table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
table_.Register(kVisitByteArray, &EvacuateByteArray);
table_.Register(kVisitFixedArray, &EvacuateFixedArray);
table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray);
table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array);
table_.Register(kVisitNativeContext,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<Context::kSize>);
table_.Register(kVisitConsString,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<ConsString::kSize>);
table_.Register(kVisitSlicedString,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<SlicedString::kSize>);
table_.Register(kVisitSymbol,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<Symbol::kSize>);
table_.Register(kVisitSharedFunctionInfo,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<SharedFunctionInfo::kSize>);
table_.Register(kVisitJSWeakCollection,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
table_.Register(kVisitJSArrayBuffer,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
table_.Register(kVisitJSTypedArray,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
table_.Register(kVisitJSDataView,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
table_.Register(kVisitJSRegExp,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
if (marks_handling == IGNORE_MARKS) {
table_.Register(kVisitJSFunction,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<JSFunction::kSize>);
} else {
table_.Register(kVisitJSFunction, &EvacuateJSFunction);
}
table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
kVisitDataObject,
kVisitDataObjectGeneric>();
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
kVisitJSObject,
kVisitJSObjectGeneric>();
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
kVisitStruct,
kVisitStructGeneric>();
}
static VisitorDispatchTable<ScavengingCallback>* GetTable() {
return &table_;
}
private:
enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
bool should_record = false;
#ifdef DEBUG
should_record = FLAG_heap_stats;
#endif
should_record = should_record || FLAG_log_gc;
if (should_record) {
if (heap->new_space()->Contains(obj)) {
heap->new_space()->RecordAllocation(obj);
} else {
heap->new_space()->RecordPromotion(obj);
}
}
}
// Helper function used by CopyObject to copy a source object to an
// allocated target object and update the forwarding pointer in the source
// object. Returns the target object.
INLINE(static void MigrateObject(Heap* heap,
HeapObject* source,
HeapObject* target,
int size)) {
// Copy the content of source to target.
heap->CopyBlock(target->address(), source->address(), size);
// Set the forwarding address.
source->set_map_word(MapWord::FromForwardingAddress(target));
if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
// Update NewSpace stats if necessary.
RecordCopiedObject(heap, target);
Isolate* isolate = heap->isolate();
HeapProfiler* heap_profiler = isolate->heap_profiler();
if (heap_profiler->is_tracking_object_moves()) {
heap_profiler->ObjectMoveEvent(source->address(), target->address(),
size);
}
if (isolate->logger()->is_logging_code_events() ||
isolate->cpu_profiler()->is_profiling()) {
if (target->IsSharedFunctionInfo()) {
PROFILE(isolate, SharedFunctionInfoMoveEvent(
source->address(), target->address()));
}
}
}
if (marks_handling == TRANSFER_MARKS) {
if (Marking::TransferColor(source, target)) {
MemoryChunk::IncrementLiveBytesFromGC(target->address(), size);
}
}
}
template<ObjectContents object_contents, int alignment>
static inline void EvacuateObject(Map* map,
HeapObject** slot,
HeapObject* object,
int object_size) {
SLOW_ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
SLOW_ASSERT(object->Size() == object_size);
int allocation_size = object_size;
if (alignment != kObjectAlignment) {
ASSERT(alignment == kDoubleAlignment);
allocation_size += kPointerSize;
}
Heap* heap = map->GetHeap();
if (heap->ShouldBePromoted(object->address(), object_size)) {
AllocationResult allocation;
if (object_contents == DATA_OBJECT) {
ASSERT(heap->AllowedToBeMigrated(object, OLD_DATA_SPACE));
allocation = heap->old_data_space()->AllocateRaw(allocation_size);
} else {
ASSERT(heap->AllowedToBeMigrated(object, OLD_POINTER_SPACE));
allocation = heap->old_pointer_space()->AllocateRaw(allocation_size);
}
HeapObject* target = NULL; // Initialization to please compiler.
if (allocation.To(&target)) {
if (alignment != kObjectAlignment) {
target = EnsureDoubleAligned(heap, target, allocation_size);
}
// Order is important: slot might be inside of the target if target
// was allocated over a dead object and slot comes from the store
// buffer.
*slot = target;
MigrateObject(heap, object, target, object_size);
if (object_contents == POINTER_OBJECT) {
if (map->instance_type() == JS_FUNCTION_TYPE) {
heap->promotion_queue()->insert(
target, JSFunction::kNonWeakFieldsEndOffset);
} else {
heap->promotion_queue()->insert(target, object_size);
}
}
heap->IncrementPromotedObjectsSize(object_size);
return;
}
}
ASSERT(heap->AllowedToBeMigrated(object, NEW_SPACE));
AllocationResult allocation =
heap->new_space()->AllocateRaw(allocation_size);
heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
HeapObject* target = HeapObject::cast(allocation.ToObjectChecked());
if (alignment != kObjectAlignment) {
target = EnsureDoubleAligned(heap, target, allocation_size);
}
// Order is important: slot might be inside of the target if target
// was allocated over a dead object and slot comes from the store
// buffer.
*slot = target;
MigrateObject(heap, object, target, object_size);
heap->IncrementSemiSpaceCopiedObjectSize(object_size);
return;
}
static inline void EvacuateJSFunction(Map* map,
HeapObject** slot,
HeapObject* object) {
ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<JSFunction::kSize>(map, slot, object);
HeapObject* target = *slot;
MarkBit mark_bit = Marking::MarkBitFrom(target);
if (Marking::IsBlack(mark_bit)) {
// This object is black and it might not be rescanned by marker.
// We should explicitly record code entry slot for compaction because
// promotion queue processing (IterateAndMarkPointersToFromSpace) will
// miss it as it is not HeapObject-tagged.
Address code_entry_slot =
target->address() + JSFunction::kCodeEntryOffset;
Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
map->GetHeap()->mark_compact_collector()->
RecordCodeEntrySlot(code_entry_slot, code);
}
}
static inline void EvacuateFixedArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateFixedDoubleArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
int object_size = FixedDoubleArray::SizeFor(length);
EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateFixedTypedArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = reinterpret_cast<FixedTypedArrayBase*>(object)->size();
EvacuateObject<DATA_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateFixedFloat64Array(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = reinterpret_cast<FixedFloat64Array*>(object)->size();
EvacuateObject<DATA_OBJECT, kDoubleAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateByteArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
EvacuateObject<DATA_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateSeqOneByteString(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = SeqOneByteString::cast(object)->
SeqOneByteStringSize(map->instance_type());
EvacuateObject<DATA_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
static inline void EvacuateSeqTwoByteString(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = SeqTwoByteString::cast(object)->
SeqTwoByteStringSize(map->instance_type());
EvacuateObject<DATA_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
static inline bool IsShortcutCandidate(int type) {
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
}
static inline void EvacuateShortcutCandidate(Map* map,
HeapObject** slot,
HeapObject* object) {
ASSERT(IsShortcutCandidate(map->instance_type()));
Heap* heap = map->GetHeap();
if (marks_handling == IGNORE_MARKS &&
ConsString::cast(object)->unchecked_second() ==
heap->empty_string()) {
HeapObject* first =
HeapObject::cast(ConsString::cast(object)->unchecked_first());
*slot = first;
if (!heap->InNewSpace(first)) {
object->set_map_word(MapWord::FromForwardingAddress(first));
return;
}
MapWord first_word = first->map_word();
if (first_word.IsForwardingAddress()) {
HeapObject* target = first_word.ToForwardingAddress();
*slot = target;
object->set_map_word(MapWord::FromForwardingAddress(target));
return;
}
heap->DoScavengeObject(first->map(), slot, first);
object->set_map_word(MapWord::FromForwardingAddress(*slot));
return;
}
int object_size = ConsString::kSize;
EvacuateObject<POINTER_OBJECT, kObjectAlignment>(
map, slot, object, object_size);
}
template<ObjectContents object_contents>
class ObjectEvacuationStrategy {
public:
template<int object_size>
static inline void VisitSpecialized(Map* map,
HeapObject** slot,
HeapObject* object) {
EvacuateObject<object_contents, kObjectAlignment>(
map, slot, object, object_size);
}
static inline void Visit(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = map->instance_size();
EvacuateObject<object_contents, kObjectAlignment>(
map, slot, object, object_size);
}
};
static VisitorDispatchTable<ScavengingCallback> table_;
};
template<MarksHandling marks_handling,
LoggingAndProfiling logging_and_profiling_mode>
VisitorDispatchTable<ScavengingCallback>
ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
static void InitializeScavengingVisitorsTables() {
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_DISABLED>::Initialize();
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_ENABLED>::Initialize();
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
}
void Heap::SelectScavengingVisitorsTable() {
bool logging_and_profiling =
isolate()->logger()->is_logging() ||
isolate()->cpu_profiler()->is_profiling() ||
(isolate()->heap_profiler() != NULL &&
isolate()->heap_profiler()->is_tracking_object_moves());
if (!incremental_marking()->IsMarking()) {
if (!logging_and_profiling) {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<IGNORE_MARKS,
LOGGING_AND_PROFILING_DISABLED>::GetTable());
} else {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<IGNORE_MARKS,
LOGGING_AND_PROFILING_ENABLED>::GetTable());
}
} else {
if (!logging_and_profiling) {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_DISABLED>::GetTable());
} else {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_ENABLED>::GetTable());
}
if (incremental_marking()->IsCompacting()) {
// When compacting forbid short-circuiting of cons-strings.
// Scavenging code relies on the fact that new space object
// can't be evacuated into evacuation candidate but
// short-circuiting violates this assumption.
scavenging_visitors_table_.Register(
StaticVisitorBase::kVisitShortcutCandidate,
scavenging_visitors_table_.GetVisitorById(
StaticVisitorBase::kVisitConsString));
}
}
}
void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
SLOW_ASSERT(object->GetIsolate()->heap()->InFromSpace(object));
MapWord first_word = object->map_word();
SLOW_ASSERT(!first_word.IsForwardingAddress());
Map* map = first_word.ToMap();
map->GetHeap()->DoScavengeObject(map, p, object);
}
AllocationResult Heap::AllocatePartialMap(InstanceType instance_type,
int instance_size) {
Object* result;
AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
if (!allocation.To(&result)) return allocation;
// Map::cast cannot be used due to uninitialized map field.
reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
reinterpret_cast<Map*>(result)->set_visitor_id(
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
reinterpret_cast<Map*>(result)->set_inobject_properties(0);
reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
reinterpret_cast<Map*>(result)->set_bit_field(0);
reinterpret_cast<Map*>(result)->set_bit_field2(0);
int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
Map::OwnsDescriptors::encode(true);
reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3);
return result;
}
AllocationResult Heap::AllocateMap(InstanceType instance_type,
int instance_size,
ElementsKind elements_kind) {
HeapObject* result;
AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE);
if (!allocation.To(&result)) return allocation;
result->set_map_no_write_barrier(meta_map());
Map* map = Map::cast(result);
map->set_instance_type(instance_type);
map->set_visitor_id(
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
map->set_instance_size(instance_size);
map->set_inobject_properties(0);
map->set_pre_allocated_property_fields(0);
map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
map->set_dependent_code(DependentCode::cast(empty_fixed_array()),
SKIP_WRITE_BARRIER);
map->init_back_pointer(undefined_value());
map->set_unused_property_fields(0);
map->set_instance_descriptors(empty_descriptor_array());
map->set_bit_field(0);
map->set_bit_field2(1 << Map::kIsExtensible);
int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
Map::OwnsDescriptors::encode(true);
map->set_bit_field3(bit_field3);
map->set_elements_kind(elements_kind);
return map;
}
AllocationResult Heap::AllocateFillerObject(int size,
bool double_align,
AllocationSpace space) {
HeapObject* obj;
{ AllocationResult allocation = AllocateRaw(size, space, space);
if (!allocation.To(&obj)) return allocation;
}
#ifdef DEBUG
MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
ASSERT(chunk->owner()->identity() == space);
#endif
CreateFillerObjectAt(obj->address(), size);
return obj;
}
const Heap::StringTypeTable Heap::string_type_table[] = {
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
{type, size, k##camel_name##MapRootIndex},
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
#undef STRING_TYPE_ELEMENT
};
const Heap::ConstantStringTable Heap::constant_string_table[] = {
#define CONSTANT_STRING_ELEMENT(name, contents) \
{contents, k##name##RootIndex},
INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT)
#undef CONSTANT_STRING_ELEMENT
};
const Heap::StructTable Heap::struct_table[] = {
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
{ NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
#undef STRUCT_TABLE_ELEMENT
};
bool Heap::CreateInitialMaps() {
HeapObject* obj;
{ AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize);
if (!allocation.To(&obj)) return false;
}
// Map::cast cannot be used due to uninitialized map field.
Map* new_meta_map = reinterpret_cast<Map*>(obj);
set_meta_map(new_meta_map);
new_meta_map->set_map(new_meta_map);
{ // Partial map allocation
#define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \
{ Map* map; \
if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \
set_##field_name##_map(map); \
}
ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined);
ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null);
ALLOCATE_PARTIAL_MAP(CONSTANT_POOL_ARRAY_TYPE, kVariableSizeSentinel,
constant_pool_array);
#undef ALLOCATE_PARTIAL_MAP
}
// Allocate the empty array.
{ AllocationResult allocation = AllocateEmptyFixedArray();
if (!allocation.To(&obj)) return false;
}
set_empty_fixed_array(FixedArray::cast(obj));
{ AllocationResult allocation = Allocate(null_map(), OLD_POINTER_SPACE);
if (!allocation.To(&obj)) return false;
}
set_null_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kNull);
{ AllocationResult allocation = Allocate(undefined_map(), OLD_POINTER_SPACE);
if (!allocation.To(&obj)) return false;
}
set_undefined_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
ASSERT(!InNewSpace(undefined_value()));
// Set preliminary exception sentinel value before actually initializing it.
set_exception(null_value());
// Allocate the empty descriptor array.
{ AllocationResult allocation = AllocateEmptyFixedArray();
if (!allocation.To(&obj)) return false;
}
set_empty_descriptor_array(DescriptorArray::cast(obj));
// Allocate the constant pool array.
{ AllocationResult allocation = AllocateEmptyConstantPoolArray();
if (!allocation.To(&obj)) return false;
}
set_empty_constant_pool_array(ConstantPoolArray::cast(obj));
// Fix the instance_descriptors for the existing maps.
meta_map()->set_code_cache(empty_fixed_array());
meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
meta_map()->init_back_pointer(undefined_value());
meta_map()->set_instance_descriptors(empty_descriptor_array());
fixed_array_map()->set_code_cache(empty_fixed_array());
fixed_array_map()->set_dependent_code(
DependentCode::cast(empty_fixed_array()));
fixed_array_map()->init_back_pointer(undefined_value());
fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
undefined_map()->set_code_cache(empty_fixed_array());
undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
undefined_map()->init_back_pointer(undefined_value());
undefined_map()->set_instance_descriptors(empty_descriptor_array());
null_map()->set_code_cache(empty_fixed_array());
null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array()));
null_map()->init_back_pointer(undefined_value());
null_map()->set_instance_descriptors(empty_descriptor_array());
constant_pool_array_map()->set_code_cache(empty_fixed_array());
constant_pool_array_map()->set_dependent_code(
DependentCode::cast(empty_fixed_array()));
constant_pool_array_map()->init_back_pointer(undefined_value());
constant_pool_array_map()->set_instance_descriptors(empty_descriptor_array());
// Fix prototype object for existing maps.
meta_map()->set_prototype(null_value());
meta_map()->set_constructor(null_value());
fixed_array_map()->set_prototype(null_value());
fixed_array_map()->set_constructor(null_value());
undefined_map()->set_prototype(null_value());
undefined_map()->set_constructor(null_value());
null_map()->set_prototype(null_value());
null_map()->set_constructor(null_value());
constant_pool_array_map()->set_prototype(null_value());
constant_pool_array_map()->set_constructor(null_value());
{ // Map allocation
#define ALLOCATE_MAP(instance_type, size, field_name) \
{ Map* map; \
if (!AllocateMap((instance_type), size).To(&map)) return false; \
set_##field_name##_map(map); \
}
#define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \
ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array)
ASSERT(fixed_array_map() != fixed_cow_array_map());
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info)
ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number)
ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol)
ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign)
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception);
ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception);
for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
const StringTypeTable& entry = string_type_table[i];
{ AllocationResult allocation = AllocateMap(entry.type, entry.size);
if (!allocation.To(&obj)) return false;
}
// Mark cons string maps as unstable, because their objects can change
// maps during GC.
Map* map = Map::cast(obj);
if (StringShape(entry.type).IsCons()) map->mark_unstable();
roots_[entry.index] = map;
}
ALLOCATE_VARSIZE_MAP(STRING_TYPE, undetectable_string)
undetectable_string_map()->set_is_undetectable();
ALLOCATE_VARSIZE_MAP(ASCII_STRING_TYPE, undetectable_ascii_string);
undetectable_ascii_string_map()->set_is_undetectable();
ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array)
ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array)
ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space)
#define ALLOCATE_EXTERNAL_ARRAY_MAP(Type, type, TYPE, ctype, size) \
ALLOCATE_MAP(EXTERNAL_##TYPE##_ARRAY_TYPE, ExternalArray::kAlignedSize, \
external_##type##_array)
TYPED_ARRAYS(ALLOCATE_EXTERNAL_ARRAY_MAP)
#undef ALLOCATE_EXTERNAL_ARRAY_MAP
#define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \
ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, \
fixed_##type##_array)
TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP)
#undef ALLOCATE_FIXED_TYPED_ARRAY_MAP
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements)
ALLOCATE_VARSIZE_MAP(CODE_TYPE, code)
ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell)
ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell)
ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler)
ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler)
for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
const StructTable& entry = struct_table[i];
Map* map;
if (!AllocateMap(entry.type, entry.size).To(&map))
return false;
roots_[entry.index] = map;
}
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, global_context)
ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context)
native_context_map()->set_dictionary_map(true);
native_context_map()->set_visitor_id(
StaticVisitorBase::kVisitNativeContext);
ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize,
shared_function_info)
ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize,
message_object)
ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize,
external)
external_map()->set_is_extensible(false);
#undef ALLOCATE_VARSIZE_MAP
#undef ALLOCATE_MAP
}
{ // Empty arrays
{ ByteArray* byte_array;
if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false;
set_empty_byte_array(byte_array);
}
#define ALLOCATE_EMPTY_EXTERNAL_ARRAY(Type, type, TYPE, ctype, size) \
{ ExternalArray* obj; \
if (!AllocateEmptyExternalArray(kExternal##Type##Array).To(&obj)) \
return false; \
set_empty_external_##type##_array(obj); \
}
TYPED_ARRAYS(ALLOCATE_EMPTY_EXTERNAL_ARRAY)
#undef ALLOCATE_EMPTY_EXTERNAL_ARRAY
#define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \
{ FixedTypedArrayBase* obj; \
if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \
return false; \
set_empty_fixed_##type##_array(obj); \
}
TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY)
#undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY
}
ASSERT(!InNewSpace(empty_fixed_array()));
return true;
}
AllocationResult Heap::AllocateHeapNumber(double value,
PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate heap numbers in paged
// spaces.
int size = HeapNumber::kSize;
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize);
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(heap_number_map());
HeapNumber::cast(result)->set_value(value);
return result;
}
AllocationResult Heap::AllocateCell(Object* value) {
int size = Cell::kSize;
STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, CELL_SPACE, CELL_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(cell_map());
Cell::cast(result)->set_value(value);
return result;
}
AllocationResult Heap::AllocatePropertyCell() {
int size = PropertyCell::kSize;
STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize);
HeapObject* result;
AllocationResult allocation =
AllocateRaw(size, PROPERTY_CELL_SPACE, PROPERTY_CELL_SPACE);
if (!allocation.To(&result)) return allocation;
result->set_map_no_write_barrier(global_property_cell_map());
PropertyCell* cell = PropertyCell::cast(result);
cell->set_dependent_code(DependentCode::cast(empty_fixed_array()),
SKIP_WRITE_BARRIER);
cell->set_value(the_hole_value());
cell->set_type(HeapType::None());
return result;
}
void Heap::CreateApiObjects() {
HandleScope scope(isolate());
Factory* factory = isolate()->factory();
Handle<Map> new_neander_map =
factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
// Don't use Smi-only elements optimizations for objects with the neander
// map. There are too many cases where element values are set directly with a
// bottleneck to trap the Smi-only -> fast elements transition, and there
// appears to be no benefit for optimize this case.
new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND);
set_neander_map(*new_neander_map);
Handle<JSObject> listeners = factory->NewNeanderObject();
Handle<FixedArray> elements = factory->NewFixedArray(2);
elements->set(0, Smi::FromInt(0));
listeners->set_elements(*elements);
set_message_listeners(*listeners);
}
void Heap::CreateJSEntryStub() {
JSEntryStub stub(isolate());
set_js_entry_code(*stub.GetCode());
}
void Heap::CreateJSConstructEntryStub() {
JSConstructEntryStub stub(isolate());
set_js_construct_entry_code(*stub.GetCode());
}
void Heap::CreateFixedStubs() {
// Here we create roots for fixed stubs. They are needed at GC
// for cooking and uncooking (check out frames.cc).
// The eliminates the need for doing dictionary lookup in the
// stub cache for these stubs.
HandleScope scope(isolate());
// Create stubs that should be there, so we don't unexpectedly have to
// create them if we need them during the creation of another stub.
// Stub creation mixes raw pointers and handles in an unsafe manner so
// we cannot create stubs while we are creating stubs.
CodeStub::GenerateStubsAheadOfTime(isolate());
// MacroAssembler::Abort calls (usually enabled with --debug-code) depend on
// CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub
// is created.
// gcc-4.4 has problem generating correct code of following snippet:
// { JSEntryStub stub;
// js_entry_code_ = *stub.GetCode();
// }
// { JSConstructEntryStub stub;
// js_construct_entry_code_ = *stub.GetCode();
// }
// To workaround the problem, make separate functions without inlining.
Heap::CreateJSEntryStub();
Heap::CreateJSConstructEntryStub();
}
void Heap::CreateInitialObjects() {
HandleScope scope(isolate());
Factory* factory = isolate()->factory();
// The -0 value must be set before NumberFromDouble works.
set_minus_zero_value(*factory->NewHeapNumber(-0.0, TENURED));
ASSERT(std::signbit(minus_zero_value()->Number()) != 0);
set_nan_value(*factory->NewHeapNumber(OS::nan_value(), TENURED));
set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, TENURED));
// The hole has not been created yet, but we want to put something
// predictable in the gaps in the string table, so lets make that Smi zero.
set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0)));
// Allocate initial string table.
set_string_table(*StringTable::New(isolate(), kInitialStringTableSize));
// Finish initializing oddballs after creating the string table.
Oddball::Initialize(isolate(),
factory->undefined_value(),
"undefined",
factory->nan_value(),
Oddball::kUndefined);
// Initialize the null_value.
Oddball::Initialize(isolate(),
factory->null_value(),
"null",
handle(Smi::FromInt(0), isolate()),
Oddball::kNull);
set_true_value(*factory->NewOddball(factory->boolean_map(),
"true",
handle(Smi::FromInt(1), isolate()),
Oddball::kTrue));
set_false_value(*factory->NewOddball(factory->boolean_map(),
"false",
handle(Smi::FromInt(0), isolate()),
Oddball::kFalse));
set_the_hole_value(*factory->NewOddball(factory->the_hole_map(),
"hole",
handle(Smi::FromInt(-1), isolate()),
Oddball::kTheHole));
set_uninitialized_value(
*factory->NewOddball(factory->uninitialized_map(),
"uninitialized",
handle(Smi::FromInt(-1), isolate()),
Oddball::kUninitialized));
set_arguments_marker(*factory->NewOddball(factory->arguments_marker_map(),
"arguments_marker",
handle(Smi::FromInt(-4), isolate()),
Oddball::kArgumentMarker));
set_no_interceptor_result_sentinel(
*factory->NewOddball(factory->no_interceptor_result_sentinel_map(),
"no_interceptor_result_sentinel",
handle(Smi::FromInt(-2), isolate()),
Oddball::kOther));
set_termination_exception(
*factory->NewOddball(factory->termination_exception_map(),
"termination_exception",
handle(Smi::FromInt(-3), isolate()),
Oddball::kOther));
set_exception(
*factory->NewOddball(factory->exception_map(),
"exception",
handle(Smi::FromInt(-5), isolate()),
Oddball::kException));
for (unsigned i = 0; i < ARRAY_SIZE(constant_string_table); i++) {
Handle<String> str =
factory->InternalizeUtf8String(constant_string_table[i].contents);
roots_[constant_string_table[i].index] = *str;
}
// Allocate the hidden string which is used to identify the hidden properties
// in JSObjects. The hash code has a special value so that it will not match
// the empty string when searching for the property. It cannot be part of the
// loop above because it needs to be allocated manually with the special
// hash code in place. The hash code for the hidden_string is zero to ensure
// that it will always be at the first entry in property descriptors.
hidden_string_ = *factory->NewOneByteInternalizedString(
OneByteVector("", 0), String::kEmptyStringHash);
// Create the code_stubs dictionary. The initial size is set to avoid
// expanding the dictionary during bootstrapping.
set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128));
// Create the non_monomorphic_cache used in stub-cache.cc. The initial size
// is set to avoid expanding the dictionary during bootstrapping.
set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64));
set_polymorphic_code_cache(PolymorphicCodeCache::cast(
*factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE)));
set_instanceof_cache_function(Smi::FromInt(0));
set_instanceof_cache_map(Smi::FromInt(0));
set_instanceof_cache_answer(Smi::FromInt(0));
CreateFixedStubs();
// Allocate the dictionary of intrinsic function names.
Handle<NameDictionary> intrinsic_names =
NameDictionary::New(isolate(), Runtime::kNumFunctions);
Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names);
set_intrinsic_function_names(*intrinsic_names);
set_number_string_cache(*factory->NewFixedArray(
kInitialNumberStringCacheSize * 2, TENURED));
// Allocate cache for single character one byte strings.
set_single_character_string_cache(*factory->NewFixedArray(
String::kMaxOneByteCharCode + 1, TENURED));
// Allocate cache for string split and regexp-multiple.
set_string_split_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
set_regexp_multiple_cache(*factory->NewFixedArray(
RegExpResultsCache::kRegExpResultsCacheSize, TENURED));
// Allocate cache for external strings pointing to native source code.
set_natives_source_cache(*factory->NewFixedArray(
Natives::GetBuiltinsCount()));
set_undefined_cell(*factory->NewCell(factory->undefined_value()));
// The symbol registry is initialized lazily.
set_symbol_registry(undefined_value());
// Allocate object to hold object observation state.
set_observation_state(*factory->NewJSObjectFromMap(
factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize)));
// Microtask queue uses the empty fixed array as a sentinel for "empty".
// Number of queued microtasks stored in Isolate::pending_microtask_count().
set_microtask_queue(empty_fixed_array());
set_frozen_symbol(*factory->NewPrivateSymbol());
set_nonexistent_symbol(*factory->NewPrivateSymbol());
set_elements_transition_symbol(*factory->NewPrivateSymbol());
set_uninitialized_symbol(*factory->NewPrivateSymbol());
set_megamorphic_symbol(*factory->NewPrivateSymbol());
set_observed_symbol(*factory->NewPrivateSymbol());
Handle<SeededNumberDictionary> slow_element_dictionary =
SeededNumberDictionary::New(isolate(), 0, TENURED);
slow_element_dictionary->set_requires_slow_elements();
set_empty_slow_element_dictionary(*slow_element_dictionary);
set_materialized_objects(*factory->NewFixedArray(0, TENURED));
// Handling of script id generation is in Factory::NewScript.
set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId));
set_allocation_sites_scratchpad(*factory->NewFixedArray(
kAllocationSiteScratchpadSize, TENURED));
InitializeAllocationSitesScratchpad();
// Initialize keyed lookup cache.
isolate_->keyed_lookup_cache()->Clear();
// Initialize context slot cache.
isolate_->context_slot_cache()->Clear();
// Initialize descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Initialize compilation cache.
isolate_->compilation_cache()->Clear();
}
bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) {
RootListIndex writable_roots[] = {
kStoreBufferTopRootIndex,
kStackLimitRootIndex,
kNumberStringCacheRootIndex,
kInstanceofCacheFunctionRootIndex,
kInstanceofCacheMapRootIndex,
kInstanceofCacheAnswerRootIndex,
kCodeStubsRootIndex,
kNonMonomorphicCacheRootIndex,
kPolymorphicCodeCacheRootIndex,
kLastScriptIdRootIndex,
kEmptyScriptRootIndex,
kRealStackLimitRootIndex,
kArgumentsAdaptorDeoptPCOffsetRootIndex,
kConstructStubDeoptPCOffsetRootIndex,
kGetterStubDeoptPCOffsetRootIndex,
kSetterStubDeoptPCOffsetRootIndex,
kStringTableRootIndex,
};
for (unsigned int i = 0; i < ARRAY_SIZE(writable_roots); i++) {
if (root_index == writable_roots[i])
return true;
}
return false;
}
bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) {
return !RootCanBeWrittenAfterInitialization(root_index) &&
!InNewSpace(roots_array_start()[root_index]);
}
Object* RegExpResultsCache::Lookup(Heap* heap,
String* key_string,
Object* key_pattern,
ResultsCacheType type) {
FixedArray* cache;
if (!key_string->IsInternalizedString()) return Smi::FromInt(0);
if (type == STRING_SPLIT_SUBSTRINGS) {
ASSERT(key_pattern->IsString());
if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0);
cache = heap->string_split_cache();
} else {
ASSERT(type == REGEXP_MULTIPLE_INDICES);
ASSERT(key_pattern->IsFixedArray());
cache = heap->regexp_multiple_cache();
}
uint32_t hash = key_string->Hash();
uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
~(kArrayEntriesPerCacheEntry - 1));
if (cache->get(index + kStringOffset) == key_string &&
cache->get(index + kPatternOffset) == key_pattern) {
return cache->get(index + kArrayOffset);
}
index =
((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
if (cache->get(index + kStringOffset) == key_string &&
cache->get(index + kPatternOffset) == key_pattern) {
return cache->get(index + kArrayOffset);
}
return Smi::FromInt(0);
}
void RegExpResultsCache::Enter(Isolate* isolate,
Handle<String> key_string,
Handle<Object> key_pattern,
Handle<FixedArray> value_array,
ResultsCacheType type) {
Factory* factory = isolate->factory();
Handle<FixedArray> cache;
if (!key_string->IsInternalizedString()) return;
if (type == STRING_SPLIT_SUBSTRINGS) {
ASSERT(key_pattern->IsString());
if (!key_pattern->IsInternalizedString()) return;
cache = factory->string_split_cache();
} else {
ASSERT(type == REGEXP_MULTIPLE_INDICES);
ASSERT(key_pattern->IsFixedArray());
cache = factory->regexp_multiple_cache();
}
uint32_t hash = key_string->Hash();
uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) &
~(kArrayEntriesPerCacheEntry - 1));
if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
cache->set(index + kStringOffset, *key_string);
cache->set(index + kPatternOffset, *key_pattern);
cache->set(index + kArrayOffset, *value_array);
} else {
uint32_t index2 =
((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1));
if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
cache->set(index2 + kStringOffset, *key_string);
cache->set(index2 + kPatternOffset, *key_pattern);
cache->set(index2 + kArrayOffset, *value_array);
} else {
cache->set(index2 + kStringOffset, Smi::FromInt(0));
cache->set(index2 + kPatternOffset, Smi::FromInt(0));
cache->set(index2 + kArrayOffset, Smi::FromInt(0));
cache->set(index + kStringOffset, *key_string);
cache->set(index + kPatternOffset, *key_pattern);
cache->set(index + kArrayOffset, *value_array);
}
}
// If the array is a reasonably short list of substrings, convert it into a
// list of internalized strings.
if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) {
for (int i = 0; i < value_array->length(); i++) {
Handle<String> str(String::cast(value_array->get(i)), isolate);
Handle<String> internalized_str = factory->InternalizeString(str);
value_array->set(i, *internalized_str);
}
}
// Convert backing store to a copy-on-write array.
value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map());
}
void RegExpResultsCache::Clear(FixedArray* cache) {
for (int i = 0; i < kRegExpResultsCacheSize; i++) {
cache->set(i, Smi::FromInt(0));
}
}
int Heap::FullSizeNumberStringCacheLength() {
// Compute the size of the number string cache based on the max newspace size.
// The number string cache has a minimum size based on twice the initial cache
// size to ensure that it is bigger after being made 'full size'.
int number_string_cache_size = max_semi_space_size_ / 512;
number_string_cache_size = Max(kInitialNumberStringCacheSize * 2,
Min(0x4000, number_string_cache_size));
// There is a string and a number per entry so the length is twice the number
// of entries.
return number_string_cache_size * 2;
}
void Heap::FlushNumberStringCache() {
// Flush the number to string cache.
int len = number_string_cache()->length();
for (int i = 0; i < len; i++) {
number_string_cache()->set_undefined(i);
}
}
void Heap::FlushAllocationSitesScratchpad() {
for (int i = 0; i < allocation_sites_scratchpad_length_; i++) {
allocation_sites_scratchpad()->set_undefined(i);
}
allocation_sites_scratchpad_length_ = 0;
}
void Heap::InitializeAllocationSitesScratchpad() {
ASSERT(allocation_sites_scratchpad()->length() ==
kAllocationSiteScratchpadSize);
for (int i = 0; i < kAllocationSiteScratchpadSize; i++) {
allocation_sites_scratchpad()->set_undefined(i);
}
}
void Heap::AddAllocationSiteToScratchpad(AllocationSite* site,
ScratchpadSlotMode mode) {
if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) {
// We cannot use the normal write-barrier because slots need to be
// recorded with non-incremental marking as well. We have to explicitly
// record the slot to take evacuation candidates into account.
allocation_sites_scratchpad()->set(
allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER);
Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt(
allocation_sites_scratchpad_length_);
if (mode == RECORD_SCRATCHPAD_SLOT) {
// We need to allow slots buffer overflow here since the evacuation
// candidates are not part of the global list of old space pages and
// releasing an evacuation candidate due to a slots buffer overflow
// results in lost pages.
mark_compact_collector()->RecordSlot(
slot, slot, *slot, SlotsBuffer::IGNORE_OVERFLOW);
}
allocation_sites_scratchpad_length_++;
}
}
Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
}
Heap::RootListIndex Heap::RootIndexForExternalArrayType(
ExternalArrayType array_type) {
switch (array_type) {
#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return kExternal##Type##ArrayMapRootIndex;
TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
#undef ARRAY_TYPE_TO_ROOT_INDEX
default:
UNREACHABLE();
return kUndefinedValueRootIndex;
}
}
Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) {
return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]);
}
Heap::RootListIndex Heap::RootIndexForFixedTypedArray(
ExternalArrayType array_type) {
switch (array_type) {
#define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
return kFixed##Type##ArrayMapRootIndex;
TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX)
#undef ARRAY_TYPE_TO_ROOT_INDEX
default:
UNREACHABLE();
return kUndefinedValueRootIndex;
}
}
Heap::RootListIndex Heap::RootIndexForEmptyExternalArray(
ElementsKind elementsKind) {
switch (elementsKind) {
#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
case EXTERNAL_##TYPE##_ELEMENTS: \
return kEmptyExternal##Type##ArrayRootIndex;
TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
#undef ELEMENT_KIND_TO_ROOT_INDEX
default:
UNREACHABLE();
return kUndefinedValueRootIndex;
}
}
Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray(
ElementsKind elementsKind) {
switch (elementsKind) {
#define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \
case TYPE##_ELEMENTS: \
return kEmptyFixed##Type##ArrayRootIndex;
TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX)
#undef ELEMENT_KIND_TO_ROOT_INDEX
default:
UNREACHABLE();
return kUndefinedValueRootIndex;
}
}
ExternalArray* Heap::EmptyExternalArrayForMap(Map* map) {
return ExternalArray::cast(
roots_[RootIndexForEmptyExternalArray(map->elements_kind())]);
}
FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) {
return FixedTypedArrayBase::cast(
roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]);
}
AllocationResult Heap::AllocateForeign(Address address,
PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate foreigns in paged spaces.
STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize);
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
Foreign* result;
AllocationResult allocation = Allocate(foreign_map(), space);
if (!allocation.To(&result)) return allocation;
result->set_foreign_address(address);
return result;
}
AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
if (length < 0 || length > ByteArray::kMaxLength) {
v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
}
int size = ByteArray::SizeFor(length);
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(byte_array_map());
ByteArray::cast(result)->set_length(length);
return result;
}
void Heap::CreateFillerObjectAt(Address addr, int size) {
if (size == 0) return;
HeapObject* filler = HeapObject::FromAddress(addr);
if (size == kPointerSize) {
filler->set_map_no_write_barrier(one_pointer_filler_map());
} else if (size == 2 * kPointerSize) {
filler->set_map_no_write_barrier(two_pointer_filler_map());
} else {
filler->set_map_no_write_barrier(free_space_map());
FreeSpace::cast(filler)->set_size(size);
}
}
bool Heap::CanMoveObjectStart(HeapObject* object) {
Address address = object->address();
bool is_in_old_pointer_space = InOldPointerSpace(address);
bool is_in_old_data_space = InOldDataSpace(address);
if (lo_space()->Contains(object)) return false;
Page* page = Page::FromAddress(address);
// We can move the object start if:
// (1) the object is not in old pointer or old data space,
// (2) the page of the object was already swept,
// (3) the page was already concurrently swept. This case is an optimization
// for concurrent sweeping. The WasSwept predicate for concurrently swept
// pages is set after sweeping all pages.
return (!is_in_old_pointer_space && !is_in_old_data_space) ||
page->WasSwept() ||
(mark_compact_collector()->AreSweeperThreadsActivated() &&
page->parallel_sweeping() <=
MemoryChunk::PARALLEL_SWEEPING_FINALIZE);
}
void Heap::AdjustLiveBytes(Address address, int by, InvocationMode mode) {
if (incremental_marking()->IsMarking() &&
Marking::IsBlack(Marking::MarkBitFrom(address))) {
if (mode == FROM_GC) {
MemoryChunk::IncrementLiveBytesFromGC(address, by);
} else {
MemoryChunk::IncrementLiveBytesFromMutator(address, by);
}
}
}
AllocationResult Heap::AllocateExternalArray(int length,
ExternalArrayType array_type,
void* external_pointer,
PretenureFlag pretenure) {
int size = ExternalArray::kAlignedSize;
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(
MapForExternalArrayType(array_type));
ExternalArray::cast(result)->set_length(length);
ExternalArray::cast(result)->set_external_pointer(external_pointer);
return result;
}
static void ForFixedTypedArray(ExternalArrayType array_type,
int* element_size,
ElementsKind* element_kind) {
switch (array_type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case kExternal##Type##Array: \
*element_size = size; \
*element_kind = TYPE##_ELEMENTS; \
return;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
*element_size = 0; // Bogus
*element_kind = UINT8_ELEMENTS; // Bogus
UNREACHABLE();
}
}
AllocationResult Heap::AllocateFixedTypedArray(int length,
ExternalArrayType array_type,
PretenureFlag pretenure) {
int element_size;
ElementsKind elements_kind;
ForFixedTypedArray(array_type, &element_size, &elements_kind);
int size = OBJECT_POINTER_ALIGN(
length * element_size + FixedTypedArrayBase::kDataOffset);
#ifndef V8_HOST_ARCH_64_BIT
if (array_type == kExternalFloat64Array) {
size += kPointerSize;
}
#endif
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* object;
AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&object)) return allocation;
if (array_type == kExternalFloat64Array) {
object = EnsureDoubleAligned(this, object, size);
}
object->set_map(MapForFixedTypedArray(array_type));
FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object);
elements->set_length(length);
memset(elements->DataPtr(), 0, elements->DataSize());
return elements;
}
AllocationResult Heap::AllocateCode(int object_size,
bool immovable) {
ASSERT(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
AllocationResult allocation;
// Large code objects and code objects which should stay at a fixed address
// are allocated in large object space.
HeapObject* result;
bool force_lo_space = object_size > code_space()->AreaSize();
if (force_lo_space) {
allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE);
} else {
allocation = AllocateRaw(object_size, CODE_SPACE, CODE_SPACE);
}
if (!allocation.To(&result)) return allocation;
if (immovable && !force_lo_space &&
// Objects on the first page of each space are never moved.
!code_space_->FirstPage()->Contains(result->address())) {
// Discard the first code allocation, which was on a page where it could be
// moved.
CreateFillerObjectAt(result->address(), object_size);
allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(code_map());
Code* code = Code::cast(result);
ASSERT(isolate_->code_range() == NULL ||
!isolate_->code_range()->valid() ||
isolate_->code_range()->contains(code->address()));
code->set_gc_metadata(Smi::FromInt(0));
code->set_ic_age(global_ic_age_);
return code;
}
AllocationResult Heap::CopyCode(Code* code) {
AllocationResult allocation;
HeapObject* new_constant_pool;
if (FLAG_enable_ool_constant_pool &&
code->constant_pool() != empty_constant_pool_array()) {
// Copy the constant pool, since edits to the copied code may modify
// the constant pool.
allocation = CopyConstantPoolArray(code->constant_pool());
if (!allocation.To(&new_constant_pool)) return allocation;
} else {
new_constant_pool = empty_constant_pool_array();
}
// Allocate an object the same size as the code object.
int obj_size = code->Size();
if (obj_size > code_space()->AreaSize()) {
allocation = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else {
allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE);
}
HeapObject* result;
if (!allocation.To(&result)) return allocation;
// Copy code object.
Address old_addr = code->address();
Address new_addr = result->address();
CopyBlock(new_addr, old_addr, obj_size);
Code* new_code = Code::cast(result);
// Update the constant pool.
new_code->set_constant_pool(new_constant_pool);
// Relocate the copy.
ASSERT(isolate_->code_range() == NULL ||
!isolate_->code_range()->valid() ||
isolate_->code_range()->contains(code->address()));
new_code->Relocate(new_addr - old_addr);
return new_code;
}
AllocationResult Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
// Allocate ByteArray and ConstantPoolArray before the Code object, so that we
// do not risk leaving uninitialized Code object (and breaking the heap).
ByteArray* reloc_info_array;
{ AllocationResult allocation =
AllocateByteArray(reloc_info.length(), TENURED);
if (!allocation.To(&reloc_info_array)) return allocation;
}
HeapObject* new_constant_pool;
if (FLAG_enable_ool_constant_pool &&
code->constant_pool() != empty_constant_pool_array()) {
// Copy the constant pool, since edits to the copied code may modify
// the constant pool.
AllocationResult allocation =
CopyConstantPoolArray(code->constant_pool());
if (!allocation.To(&new_constant_pool)) return allocation;
} else {
new_constant_pool = empty_constant_pool_array();
}
int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
int new_obj_size = Code::SizeFor(new_body_size);
Address old_addr = code->address();
size_t relocation_offset =
static_cast<size_t>(code->instruction_end() - old_addr);
AllocationResult allocation;
if (new_obj_size > code_space()->AreaSize()) {
allocation = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
} else {
allocation = AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE);
}
HeapObject* result;
if (!allocation.To(&result)) return allocation;
// Copy code object.
Address new_addr = result->address();
// Copy header and instructions.
CopyBytes(new_addr, old_addr, relocation_offset);
Code* new_code = Code::cast(result);
new_code->set_relocation_info(reloc_info_array);
// Update constant pool.
new_code->set_constant_pool(new_constant_pool);
// Copy patched rinfo.
CopyBytes(new_code->relocation_start(),
reloc_info.start(),
static_cast<size_t>(reloc_info.length()));
// Relocate the copy.
ASSERT(isolate_->code_range() == NULL ||
!isolate_->code_range()->valid() ||
isolate_->code_range()->contains(code->address()));
new_code->Relocate(new_addr - old_addr);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) code->ObjectVerify();
#endif
return new_code;
}
void Heap::InitializeAllocationMemento(AllocationMemento* memento,
AllocationSite* allocation_site) {
memento->set_map_no_write_barrier(allocation_memento_map());
ASSERT(allocation_site->map() == allocation_site_map());
memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
if (FLAG_allocation_site_pretenuring) {
allocation_site->IncrementMementoCreateCount();
}
}
AllocationResult Heap::Allocate(Map* map, AllocationSpace space,
AllocationSite* allocation_site) {
ASSERT(gc_state_ == NOT_IN_GC);
ASSERT(map->instance_type() != MAP_TYPE);
// If allocation failures are disallowed, we may allocate in a different
// space when new space is full and the object is not a large object.
AllocationSpace retry_space =
(space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
int size = map->instance_size();
if (allocation_site != NULL) {
size += AllocationMemento::kSize;
}
HeapObject* result;
AllocationResult allocation = AllocateRaw(size, space, retry_space);
if (!allocation.To(&result)) return allocation;
// No need for write barrier since object is white and map is in old space.
result->set_map_no_write_barrier(map);
if (allocation_site != NULL) {
AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
reinterpret_cast<Address>(result) + map->instance_size());
InitializeAllocationMemento(alloc_memento, allocation_site);
}
return result;
}
AllocationResult Heap::AllocateArgumentsObject(Object* callee, int length) {
// To get fast allocation and map sharing for arguments objects we
// allocate them based on an arguments boilerplate.
JSObject* boilerplate;
int arguments_object_size;
bool strict_mode_callee = callee->IsJSFunction() &&
JSFunction::cast(callee)->shared()->strict_mode() == STRICT;
if (strict_mode_callee) {
boilerplate =
isolate()->context()->native_context()->strict_arguments_boilerplate();
arguments_object_size = kStrictArgumentsObjectSize;
} else {
boilerplate =
isolate()->context()->native_context()->sloppy_arguments_boilerplate();
arguments_object_size = kSloppyArgumentsObjectSize;
}
// Check that the size of the boilerplate matches our
// expectations. The ArgumentsAccessStub::GenerateNewObject relies
// on the size being a known constant.
ASSERT(arguments_object_size == boilerplate->map()->instance_size());
// Do the allocation.
HeapObject* result;
{ AllocationResult allocation =
AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
if (!allocation.To(&result)) return allocation;
}
// Copy the content. The arguments boilerplate doesn't have any
// fields that point to new space so it's safe to skip the write
// barrier here.
CopyBlock(result->address(), boilerplate->address(), JSObject::kHeaderSize);
// Set the length property.
JSObject* js_obj = JSObject::cast(result);
js_obj->InObjectPropertyAtPut(
kArgumentsLengthIndex, Smi::FromInt(length), SKIP_WRITE_BARRIER);
// Set the callee property for sloppy mode arguments object only.
if (!strict_mode_callee) {
js_obj->InObjectPropertyAtPut(kArgumentsCalleeIndex, callee);
}
// Check the state of the object
ASSERT(js_obj->HasFastProperties());
ASSERT(js_obj->HasFastObjectElements());
return js_obj;
}
void Heap::InitializeJSObjectFromMap(JSObject* obj,
FixedArray* properties,
Map* map) {
obj->set_properties(properties);
obj->initialize_elements();
// TODO(1240798): Initialize the object's body using valid initial values
// according to the object's initial map. For example, if the map's
// instance type is JS_ARRAY_TYPE, the length field should be initialized
// to a number (e.g. Smi::FromInt(0)) and the elements initialized to a
// fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
// verification code has to cope with (temporarily) invalid objects. See
// for example, JSArray::JSArrayVerify).
Object* filler;
// We cannot always fill with one_pointer_filler_map because objects
// created from API functions expect their internal fields to be initialized
// with undefined_value.
// Pre-allocated fields need to be initialized with undefined_value as well
// so that object accesses before the constructor completes (e.g. in the
// debugger) will not cause a crash.
if (map->constructor()->IsJSFunction() &&
JSFunction::cast(map->constructor())->
IsInobjectSlackTrackingInProgress()) {
// We might want to shrink the object later.
ASSERT(obj->GetInternalFieldCount() == 0);
filler = Heap::one_pointer_filler_map();
} else {
filler = Heap::undefined_value();
}
obj->InitializeBody(map, Heap::undefined_value(), filler);
}
AllocationResult Heap::AllocateJSObjectFromMap(
Map* map,
PretenureFlag pretenure,
bool allocate_properties,
AllocationSite* allocation_site) {
// JSFunctions should be allocated using AllocateFunction to be
// properly initialized.
ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
// Both types of global objects should be allocated using
// AllocateGlobalObject to be properly initialized.
ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
// Allocate the backing storage for the properties.
FixedArray* properties;
if (allocate_properties) {
int prop_size = map->InitialPropertiesLength();
ASSERT(prop_size >= 0);
{ AllocationResult allocation = AllocateFixedArray(prop_size, pretenure);
if (!allocation.To(&properties)) return allocation;
}
} else {
properties = empty_fixed_array();
}
// Allocate the JSObject.
int size = map->instance_size();
AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
JSObject* js_obj;
AllocationResult allocation = Allocate(map, space, allocation_site);
if (!allocation.To(&js_obj)) return allocation;
// Initialize the JSObject.
InitializeJSObjectFromMap(js_obj, properties, map);
ASSERT(js_obj->HasFastElements() ||
js_obj->HasExternalArrayElements() ||
js_obj->HasFixedTypedArrayElements());
return js_obj;
}
AllocationResult Heap::AllocateJSObject(JSFunction* constructor,
PretenureFlag pretenure,
AllocationSite* allocation_site) {
ASSERT(constructor->has_initial_map());
// Allocate the object based on the constructors initial map.
AllocationResult allocation = AllocateJSObjectFromMap(
constructor->initial_map(), pretenure, true, allocation_site);
#ifdef DEBUG
// Make sure result is NOT a global object if valid.
HeapObject* obj;
ASSERT(!allocation.To(&obj) || !obj->IsGlobalObject());
#endif
return allocation;
}
AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) {
// Never used to copy functions. If functions need to be copied we
// have to be careful to clear the literals array.
SLOW_ASSERT(!source->IsJSFunction());
// Make the clone.
Map* map = source->map();
int object_size = map->instance_size();
HeapObject* clone;
ASSERT(site == NULL || AllocationSite::CanTrack(map->instance_type()));
WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
// If we're forced to always allocate, we use the general allocation
// functions which may leave us with an object in old space.
if (always_allocate()) {
{ AllocationResult allocation =
AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
if (!allocation.To(&clone)) return allocation;
}
Address clone_address = clone->address();
CopyBlock(clone_address,
source->address(),
object_size);
// Update write barrier for all fields that lie beyond the header.
RecordWrites(clone_address,
JSObject::kHeaderSize,
(object_size - JSObject::kHeaderSize) / kPointerSize);
} else {
wb_mode = SKIP_WRITE_BARRIER;
{ int adjusted_object_size = site != NULL
? object_size + AllocationMemento::kSize
: object_size;
AllocationResult allocation =
AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE);
if (!allocation.To(&clone)) return allocation;
}
SLOW_ASSERT(InNewSpace(clone));
// Since we know the clone is allocated in new space, we can copy
// the contents without worrying about updating the write barrier.
CopyBlock(clone->address(),
source->address(),
object_size);
if (site != NULL) {
AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
reinterpret_cast<Address>(clone) + object_size);
InitializeAllocationMemento(alloc_memento, site);
}
}
SLOW_ASSERT(
JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
FixedArray* properties = FixedArray::cast(source->properties());
// Update elements if necessary.
if (elements->length() > 0) {
FixedArrayBase* elem;
{ AllocationResult allocation;
if (elements->map() == fixed_cow_array_map()) {
allocation = FixedArray::cast(elements);
} else if (source->HasFastDoubleElements()) {
allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
} else {
allocation = CopyFixedArray(FixedArray::cast(elements));
}
if (!allocation.To(&elem)) return allocation;
}
JSObject::cast(clone)->set_elements(elem, wb_mode);
}
// Update properties if necessary.
if (properties->length() > 0) {
FixedArray* prop;
{ AllocationResult allocation = CopyFixedArray(properties);
if (!allocation.To(&prop)) return allocation;
}
JSObject::cast(clone)->set_properties(prop, wb_mode);
}
// Return the new clone.
return clone;
}
static inline void WriteOneByteData(Vector<const char> vector,
uint8_t* chars,
int len) {
// Only works for ascii.
ASSERT(vector.length() == len);
MemCopy(chars, vector.start(), len);
}
static inline void WriteTwoByteData(Vector<const char> vector,
uint16_t* chars,
int len) {
const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start());
unsigned stream_length = vector.length();
while (stream_length != 0) {
unsigned consumed = 0;
uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed);
ASSERT(c != unibrow::Utf8::kBadChar);
ASSERT(consumed <= stream_length);
stream_length -= consumed;
stream += consumed;
if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) {
len -= 2;
if (len < 0) break;
*chars++ = unibrow::Utf16::LeadSurrogate(c);
*chars++ = unibrow::Utf16::TrailSurrogate(c);
} else {
len -= 1;
if (len < 0) break;
*chars++ = c;
}
}
ASSERT(stream_length == 0);
ASSERT(len == 0);
}
static inline void WriteOneByteData(String* s, uint8_t* chars, int len) {
ASSERT(s->length() == len);
String::WriteToFlat(s, chars, 0, len);
}
static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) {
ASSERT(s->length() == len);
String::WriteToFlat(s, chars, 0, len);
}
template<bool is_one_byte, typename T>
AllocationResult Heap::AllocateInternalizedStringImpl(
T t, int chars, uint32_t hash_field) {
ASSERT(chars >= 0);
// Compute map and object size.
int size;
Map* map;
ASSERT_LE(0, chars);
ASSERT_GE(String::kMaxLength, chars);
if (is_one_byte) {
map = ascii_internalized_string_map();
size = SeqOneByteString::SizeFor(chars);
} else {
map = internalized_string_map();
size = SeqTwoByteString::SizeFor(chars);
}
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
// Allocate string.
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(chars);
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
if (is_one_byte) {
WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars);
} else {
WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars);
}
return answer;
}
// Need explicit instantiations.
template
AllocationResult Heap::AllocateInternalizedStringImpl<true>(
String*, int, uint32_t);
template
AllocationResult Heap::AllocateInternalizedStringImpl<false>(
String*, int, uint32_t);
template
AllocationResult Heap::AllocateInternalizedStringImpl<false>(
Vector<const char>, int, uint32_t);
AllocationResult Heap::AllocateRawOneByteString(int length,
PretenureFlag pretenure) {
ASSERT_LE(0, length);
ASSERT_GE(String::kMaxLength, length);
int size = SeqOneByteString::SizeFor(length);
ASSERT(size <= SeqOneByteString::kMaxSize);
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
// Partially initialize the object.
result->set_map_no_write_barrier(ascii_string_map());
String::cast(result)->set_length(length);
String::cast(result)->set_hash_field(String::kEmptyHashField);
ASSERT_EQ(size, HeapObject::cast(result)->Size());
return result;
}
AllocationResult Heap::AllocateRawTwoByteString(int length,
PretenureFlag pretenure) {
ASSERT_LE(0, length);
ASSERT_GE(String::kMaxLength, length);
int size = SeqTwoByteString::SizeFor(length);
ASSERT(size <= SeqTwoByteString::kMaxSize);
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* result;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
// Partially initialize the object.
result->set_map_no_write_barrier(string_map());
String::cast(result)->set_length(length);
String::cast(result)->set_hash_field(String::kEmptyHashField);
ASSERT_EQ(size, HeapObject::cast(result)->Size());
return result;
}
AllocationResult Heap::AllocateEmptyFixedArray() {
int size = FixedArray::SizeFor(0);
HeapObject* result;
{ AllocationResult allocation =
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
// Initialize the object.
result->set_map_no_write_barrier(fixed_array_map());
FixedArray::cast(result)->set_length(0);
return result;
}
AllocationResult Heap::AllocateEmptyExternalArray(
ExternalArrayType array_type) {
return AllocateExternalArray(0, array_type, NULL, TENURED);
}
AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) {
if (!InNewSpace(src)) {
return src;
}
int len = src->length();
HeapObject* obj;
{ AllocationResult allocation = AllocateRawFixedArray(len, TENURED);
if (!allocation.To(&obj)) return allocation;
}
obj->set_map_no_write_barrier(fixed_array_map());
FixedArray* result = FixedArray::cast(obj);
result->set_length(len);
// Copy the content
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
// TODO(mvstanton): The map is set twice because of protection against calling
// set() on a COW FixedArray. Issue v8:3221 created to track this, and
// we might then be able to remove this whole method.
HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map());
return result;
}
AllocationResult Heap::AllocateEmptyFixedTypedArray(
ExternalArrayType array_type) {
return AllocateFixedTypedArray(0, array_type, TENURED);
}
AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
int len = src->length();
HeapObject* obj;
{ AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED);
if (!allocation.To(&obj)) return allocation;
}
if (InNewSpace(obj)) {
obj->set_map_no_write_barrier(map);
CopyBlock(obj->address() + kPointerSize,
src->address() + kPointerSize,
FixedArray::SizeFor(len) - kPointerSize);
return obj;
}
obj->set_map_no_write_barrier(map);
FixedArray* result = FixedArray::cast(obj);
result->set_length(len);
// Copy the content
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
return result;
}
AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
Map* map) {
int len = src->length();
HeapObject* obj;
{ AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED);
if (!allocation.To(&obj)) return allocation;
}
obj->set_map_no_write_barrier(map);
CopyBlock(
obj->address() + FixedDoubleArray::kLengthOffset,
src->address() + FixedDoubleArray::kLengthOffset,
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
return obj;
}
AllocationResult Heap::CopyConstantPoolArrayWithMap(ConstantPoolArray* src,
Map* map) {
HeapObject* obj;
if (src->is_extended_layout()) {
ConstantPoolArray::NumberOfEntries small(src,
ConstantPoolArray::SMALL_SECTION);
ConstantPoolArray::NumberOfEntries extended(src,
ConstantPoolArray::EXTENDED_SECTION);
AllocationResult allocation =
AllocateExtendedConstantPoolArray(small, extended);
if (!allocation.To(&obj)) return allocation;
} else {
ConstantPoolArray::NumberOfEntries small(src,
ConstantPoolArray::SMALL_SECTION);
AllocationResult allocation = AllocateConstantPoolArray(small);
if (!allocation.To(&obj)) return allocation;
}
obj->set_map_no_write_barrier(map);
CopyBlock(
obj->address() + ConstantPoolArray::kFirstEntryOffset,
src->address() + ConstantPoolArray::kFirstEntryOffset,
src->size() - ConstantPoolArray::kFirstEntryOffset);
return obj;
}
AllocationResult Heap::AllocateRawFixedArray(int length,
PretenureFlag pretenure) {
if (length < 0 || length > FixedArray::kMaxLength) {
v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
}
int size = FixedArray::SizeFor(length);
AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, pretenure);
return AllocateRaw(size, space, OLD_POINTER_SPACE);
}
AllocationResult Heap::AllocateFixedArrayWithFiller(int length,
PretenureFlag pretenure,
Object* filler) {
ASSERT(length >= 0);
ASSERT(empty_fixed_array()->IsFixedArray());
if (length == 0) return empty_fixed_array();
ASSERT(!InNewSpace(filler));
HeapObject* result;
{ AllocationResult allocation = AllocateRawFixedArray(length, pretenure);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(fixed_array_map());
FixedArray* array = FixedArray::cast(result);
array->set_length(length);
MemsetPointer(array->data_start(), filler, length);
return array;
}
AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
return AllocateFixedArrayWithFiller(length, pretenure, undefined_value());
}
AllocationResult Heap::AllocateUninitializedFixedArray(int length) {
if (length == 0) return empty_fixed_array();
HeapObject* obj;
{ AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED);
if (!allocation.To(&obj)) return allocation;
}
obj->set_map_no_write_barrier(fixed_array_map());
FixedArray::cast(obj)->set_length(length);
return obj;
}
AllocationResult Heap::AllocateUninitializedFixedDoubleArray(
int length,
PretenureFlag pretenure) {
if (length == 0) return empty_fixed_array();
HeapObject* elements;
AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure);
if (!allocation.To(&elements)) return allocation;
elements->set_map_no_write_barrier(fixed_double_array_map());
FixedDoubleArray::cast(elements)->set_length(length);
return elements;
}
AllocationResult Heap::AllocateRawFixedDoubleArray(int length,
PretenureFlag pretenure) {
if (length < 0 || length > FixedDoubleArray::kMaxLength) {
v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true);
}
int size = FixedDoubleArray::SizeFor(length);
#ifndef V8_HOST_ARCH_64_BIT
size += kPointerSize;
#endif
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, pretenure);
HeapObject* object;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&object)) return allocation;
}
return EnsureDoubleAligned(this, object, size);
}
AllocationResult Heap::AllocateConstantPoolArray(
const ConstantPoolArray::NumberOfEntries& small) {
CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
int size = ConstantPoolArray::SizeFor(small);
#ifndef V8_HOST_ARCH_64_BIT
size += kPointerSize;
#endif
AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
HeapObject* object;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
if (!allocation.To(&object)) return allocation;
}
object = EnsureDoubleAligned(this, object, size);
object->set_map_no_write_barrier(constant_pool_array_map());
ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
constant_pool->Init(small);
constant_pool->ClearPtrEntries(isolate());
return constant_pool;
}
AllocationResult Heap::AllocateExtendedConstantPoolArray(
const ConstantPoolArray::NumberOfEntries& small,
const ConstantPoolArray::NumberOfEntries& extended) {
CHECK(small.are_in_range(0, ConstantPoolArray::kMaxSmallEntriesPerType));
CHECK(extended.are_in_range(0, kMaxInt));
int size = ConstantPoolArray::SizeForExtended(small, extended);
#ifndef V8_HOST_ARCH_64_BIT
size += kPointerSize;
#endif
AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
HeapObject* object;
{ AllocationResult allocation = AllocateRaw(size, space, OLD_POINTER_SPACE);
if (!allocation.To(&object)) return allocation;
}
object = EnsureDoubleAligned(this, object, size);
object->set_map_no_write_barrier(constant_pool_array_map());
ConstantPoolArray* constant_pool = ConstantPoolArray::cast(object);
constant_pool->InitExtended(small, extended);
constant_pool->ClearPtrEntries(isolate());
return constant_pool;
}
AllocationResult Heap::AllocateEmptyConstantPoolArray() {
ConstantPoolArray::NumberOfEntries small(0, 0, 0, 0);
int size = ConstantPoolArray::SizeFor(small);
HeapObject* result;
{ AllocationResult allocation =
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map_no_write_barrier(constant_pool_array_map());
ConstantPoolArray::cast(result)->Init(small);
return result;
}
AllocationResult Heap::AllocateSymbol() {
// Statically ensure that it is safe to allocate symbols in paged spaces.
STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize);
HeapObject* result;
AllocationResult allocation =
AllocateRaw(Symbol::kSize, OLD_POINTER_SPACE, OLD_POINTER_SPACE);
if (!allocation.To(&result)) return allocation;
result->set_map_no_write_barrier(symbol_map());
// Generate a random hash value.
int hash;
int attempts = 0;
do {
hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask;
attempts++;
} while (hash == 0 && attempts < 30);
if (hash == 0) hash = 1; // never return 0
Symbol::cast(result)->set_hash_field(
Name::kIsNotArrayIndexMask | (hash << Name::kHashShift));
Symbol::cast(result)->set_name(undefined_value());
Symbol::cast(result)->set_flags(Smi::FromInt(0));
ASSERT(!Symbol::cast(result)->is_private());
return result;
}
AllocationResult Heap::AllocateStruct(InstanceType type) {
Map* map;
switch (type) {
#define MAKE_CASE(NAME, Name, name) \
case NAME##_TYPE: map = name##_map(); break;
STRUCT_LIST(MAKE_CASE)
#undef MAKE_CASE
default:
UNREACHABLE();
return exception();
}
int size = map->instance_size();
AllocationSpace space = SelectSpace(size, OLD_POINTER_SPACE, TENURED);
Struct* result;
{ AllocationResult allocation = Allocate(map, space);
if (!allocation.To(&result)) return allocation;
}
result->InitializeBody(size);
return result;
}
bool Heap::IsHeapIterable() {
return (!old_pointer_space()->was_swept_conservatively() &&
!old_data_space()->was_swept_conservatively() &&
new_space_top_after_last_gc_ == new_space()->top());
}
void Heap::MakeHeapIterable() {
ASSERT(AllowHeapAllocation::IsAllowed());
if (!IsHeapIterable()) {
CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable");
}
ASSERT(IsHeapIterable());
}
void Heap::AdvanceIdleIncrementalMarking(intptr_t step_size) {
incremental_marking()->Step(step_size,
IncrementalMarking::NO_GC_VIA_STACK_GUARD);
if (incremental_marking()->IsComplete()) {
bool uncommit = false;
if (gc_count_at_last_idle_gc_ == gc_count_) {
// No GC since the last full GC, the mutator is probably not active.
isolate_->compilation_cache()->Clear();
uncommit = true;
}
CollectAllGarbage(kReduceMemoryFootprintMask,
"idle notification: finalize incremental");
mark_sweeps_since_idle_round_started_++;
gc_count_at_last_idle_gc_ = gc_count_;
if (uncommit) {
new_space_.Shrink();
UncommitFromSpace();
}
}
}
bool Heap::IdleNotification(int hint) {
// Hints greater than this value indicate that
// the embedder is requesting a lot of GC work.
const int kMaxHint = 1000;
const int kMinHintForIncrementalMarking = 10;
// Minimal hint that allows to do full GC.
const int kMinHintForFullGC = 100;
intptr_t size_factor = Min(Max(hint, 20), kMaxHint) / 4;
// The size factor is in range [5..250]. The numbers here are chosen from
// experiments. If you changes them, make sure to test with
// chrome/performance_ui_tests --gtest_filter="GeneralMixMemoryTest.*
intptr_t step_size =
size_factor * IncrementalMarking::kAllocatedThreshold;
if (contexts_disposed_ > 0) {
contexts_disposed_ = 0;
int mark_sweep_time = Min(TimeMarkSweepWouldTakeInMs(), 1000);
if (hint >= mark_sweep_time && !FLAG_expose_gc &&
incremental_marking()->IsStopped()) {
HistogramTimerScope scope(isolate_->counters()->gc_context());
CollectAllGarbage(kReduceMemoryFootprintMask,
"idle notification: contexts disposed");
} else {
AdvanceIdleIncrementalMarking(step_size);
}
// After context disposal there is likely a lot of garbage remaining, reset
// the idle notification counters in order to trigger more incremental GCs
// on subsequent idle notifications.
StartIdleRound();
return false;
}
if (!FLAG_incremental_marking || isolate_->serializer_enabled()) {
return IdleGlobalGC();
}
// By doing small chunks of GC work in each IdleNotification,
// perform a round of incremental GCs and after that wait until
// the mutator creates enough garbage to justify a new round.
// An incremental GC progresses as follows:
// 1. many incremental marking steps,
// 2. one old space mark-sweep-compact,
// Use mark-sweep-compact events to count incremental GCs in a round.
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
if (EnoughGarbageSinceLastIdleRound()) {
StartIdleRound();
} else {
return true;
}
}
int remaining_mark_sweeps = kMaxMarkSweepsInIdleRound -
mark_sweeps_since_idle_round_started_;
if (incremental_marking()->IsStopped()) {
// If there are no more than two GCs left in this idle round and we are
// allowed to do a full GC, then make those GCs full in order to compact
// the code space.
// TODO(ulan): Once we enable code compaction for incremental marking,
// we can get rid of this special case and always start incremental marking.
if (remaining_mark_sweeps <= 2 && hint >= kMinHintForFullGC) {
CollectAllGarbage(kReduceMemoryFootprintMask,
"idle notification: finalize idle round");
mark_sweeps_since_idle_round_started_++;
} else if (hint > kMinHintForIncrementalMarking) {
incremental_marking()->Start();
}
}
if (!incremental_marking()->IsStopped() &&
hint > kMinHintForIncrementalMarking) {
AdvanceIdleIncrementalMarking(step_size);
}
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
FinishIdleRound();
return true;
}
// If the IdleNotifcation is called with a large hint we will wait for
// the sweepter threads here.
if (hint >= kMinHintForFullGC &&
mark_compact_collector()->IsConcurrentSweepingInProgress()) {
mark_compact_collector()->WaitUntilSweepingCompleted();
}
return false;
}
bool Heap::IdleGlobalGC() {
static const int kIdlesBeforeScavenge = 4;
static const int kIdlesBeforeMarkSweep = 7;
static const int kIdlesBeforeMarkCompact = 8;
static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
static const unsigned int kGCsBetweenCleanup = 4;
if (!last_idle_notification_gc_count_init_) {
last_idle_notification_gc_count_ = gc_count_;
last_idle_notification_gc_count_init_ = true;
}
bool uncommit = true;
bool finished = false;
// Reset the number of idle notifications received when a number of
// GCs have taken place. This allows another round of cleanup based
// on idle notifications if enough work has been carried out to
// provoke a number of garbage collections.
if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
number_idle_notifications_ =
Min(number_idle_notifications_ + 1, kMaxIdleCount);
} else {
number_idle_notifications_ = 0;
last_idle_notification_gc_count_ = gc_count_;
}
if (number_idle_notifications_ == kIdlesBeforeScavenge) {
CollectGarbage(NEW_SPACE, "idle notification");
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
} else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
// Before doing the mark-sweep collections we clear the
// compilation cache to avoid hanging on to source code and
// generated code for cached functions.
isolate_->compilation_cache()->Clear();
CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
} else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
CollectAllGarbage(kReduceMemoryFootprintMask, "idle notification");
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
number_idle_notifications_ = 0;
finished = true;
} else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
// If we have received more than kIdlesBeforeMarkCompact idle
// notifications we do not perform any cleanup because we don't
// expect to gain much by doing so.
finished = true;
}
if (uncommit) UncommitFromSpace();
return finished;
}
#ifdef DEBUG
void Heap::Print() {
if (!HasBeenSetUp()) return;
isolate()->PrintStack(stdout);
AllSpaces spaces(this);
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
space->Print();
}
}
void Heap::ReportCodeStatistics(const char* title) {
PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
PagedSpace::ResetCodeStatistics(isolate());
// We do not look for code in new space, map space, or old space. If code
// somehow ends up in those spaces, we would miss it here.
code_space_->CollectCodeStatistics();
lo_space_->CollectCodeStatistics();
PagedSpace::ReportCodeStatistics(isolate());
}
// This function expects that NewSpace's allocated objects histogram is
// populated (via a call to CollectStatistics or else as a side effect of a
// just-completed scavenge collection).
void Heap::ReportHeapStatistics(const char* title) {
USE(title);
PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
title, gc_count_);
PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n",
old_generation_allocation_limit_);
PrintF("\n");
PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_));
isolate_->global_handles()->PrintStats();
PrintF("\n");
PrintF("Heap statistics : ");
isolate_->memory_allocator()->ReportStatistics();
PrintF("To space : ");
new_space_.ReportStatistics();
PrintF("Old pointer space : ");
old_pointer_space_->ReportStatistics();
PrintF("Old data space : ");
old_data_space_->ReportStatistics();
PrintF("Code space : ");
code_space_->ReportStatistics();
PrintF("Map space : ");
map_space_->ReportStatistics();
PrintF("Cell space : ");
cell_space_->ReportStatistics();
PrintF("PropertyCell space : ");
property_cell_space_->ReportStatistics();
PrintF("Large object space : ");
lo_space_->ReportStatistics();
PrintF(">>>>>> ========================================= >>>>>>\n");
}
#endif // DEBUG
bool Heap::Contains(HeapObject* value) {
return Contains(value->address());
}
bool Heap::Contains(Address addr) {
if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
return HasBeenSetUp() &&
(new_space_.ToSpaceContains(addr) ||
old_pointer_space_->Contains(addr) ||
old_data_space_->Contains(addr) ||
code_space_->Contains(addr) ||
map_space_->Contains(addr) ||
cell_space_->Contains(addr) ||
property_cell_space_->Contains(addr) ||
lo_space_->SlowContains(addr));
}
bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
return InSpace(value->address(), space);
}
bool Heap::InSpace(Address addr, AllocationSpace space) {
if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false;
if (!HasBeenSetUp()) return false;
switch (space) {
case NEW_SPACE:
return new_space_.ToSpaceContains(addr);
case OLD_POINTER_SPACE:
return old_pointer_space_->Contains(addr);
case OLD_DATA_SPACE:
return old_data_space_->Contains(addr);
case CODE_SPACE:
return code_space_->Contains(addr);
case MAP_SPACE:
return map_space_->Contains(addr);
case CELL_SPACE:
return cell_space_->Contains(addr);
case PROPERTY_CELL_SPACE:
return property_cell_space_->Contains(addr);
case LO_SPACE:
return lo_space_->SlowContains(addr);
case INVALID_SPACE:
break;
}
UNREACHABLE();
return false;
}
#ifdef VERIFY_HEAP
void Heap::Verify() {
CHECK(HasBeenSetUp());
HandleScope scope(isolate());
store_buffer()->Verify();
VerifyPointersVisitor visitor;
IterateRoots(&visitor, VISIT_ONLY_STRONG);
VerifySmisVisitor smis_visitor;
IterateSmiRoots(&smis_visitor);
new_space_.Verify();
old_pointer_space_->Verify(&visitor);
map_space_->Verify(&visitor);
VerifyPointersVisitor no_dirty_regions_visitor;
old_data_space_->Verify(&no_dirty_regions_visitor);
code_space_->Verify(&no_dirty_regions_visitor);
cell_space_->Verify(&no_dirty_regions_visitor);
property_cell_space_->Verify(&no_dirty_regions_visitor);
lo_space_->Verify();
}
#endif
void Heap::ZapFromSpace() {
NewSpacePageIterator it(new_space_.FromSpaceStart(),
new_space_.FromSpaceEnd());
while (it.has_next()) {
NewSpacePage* page = it.next();
for (Address cursor = page->area_start(), limit = page->area_end();
cursor < limit;
cursor += kPointerSize) {
Memory::Address_at(cursor) = kFromSpaceZapValue;
}
}
}
void Heap::IterateAndMarkPointersToFromSpace(Address start,
Address end,
ObjectSlotCallback callback) {
Address slot_address = start;
// We are not collecting slots on new space objects during mutation
// thus we have to scan for pointers to evacuation candidates when we
// promote objects. But we should not record any slots in non-black
// objects. Grey object's slots would be rescanned.
// White object might not survive until the end of collection
// it would be a violation of the invariant to record it's slots.
bool record_slots = false;
if (incremental_marking()->IsCompacting()) {
MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
record_slots = Marking::IsBlack(mark_bit);
}
while (slot_address < end) {
Object** slot = reinterpret_cast<Object**>(slot_address);
Object* object = *slot;
// If the store buffer becomes overfull we mark pages as being exempt from
// the store buffer. These pages are scanned to find pointers that point
// to the new space. In that case we may hit newly promoted objects and
// fix the pointers before the promotion queue gets to them. Thus the 'if'.
if (object->IsHeapObject()) {
if (Heap::InFromSpace(object)) {
callback(reinterpret_cast<HeapObject**>(slot),
HeapObject::cast(object));
Object* new_object = *slot;
if (InNewSpace(new_object)) {
SLOW_ASSERT(Heap::InToSpace(new_object));
SLOW_ASSERT(new_object->IsHeapObject());
store_buffer_.EnterDirectlyIntoStoreBuffer(
reinterpret_cast<Address>(slot));
}
SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
} else if (record_slots &&
MarkCompactCollector::IsOnEvacuationCandidate(object)) {
mark_compact_collector()->RecordSlot(slot, slot, object);
}
}
slot_address += kPointerSize;
}
}
#ifdef DEBUG
typedef bool (*CheckStoreBufferFilter)(Object** addr);
bool IsAMapPointerAddress(Object** addr) {
uintptr_t a = reinterpret_cast<uintptr_t>(addr);
int mod = a % Map::kSize;
return mod >= Map::kPointerFieldsBeginOffset &&
mod < Map::kPointerFieldsEndOffset;
}
bool EverythingsAPointer(Object** addr) {
return true;
}
static void CheckStoreBuffer(Heap* heap,
Object** current,
Object** limit,
Object**** store_buffer_position,
Object*** store_buffer_top,
CheckStoreBufferFilter filter,
Address special_garbage_start,
Address special_garbage_end) {
Map* free_space_map = heap->free_space_map();
for ( ; current < limit; current++) {
Object* o = *current;
Address current_address = reinterpret_cast<Address>(current);
// Skip free space.
if (o == free_space_map) {
Address current_address = reinterpret_cast<Address>(current);
FreeSpace* free_space =
FreeSpace::cast(HeapObject::FromAddress(current_address));
int skip = free_space->Size();
ASSERT(current_address + skip <= reinterpret_cast<Address>(limit));
ASSERT(skip > 0);
current_address += skip - kPointerSize;
current = reinterpret_cast<Object**>(current_address);
continue;
}
// Skip the current linear allocation space between top and limit which is
// unmarked with the free space map, but can contain junk.
if (current_address == special_garbage_start &&
special_garbage_end != special_garbage_start) {
current_address = special_garbage_end - kPointerSize;
current = reinterpret_cast<Object**>(current_address);
continue;
}
if (!(*filter)(current)) continue;
ASSERT(current_address < special_garbage_start ||
current_address >= special_garbage_end);
ASSERT(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
// We have to check that the pointer does not point into new space
// without trying to cast it to a heap object since the hash field of
// a string can contain values like 1 and 3 which are tagged null
// pointers.
if (!heap->InNewSpace(o)) continue;
while (**store_buffer_position < current &&
*store_buffer_position < store_buffer_top) {
(*store_buffer_position)++;
}
if (**store_buffer_position != current ||
*store_buffer_position == store_buffer_top) {
Object** obj_start = current;
while (!(*obj_start)->IsMap()) obj_start--;
UNREACHABLE();
}
}
}
// Check that the store buffer contains all intergenerational pointers by
// scanning a page and ensuring that all pointers to young space are in the
// store buffer.
void Heap::OldPointerSpaceCheckStoreBuffer() {
OldSpace* space = old_pointer_space();
PageIterator pages(space);
store_buffer()->SortUniq();
while (pages.has_next()) {
Page* page = pages.next();
Object** current = reinterpret_cast<Object**>(page->area_start());
Address end = page->area_end();
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** limit = reinterpret_cast<Object**>(end);
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&EverythingsAPointer,
space->top(),
space->limit());
}
}
void Heap::MapSpaceCheckStoreBuffer() {
MapSpace* space = map_space();
PageIterator pages(space);
store_buffer()->SortUniq();
while (pages.has_next()) {
Page* page = pages.next();
Object** current = reinterpret_cast<Object**>(page->area_start());
Address end = page->area_end();
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** limit = reinterpret_cast<Object**>(end);
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&IsAMapPointerAddress,
space->top(),
space->limit());
}
}
void Heap::LargeObjectSpaceCheckStoreBuffer() {
LargeObjectIterator it(lo_space());
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
// We only have code, sequential strings, or fixed arrays in large
// object space, and only fixed arrays can possibly contain pointers to
// the young generation.
if (object->IsFixedArray()) {
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** current = reinterpret_cast<Object**>(object->address());
Object** limit =
reinterpret_cast<Object**>(object->address() + object->Size());
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&EverythingsAPointer,
NULL,
NULL);
}
}
}
#endif
void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
IterateStrongRoots(v, mode);
IterateWeakRoots(v, mode);
}
void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex]));
v->Synchronize(VisitorSynchronization::kStringTable);
if (mode != VISIT_ALL_IN_SCAVENGE &&
mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
// Scavenge collections have special processing for this.
external_string_table_.Iterate(v);
}
v->Synchronize(VisitorSynchronization::kExternalStringsTable);
}
void Heap::IterateSmiRoots(ObjectVisitor* v) {
// Acquire execution access since we are going to read stack limit values.
ExecutionAccess access(isolate());
v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]);
v->Synchronize(VisitorSynchronization::kSmiRootList);
}
void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
v->Synchronize(VisitorSynchronization::kStrongRootList);
v->VisitPointer(BitCast<Object**>(&hidden_string_));
v->Synchronize(VisitorSynchronization::kInternalizedString);
isolate_->bootstrapper()->Iterate(v);
v->Synchronize(VisitorSynchronization::kBootstrapper);
isolate_->Iterate(v);
v->Synchronize(VisitorSynchronization::kTop);
Relocatable::Iterate(isolate_, v);
v->Synchronize(VisitorSynchronization::kRelocatable);
if (isolate_->deoptimizer_data() != NULL) {
isolate_->deoptimizer_data()->Iterate(v);
}
v->Synchronize(VisitorSynchronization::kDebug);
isolate_->compilation_cache()->Iterate(v);
v->Synchronize(VisitorSynchronization::kCompilationCache);
// Iterate over local handles in handle scopes.
isolate_->handle_scope_implementer()->Iterate(v);
isolate_->IterateDeferredHandles(v);
v->Synchronize(VisitorSynchronization::kHandleScope);
// Iterate over the builtin code objects and code stubs in the
// heap. Note that it is not necessary to iterate over code objects
// on scavenge collections.
if (mode != VISIT_ALL_IN_SCAVENGE) {
isolate_->builtins()->IterateBuiltins(v);
}
v->Synchronize(VisitorSynchronization::kBuiltins);
// Iterate over global handles.
switch (mode) {
case VISIT_ONLY_STRONG:
isolate_->global_handles()->IterateStrongRoots(v);
break;
case VISIT_ALL_IN_SCAVENGE:
isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
break;
case VISIT_ALL_IN_SWEEP_NEWSPACE:
case VISIT_ALL:
isolate_->global_handles()->IterateAllRoots(v);
break;
}
v->Synchronize(VisitorSynchronization::kGlobalHandles);
// Iterate over eternal handles.
if (mode == VISIT_ALL_IN_SCAVENGE) {
isolate_->eternal_handles()->IterateNewSpaceRoots(v);
} else {
isolate_->eternal_handles()->IterateAllRoots(v);
}
v->Synchronize(VisitorSynchronization::kEternalHandles);
// Iterate over pointers being held by inactive threads.
isolate_->thread_manager()->Iterate(v);
v->Synchronize(VisitorSynchronization::kThreadManager);
// Iterate over the pointers the Serialization/Deserialization code is
// holding.
// During garbage collection this keeps the partial snapshot cache alive.
// During deserialization of the startup snapshot this creates the partial
// snapshot cache and deserializes the objects it refers to. During
// serialization this does nothing, since the partial snapshot cache is
// empty. However the next thing we do is create the partial snapshot,
// filling up the partial snapshot cache with objects it needs as we go.
SerializerDeserializer::Iterate(isolate_, v);
// We don't do a v->Synchronize call here, because in debug mode that will
// output a flag to the snapshot. However at this point the serializer and
// deserializer are deliberately a little unsynchronized (see above) so the
// checking of the sync flag in the snapshot would fail.
}
// TODO(1236194): Since the heap size is configurable on the command line
// and through the API, we should gracefully handle the case that the heap
// size is not big enough to fit all the initial objects.
bool Heap::ConfigureHeap(int max_semi_space_size,
int max_old_space_size,
int max_executable_size,
size_t code_range_size) {
if (HasBeenSetUp()) return false;
// Overwrite default configuration.
if (max_semi_space_size > 0) {
max_semi_space_size_ = max_semi_space_size * MB;
}
if (max_old_space_size > 0) {
max_old_generation_size_ = max_old_space_size * MB;
}
if (max_executable_size > 0) {
max_executable_size_ = max_executable_size * MB;
}
// If max space size flags are specified overwrite the configuration.
if (FLAG_max_semi_space_size > 0) {
max_semi_space_size_ = FLAG_max_semi_space_size * MB;
}
if (FLAG_max_old_space_size > 0) {
max_old_generation_size_ = FLAG_max_old_space_size * MB;
}
if (FLAG_max_executable_size > 0) {
max_executable_size_ = FLAG_max_executable_size * MB;
}
if (FLAG_stress_compaction) {
// This will cause more frequent GCs when stressing.
max_semi_space_size_ = Page::kPageSize;
}
if (Snapshot::IsEnabled()) {
// If we are using a snapshot we always reserve the default amount
// of memory for each semispace because code in the snapshot has
// write-barrier code that relies on the size and alignment of new
// space. We therefore cannot use a larger max semispace size
// than the default reserved semispace size.
if (max_semi_space_size_ > reserved_semispace_size_) {
max_semi_space_size_ = reserved_semispace_size_;
if (FLAG_trace_gc) {
PrintPID("Max semi-space size cannot be more than %d kbytes\n",
reserved_semispace_size_ >> 10);
}
}
} else {
// If we are not using snapshots we reserve space for the actual
// max semispace size.
reserved_semispace_size_ = max_semi_space_size_;
}
// The max executable size must be less than or equal to the max old
// generation size.
if (max_executable_size_ > max_old_generation_size_) {
max_executable_size_ = max_old_generation_size_;
}
// The new space size must be a power of two to support single-bit testing
// for containment.
max_semi_space_size_ = RoundUpToPowerOf2(max_semi_space_size_);
reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
if (FLAG_min_semi_space_size > 0) {
int initial_semispace_size = FLAG_min_semi_space_size * MB;
if (initial_semispace_size > max_semi_space_size_) {
initial_semispace_size_ = max_semi_space_size_;
if (FLAG_trace_gc) {
PrintPID("Min semi-space size cannot be more than the maximum"
"semi-space size of %d MB\n", max_semi_space_size_);
}
} else {
initial_semispace_size_ = initial_semispace_size;
}
}
initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_);
// The old generation is paged and needs at least one page for each space.
int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
max_old_generation_size_ =
Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize),
max_old_generation_size_);
// We rely on being able to allocate new arrays in paged spaces.
ASSERT(Page::kMaxRegularHeapObjectSize >=
(JSArray::kSize +
FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) +
AllocationMemento::kSize));
code_range_size_ = code_range_size * MB;
configured_ = true;
return true;
}
bool Heap::ConfigureHeapDefault() {
return ConfigureHeap(0, 0, 0, 0);
}
void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
*stats->start_marker = HeapStats::kStartMarker;
*stats->end_marker = HeapStats::kEndMarker;
*stats->new_space_size = new_space_.SizeAsInt();
*stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
*stats->old_pointer_space_size = old_pointer_space_->SizeOfObjects();
*stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
*stats->old_data_space_size = old_data_space_->SizeOfObjects();
*stats->old_data_space_capacity = old_data_space_->Capacity();
*stats->code_space_size = code_space_->SizeOfObjects();
*stats->code_space_capacity = code_space_->Capacity();
*stats->map_space_size = map_space_->SizeOfObjects();
*stats->map_space_capacity = map_space_->Capacity();
*stats->cell_space_size = cell_space_->SizeOfObjects();
*stats->cell_space_capacity = cell_space_->Capacity();
*stats->property_cell_space_size = property_cell_space_->SizeOfObjects();
*stats->property_cell_space_capacity = property_cell_space_->Capacity();
*stats->lo_space_size = lo_space_->Size();
isolate_->global_handles()->RecordStats(stats);
*stats->memory_allocator_size = isolate()->memory_allocator()->Size();
*stats->memory_allocator_capacity =
isolate()->memory_allocator()->Size() +
isolate()->memory_allocator()->Available();
*stats->os_error = OS::GetLastError();
isolate()->memory_allocator()->Available();
if (take_snapshot) {
HeapIterator iterator(this);
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
InstanceType type = obj->map()->instance_type();
ASSERT(0 <= type && type <= LAST_TYPE);
stats->objects_per_type[type]++;
stats->size_per_type[type] += obj->Size();
}
}
}
intptr_t Heap::PromotedSpaceSizeOfObjects() {
return old_pointer_space_->SizeOfObjects()
+ old_data_space_->SizeOfObjects()
+ code_space_->SizeOfObjects()
+ map_space_->SizeOfObjects()
+ cell_space_->SizeOfObjects()
+ property_cell_space_->SizeOfObjects()
+ lo_space_->SizeOfObjects();
}
int64_t Heap::PromotedExternalMemorySize() {
if (amount_of_external_allocated_memory_
<= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
return amount_of_external_allocated_memory_
- amount_of_external_allocated_memory_at_last_global_gc_;
}
intptr_t Heap::OldGenerationAllocationLimit(intptr_t old_gen_size,
int freed_global_handles) {
const int kMaxHandles = 1000;
const int kMinHandles = 100;
double min_factor = 1.1;
double max_factor = 4;
// We set the old generation growing factor to 2 to grow the heap slower on
// memory-constrained devices.
if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice) {
max_factor = 2;
}
// If there are many freed global handles, then the next full GC will
// likely collect a lot of garbage. Choose the heap growing factor
// depending on freed global handles.
// TODO(ulan, hpayer): Take into account mutator utilization.
double factor;
if (freed_global_handles <= kMinHandles) {
factor = max_factor;
} else if (freed_global_handles >= kMaxHandles) {
factor = min_factor;
} else {
// Compute factor using linear interpolation between points
// (kMinHandles, max_factor) and (kMaxHandles, min_factor).
factor = max_factor -
(freed_global_handles - kMinHandles) * (max_factor - min_factor) /
(kMaxHandles - kMinHandles);
}
if (FLAG_stress_compaction ||
mark_compact_collector()->reduce_memory_footprint_) {
factor = min_factor;
}
intptr_t limit = static_cast<intptr_t>(old_gen_size * factor);
limit = Max(limit, kMinimumOldGenerationAllocationLimit);
limit += new_space_.Capacity();
intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2;
return Min(limit, halfway_to_the_max);
}
void Heap::EnableInlineAllocation() {
if (!inline_allocation_disabled_) return;
inline_allocation_disabled_ = false;
// Update inline allocation limit for new space.
new_space()->UpdateInlineAllocationLimit(0);
}
void Heap::DisableInlineAllocation() {
if (inline_allocation_disabled_) return;
inline_allocation_disabled_ = true;
// Update inline allocation limit for new space.
new_space()->UpdateInlineAllocationLimit(0);
// Update inline allocation limit for old spaces.
PagedSpaces spaces(this);
for (PagedSpace* space = spaces.next();
space != NULL;
space = spaces.next()) {
space->EmptyAllocationInfo();
}
}
V8_DECLARE_ONCE(initialize_gc_once);
static void InitializeGCOnce() {
InitializeScavengingVisitorsTables();
NewSpaceScavenger::Initialize();
MarkCompactCollector::Initialize();
}
bool Heap::SetUp() {
#ifdef DEBUG
allocation_timeout_ = FLAG_gc_interval;
#endif
// Initialize heap spaces and initial maps and objects. Whenever something
// goes wrong, just return false. The caller should check the results and
// call Heap::TearDown() to release allocated memory.
//
// If the heap is not yet configured (e.g. through the API), configure it.
// Configuration is based on the flags new-space-size (really the semispace
// size) and old-space-size if set or the initial values of semispace_size_
// and old_generation_size_ otherwise.
if (!configured_) {
if (!ConfigureHeapDefault()) return false;
}
base::CallOnce(&initialize_gc_once, &InitializeGCOnce);
MarkMapPointersAsEncoded(false);
// Set up memory allocator.
if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize()))
return false;
// Set up new space.
if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) {
return false;
}
new_space_top_after_last_gc_ = new_space()->top();
// Initialize old pointer space.
old_pointer_space_ =
new OldSpace(this,
max_old_generation_size_,
OLD_POINTER_SPACE,
NOT_EXECUTABLE);
if (old_pointer_space_ == NULL) return false;
if (!old_pointer_space_->SetUp()) return false;
// Initialize old data space.
old_data_space_ =
new OldSpace(this,
max_old_generation_size_,
OLD_DATA_SPACE,
NOT_EXECUTABLE);
if (old_data_space_ == NULL) return false;
if (!old_data_space_->SetUp()) return false;
if (!isolate_->code_range()->SetUp(code_range_size_)) return false;
// Initialize the code space, set its maximum capacity to the old
// generation size. It needs executable memory.
code_space_ =
new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
if (code_space_ == NULL) return false;
if (!code_space_->SetUp()) return false;
// Initialize map space.
map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE);
if (map_space_ == NULL) return false;
if (!map_space_->SetUp()) return false;
// Initialize simple cell space.
cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
if (cell_space_ == NULL) return false;
if (!cell_space_->SetUp()) return false;
// Initialize global property cell space.
property_cell_space_ = new PropertyCellSpace(this, max_old_generation_size_,
PROPERTY_CELL_SPACE);
if (property_cell_space_ == NULL) return false;
if (!property_cell_space_->SetUp()) return false;
// The large object code space may contain code or data. We set the memory
// to be non-executable here for safety, but this means we need to enable it
// explicitly when allocating large code objects.
lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
if (lo_space_ == NULL) return false;
if (!lo_space_->SetUp()) return false;
// Set up the seed that is used to randomize the string hash function.
ASSERT(hash_seed() == 0);
if (FLAG_randomize_hashes) {
if (FLAG_hash_seed == 0) {
int rnd = isolate()->random_number_generator()->NextInt();
set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask));
} else {
set_hash_seed(Smi::FromInt(FLAG_hash_seed));
}
}
LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
LOG(isolate_, IntPtrTEvent("heap-available", Available()));
store_buffer()->SetUp();
mark_compact_collector()->SetUp();
return true;
}
bool Heap::CreateHeapObjects() {
// Create initial maps.
if (!CreateInitialMaps()) return false;
CreateApiObjects();
// Create initial objects
CreateInitialObjects();
CHECK_EQ(0, gc_count_);
set_native_contexts_list(undefined_value());
set_array_buffers_list(undefined_value());
set_allocation_sites_list(undefined_value());
weak_object_to_code_table_ = undefined_value();
return true;
}
void Heap::SetStackLimits() {
ASSERT(isolate_ != NULL);
ASSERT(isolate_ == isolate());
// On 64 bit machines, pointers are generally out of range of Smis. We write
// something that looks like an out of range Smi to the GC.
// Set up the special root array entries containing the stack limits.
// These are actually addresses, but the tag makes the GC ignore it.
roots_[kStackLimitRootIndex] =
reinterpret_cast<Object*>(
(isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
roots_[kRealStackLimitRootIndex] =
reinterpret_cast<Object*>(
(isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
}
void Heap::TearDown() {
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
UpdateMaximumCommitted();
if (FLAG_print_cumulative_gc_stat) {
PrintF("\n");
PrintF("gc_count=%d ", gc_count_);
PrintF("mark_sweep_count=%d ", ms_count_);
PrintF("max_gc_pause=%.1f ", get_max_gc_pause());
PrintF("total_gc_time=%.1f ", total_gc_time_ms_);
PrintF("min_in_mutator=%.1f ", get_min_in_mutator());
PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
get_max_alive_after_gc());
PrintF("total_marking_time=%.1f ", marking_time());
PrintF("total_sweeping_time=%.1f ", sweeping_time());
PrintF("\n\n");
}
if (FLAG_print_max_heap_committed) {
PrintF("\n");
PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ",
MaximumCommittedMemory());
PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ",
new_space_.MaximumCommittedMemory());
PrintF("maximum_committed_by_old_pointer_space=%" V8_PTR_PREFIX "d ",
old_data_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
old_pointer_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_old_data_space=%" V8_PTR_PREFIX "d ",
old_pointer_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ",
code_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ",
map_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_cell_space=%" V8_PTR_PREFIX "d ",
cell_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_property_space=%" V8_PTR_PREFIX "d ",
property_cell_space_->MaximumCommittedMemory());
PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ",
lo_space_->MaximumCommittedMemory());
PrintF("\n\n");
}
TearDownArrayBuffers();
isolate_->global_handles()->TearDown();
external_string_table_.TearDown();
mark_compact_collector()->TearDown();
new_space_.TearDown();
if (old_pointer_space_ != NULL) {
old_pointer_space_->TearDown();
delete old_pointer_space_;
old_pointer_space_ = NULL;
}
if (old_data_space_ != NULL) {
old_data_space_->TearDown();
delete old_data_space_;
old_data_space_ = NULL;
}
if (code_space_ != NULL) {
code_space_->TearDown();
delete code_space_;
code_space_ = NULL;
}
if (map_space_ != NULL) {
map_space_->TearDown();
delete map_space_;
map_space_ = NULL;
}
if (cell_space_ != NULL) {
cell_space_->TearDown();
delete cell_space_;
cell_space_ = NULL;
}
if (property_cell_space_ != NULL) {
property_cell_space_->TearDown();
delete property_cell_space_;
property_cell_space_ = NULL;
}
if (lo_space_ != NULL) {
lo_space_->TearDown();
delete lo_space_;
lo_space_ = NULL;
}
store_buffer()->TearDown();
incremental_marking()->TearDown();
isolate_->memory_allocator()->TearDown();
}
void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
GCType gc_type,
bool pass_isolate) {
ASSERT(callback != NULL);
GCPrologueCallbackPair pair(callback, gc_type, pass_isolate);
ASSERT(!gc_prologue_callbacks_.Contains(pair));
return gc_prologue_callbacks_.Add(pair);
}
void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) {
ASSERT(callback != NULL);
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
if (gc_prologue_callbacks_[i].callback == callback) {
gc_prologue_callbacks_.Remove(i);
return;
}
}
UNREACHABLE();
}
void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
GCType gc_type,
bool pass_isolate) {
ASSERT(callback != NULL);
GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate);
ASSERT(!gc_epilogue_callbacks_.Contains(pair));
return gc_epilogue_callbacks_.Add(pair);
}
void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) {
ASSERT(callback != NULL);
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
if (gc_epilogue_callbacks_[i].callback == callback) {
gc_epilogue_callbacks_.Remove(i);
return;
}
}
UNREACHABLE();
}
// TODO(ishell): Find a better place for this.
void Heap::AddWeakObjectToCodeDependency(Handle<Object> obj,
Handle<DependentCode> dep) {
ASSERT(!InNewSpace(*obj));
ASSERT(!InNewSpace(*dep));
// This handle scope keeps the table handle local to this function, which
// allows us to safely skip write barriers in table update operations.
HandleScope scope(isolate());
Handle<WeakHashTable> table(WeakHashTable::cast(weak_object_to_code_table_),
isolate());
table = WeakHashTable::Put(table, obj, dep);
if (ShouldZapGarbage() && weak_object_to_code_table_ != *table) {
WeakHashTable::cast(weak_object_to_code_table_)->Zap(the_hole_value());
}
set_weak_object_to_code_table(*table);
ASSERT_EQ(*dep, table->Lookup(obj));
}
DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<Object> obj) {
Object* dep = WeakHashTable::cast(weak_object_to_code_table_)->Lookup(obj);
if (dep->IsDependentCode()) return DependentCode::cast(dep);
return DependentCode::cast(empty_fixed_array());
}
void Heap::EnsureWeakObjectToCodeTable() {
if (!weak_object_to_code_table()->IsHashTable()) {
set_weak_object_to_code_table(*WeakHashTable::New(
isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED));
}
}
void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) {
v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot);
}
#ifdef DEBUG
class PrintHandleVisitor: public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++)
PrintF(" handle %p to %p\n",
reinterpret_cast<void*>(p),
reinterpret_cast<void*>(*p));
}
};
void Heap::PrintHandles() {
PrintF("Handles:\n");
PrintHandleVisitor v;
isolate_->handle_scope_implementer()->Iterate(&v);
}
#endif
Space* AllSpaces::next() {
switch (counter_++) {
case NEW_SPACE:
return heap_->new_space();
case OLD_POINTER_SPACE:
return heap_->old_pointer_space();
case OLD_DATA_SPACE:
return heap_->old_data_space();
case CODE_SPACE:
return heap_->code_space();
case MAP_SPACE:
return heap_->map_space();
case CELL_SPACE:
return heap_->cell_space();
case PROPERTY_CELL_SPACE:
return heap_->property_cell_space();
case LO_SPACE:
return heap_->lo_space();
default:
return NULL;
}
}
PagedSpace* PagedSpaces::next() {
switch (counter_++) {
case OLD_POINTER_SPACE:
return heap_->old_pointer_space();
case OLD_DATA_SPACE:
return heap_->old_data_space();
case CODE_SPACE:
return heap_->code_space();
case MAP_SPACE:
return heap_->map_space();
case CELL_SPACE:
return heap_->cell_space();
case PROPERTY_CELL_SPACE:
return heap_->property_cell_space();
default:
return NULL;
}
}
OldSpace* OldSpaces::next() {
switch (counter_++) {
case OLD_POINTER_SPACE:
return heap_->old_pointer_space();
case OLD_DATA_SPACE:
return heap_->old_data_space();
case CODE_SPACE:
return heap_->code_space();
default:
return NULL;
}
}
SpaceIterator::SpaceIterator(Heap* heap)
: heap_(heap),
current_space_(FIRST_SPACE),
iterator_(NULL),
size_func_(NULL) {
}
SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func)
: heap_(heap),
current_space_(FIRST_SPACE),
iterator_(NULL),
size_func_(size_func) {
}
SpaceIterator::~SpaceIterator() {
// Delete active iterator if any.
delete iterator_;
}
bool SpaceIterator::has_next() {
// Iterate until no more spaces.
return current_space_ != LAST_SPACE;
}
ObjectIterator* SpaceIterator::next() {
if (iterator_ != NULL) {
delete iterator_;
iterator_ = NULL;
// Move to the next space
current_space_++;
if (current_space_ > LAST_SPACE) {
return NULL;
}
}
// Return iterator for the new current space.
return CreateIterator();
}
// Create an iterator for the space to iterate.
ObjectIterator* SpaceIterator::CreateIterator() {
ASSERT(iterator_ == NULL);
switch (current_space_) {
case NEW_SPACE:
iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_);
break;
case OLD_POINTER_SPACE:
iterator_ =
new HeapObjectIterator(heap_->old_pointer_space(), size_func_);
break;
case OLD_DATA_SPACE:
iterator_ = new HeapObjectIterator(heap_->old_data_space(), size_func_);
break;
case CODE_SPACE:
iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_);
break;
case MAP_SPACE:
iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_);
break;
case CELL_SPACE:
iterator_ = new HeapObjectIterator(heap_->cell_space(), size_func_);
break;
case PROPERTY_CELL_SPACE:
iterator_ = new HeapObjectIterator(heap_->property_cell_space(),
size_func_);
break;
case LO_SPACE:
iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_);
break;
}
// Return the newly allocated iterator;
ASSERT(iterator_ != NULL);
return iterator_;
}
class HeapObjectsFilter {
public:
virtual ~HeapObjectsFilter() {}
virtual bool SkipObject(HeapObject* object) = 0;
};
class UnreachableObjectsFilter : public HeapObjectsFilter {
public:
explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) {
MarkReachableObjects();
}
~UnreachableObjectsFilter() {
heap_->mark_compact_collector()->ClearMarkbits();
}
bool SkipObject(HeapObject* object) {
MarkBit mark_bit = Marking::MarkBitFrom(object);
return !mark_bit.Get();
}
private:
class MarkingVisitor : public ObjectVisitor {
public:
MarkingVisitor() : marking_stack_(10) {}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
if (!(*p)->IsHeapObject()) continue;
HeapObject* obj = HeapObject::cast(*p);
MarkBit mark_bit = Marking::MarkBitFrom(obj);
if (!mark_bit.Get()) {
mark_bit.Set();
marking_stack_.Add(obj);
}
}
}
void TransitiveClosure() {
while (!marking_stack_.is_empty()) {
HeapObject* obj = marking_stack_.RemoveLast();
obj->Iterate(this);
}
}
private:
List<HeapObject*> marking_stack_;
};
void MarkReachableObjects() {
MarkingVisitor visitor;
heap_->IterateRoots(&visitor, VISIT_ALL);
visitor.TransitiveClosure();
}
Heap* heap_;
DisallowHeapAllocation no_allocation_;
};
HeapIterator::HeapIterator(Heap* heap)
: make_heap_iterable_helper_(heap),
no_heap_allocation_(),
heap_(heap),
filtering_(HeapIterator::kNoFiltering),
filter_(NULL) {
Init();
}
HeapIterator::HeapIterator(Heap* heap,
HeapIterator::HeapObjectsFiltering filtering)
: make_heap_iterable_helper_(heap),
no_heap_allocation_(),
heap_(heap),
filtering_(filtering),
filter_(NULL) {
Init();
}
HeapIterator::~HeapIterator() {
Shutdown();
}
void HeapIterator::Init() {
// Start the iteration.
space_iterator_ = new SpaceIterator(heap_);
switch (filtering_) {
case kFilterUnreachable:
filter_ = new UnreachableObjectsFilter(heap_);
break;
default:
break;
}
object_iterator_ = space_iterator_->next();
}
void HeapIterator::Shutdown() {
#ifdef DEBUG
// Assert that in filtering mode we have iterated through all
// objects. Otherwise, heap will be left in an inconsistent state.
if (filtering_ != kNoFiltering) {
ASSERT(object_iterator_ == NULL);
}
#endif
// Make sure the last iterator is deallocated.
delete space_iterator_;
space_iterator_ = NULL;
object_iterator_ = NULL;
delete filter_;
filter_ = NULL;
}
HeapObject* HeapIterator::next() {
if (filter_ == NULL) return NextObject();
HeapObject* obj = NextObject();
while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
return obj;
}
HeapObject* HeapIterator::NextObject() {
// No iterator means we are done.
if (object_iterator_ == NULL) return NULL;
if (HeapObject* obj = object_iterator_->next_object()) {
// If the current iterator has more objects we are fine.
return obj;
} else {
// Go though the spaces looking for one that has objects.
while (space_iterator_->has_next()) {
object_iterator_ = space_iterator_->next();
if (HeapObject* obj = object_iterator_->next_object()) {
return obj;
}
}
}
// Done with the last space.
object_iterator_ = NULL;
return NULL;
}
void HeapIterator::reset() {
// Restart the iterator.
Shutdown();
Init();
}
#ifdef DEBUG
Object* const PathTracer::kAnyGlobalObject = NULL;
class PathTracer::MarkVisitor: public ObjectVisitor {
public:
explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
void VisitPointers(Object** start, Object** end) {
// Scan all HeapObject pointers in [start, end)
for (Object** p = start; !tracer_->found() && (p < end); p++) {
if ((*p)->IsHeapObject())
tracer_->MarkRecursively(p, this);
}
}
private:
PathTracer* tracer_;
};
class PathTracer::UnmarkVisitor: public ObjectVisitor {
public:
explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
void VisitPointers(Object** start, Object** end) {
// Scan all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject())
tracer_->UnmarkRecursively(p, this);
}
}
private:
PathTracer* tracer_;
};
void PathTracer::VisitPointers(Object** start, Object** end) {
bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
// Visit all HeapObject pointers in [start, end)
for (Object** p = start; !done && (p < end); p++) {
if ((*p)->IsHeapObject()) {
TracePathFrom(p);
done = ((what_to_find_ == FIND_FIRST) && found_target_);
}
}
}
void PathTracer::Reset() {
found_target_ = false;
object_stack_.Clear();
}
void PathTracer::TracePathFrom(Object** root) {
ASSERT((search_target_ == kAnyGlobalObject) ||
search_target_->IsHeapObject());
found_target_in_trace_ = false;
Reset();
MarkVisitor mark_visitor(this);
MarkRecursively(root, &mark_visitor);
UnmarkVisitor unmark_visitor(this);
UnmarkRecursively(root, &unmark_visitor);
ProcessResults();
}
static bool SafeIsNativeContext(HeapObject* obj) {
return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map();
}
void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
MapWord map_word = obj->map_word();
if (!map_word.ToMap()->IsHeapObject()) return; // visited before
if (found_target_in_trace_) return; // stop if target found
object_stack_.Add(obj);
if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
(obj == search_target_)) {
found_target_in_trace_ = true;
found_target_ = true;
return;
}
bool is_native_context = SafeIsNativeContext(obj);
// not visited yet
Map* map = Map::cast(map_word.ToMap());
MapWord marked_map_word =
MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag);
obj->set_map_word(marked_map_word);
// Scan the object body.
if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
// This is specialized to scan Context's properly.
Object** start = reinterpret_cast<Object**>(obj->address() +
Context::kHeaderSize);
Object** end = reinterpret_cast<Object**>(obj->address() +
Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
mark_visitor->VisitPointers(start, end);
} else {
obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor);
}
// Scan the map after the body because the body is a lot more interesting
// when doing leak detection.
MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor);
if (!found_target_in_trace_) { // don't pop if found the target
object_stack_.RemoveLast();
}
}
void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
MapWord map_word = obj->map_word();
if (map_word.ToMap()->IsHeapObject()) return; // unmarked already
MapWord unmarked_map_word =
MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag);
obj->set_map_word(unmarked_map_word);
Map* map = Map::cast(unmarked_map_word.ToMap());
UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor);
obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor);
}
void PathTracer::ProcessResults() {
if (found_target_) {
PrintF("=====================================\n");
PrintF("==== Path to object ====\n");
PrintF("=====================================\n\n");
ASSERT(!object_stack_.is_empty());
for (int i = 0; i < object_stack_.length(); i++) {
if (i > 0) PrintF("\n |\n |\n V\n\n");
Object* obj = object_stack_[i];
obj->Print();
}
PrintF("=====================================\n");
}
}
// Triggers a depth-first traversal of reachable objects from one
// given root object and finds a path to a specific heap object and
// prints it.
void Heap::TracePathToObjectFrom(Object* target, Object* root) {
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
tracer.VisitPointer(&root);
}
// Triggers a depth-first traversal of reachable objects from roots
// and finds a path to a specific heap object and prints it.
void Heap::TracePathToObject(Object* target) {
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
IterateRoots(&tracer, VISIT_ONLY_STRONG);
}
// Triggers a depth-first traversal of reachable objects from roots
// and finds a path to any global object and prints it. Useful for
// determining the source for leaks of global objects.
void Heap::TracePathToGlobal() {
PathTracer tracer(PathTracer::kAnyGlobalObject,
PathTracer::FIND_ALL,
VISIT_ALL);
IterateRoots(&tracer, VISIT_ONLY_STRONG);
}
#endif
static intptr_t CountTotalHolesSize(Heap* heap) {
intptr_t holes_size = 0;
OldSpaces spaces(heap);
for (OldSpace* space = spaces.next();
space != NULL;
space = spaces.next()) {
holes_size += space->Waste() + space->Available();
}
return holes_size;
}
GCTracer::GCTracer(Heap* heap,
const char* gc_reason,
const char* collector_reason)
: start_time_(0.0),
start_object_size_(0),
start_memory_size_(0),
gc_count_(0),
full_gc_count_(0),
allocated_since_last_gc_(0),
spent_in_mutator_(0),
nodes_died_in_new_space_(0),
nodes_copied_in_new_space_(0),
nodes_promoted_(0),
heap_(heap),
gc_reason_(gc_reason),
collector_reason_(collector_reason) {
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
start_time_ = OS::TimeCurrentMillis();
start_object_size_ = heap_->SizeOfObjects();
start_memory_size_ = heap_->isolate()->memory_allocator()->Size();
for (int i = 0; i < Scope::kNumberOfScopes; i++) {
scopes_[i] = 0;
}
in_free_list_or_wasted_before_gc_ = CountTotalHolesSize(heap);
allocated_since_last_gc_ =
heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
if (heap_->last_gc_end_timestamp_ > 0) {
spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
}
steps_count_ = heap_->incremental_marking()->steps_count();
steps_took_ = heap_->incremental_marking()->steps_took();
longest_step_ = heap_->incremental_marking()->longest_step();
steps_count_since_last_gc_ =
heap_->incremental_marking()->steps_count_since_last_gc();
steps_took_since_last_gc_ =
heap_->incremental_marking()->steps_took_since_last_gc();
}
GCTracer::~GCTracer() {
// Printf ONE line iff flag is set.
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
double time = heap_->last_gc_end_timestamp_ - start_time_;
// Update cumulative GC statistics if required.
if (FLAG_print_cumulative_gc_stat) {
heap_->total_gc_time_ms_ += time;
heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
heap_->alive_after_last_gc_);
if (!first_gc) {
heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
spent_in_mutator_);
}
} else if (FLAG_trace_gc_verbose) {
heap_->total_gc_time_ms_ += time;
}
if (collector_ == SCAVENGER && FLAG_trace_gc_ignore_scavenger) return;
heap_->AddMarkingTime(scopes_[Scope::MC_MARK]);
if (FLAG_print_cumulative_gc_stat && !FLAG_trace_gc) return;
PrintPID("%8.0f ms: ", heap_->isolate()->time_millis_since_init());
if (!FLAG_trace_gc_nvp) {
int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
double end_memory_size_mb =
static_cast<double>(heap_->isolate()->memory_allocator()->Size()) / MB;
PrintF("%s %.1f (%.1f) -> %.1f (%.1f) MB, ",
CollectorString(),
static_cast<double>(start_object_size_) / MB,
static_cast<double>(start_memory_size_) / MB,
SizeOfHeapObjects(),
end_memory_size_mb);
if (external_time > 0) PrintF("%d / ", external_time);
PrintF("%.1f ms", time);
if (steps_count_ > 0) {
if (collector_ == SCAVENGER) {
PrintF(" (+ %.1f ms in %d steps since last GC)",
steps_took_since_last_gc_,
steps_count_since_last_gc_);
} else {
PrintF(" (+ %.1f ms in %d steps since start of marking, "
"biggest step %.1f ms)",
steps_took_,
steps_count_,
longest_step_);
}
}
if (gc_reason_ != NULL) {
PrintF(" [%s]", gc_reason_);
}
if (collector_reason_ != NULL) {
PrintF(" [%s]", collector_reason_);
}
PrintF(".\n");
} else {
PrintF("pause=%.1f ", time);
PrintF("mutator=%.1f ", spent_in_mutator_);
PrintF("gc=");
switch (collector_) {
case SCAVENGER:
PrintF("s");
break;
case MARK_COMPACTOR:
PrintF("ms");
break;
default:
UNREACHABLE();
}
PrintF(" ");
PrintF("external=%.1f ", scopes_[Scope::EXTERNAL]);
PrintF("mark=%.1f ", scopes_[Scope::MC_MARK]);
PrintF("sweep=%.2f ", scopes_[Scope::MC_SWEEP]);
PrintF("sweepns=%.2f ", scopes_[Scope::MC_SWEEP_NEWSPACE]);
PrintF("sweepos=%.2f ", scopes_[Scope::MC_SWEEP_OLDSPACE]);
PrintF("evacuate=%.1f ", scopes_[Scope::MC_EVACUATE_PAGES]);
PrintF("new_new=%.1f ", scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]);
PrintF("root_new=%.1f ", scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]);
PrintF("old_new=%.1f ", scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]);
PrintF("compaction_ptrs=%.1f ",
scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]);
PrintF("intracompaction_ptrs=%.1f ",
scopes_[Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]);
PrintF("misc_compaction=%.1f ", scopes_[Scope::MC_UPDATE_MISC_POINTERS]);
PrintF("weakcollection_process=%.1f ",
scopes_[Scope::MC_WEAKCOLLECTION_PROCESS]);
PrintF("weakcollection_clear=%.1f ",
scopes_[Scope::MC_WEAKCOLLECTION_CLEAR]);
PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_object_size_);
PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
in_free_list_or_wasted_before_gc_);
PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize(heap_));
PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
PrintF("promoted=%" V8_PTR_PREFIX "d ", heap_->promoted_objects_size_);
PrintF("semi_space_copied=%" V8_PTR_PREFIX "d ",
heap_->semi_space_copied_object_size_);
PrintF("nodes_died_in_new=%d ", nodes_died_in_new_space_);
PrintF("nodes_copied_in_new=%d ", nodes_copied_in_new_space_);
PrintF("nodes_promoted=%d ", nodes_promoted_);
PrintF("promotion_rate=%.1f%% ", heap_->promotion_rate_);
PrintF("semi_space_copy_rate=%.1f%% ", heap_->semi_space_copied_rate_);
if (collector_ == SCAVENGER) {
PrintF("stepscount=%d ", steps_count_since_last_gc_);
PrintF("stepstook=%.1f ", steps_took_since_last_gc_);
} else {
PrintF("stepscount=%d ", steps_count_);
PrintF("stepstook=%.1f ", steps_took_);
PrintF("longeststep=%.1f ", longest_step_);
}
PrintF("\n");
}
heap_->PrintShortHeapStatistics();
}
const char* GCTracer::CollectorString() {
switch (collector_) {
case SCAVENGER:
return "Scavenge";
case MARK_COMPACTOR:
return "Mark-sweep";
}
return "Unknown GC";
}
int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) {
DisallowHeapAllocation no_gc;
// Uses only lower 32 bits if pointers are larger.
uintptr_t addr_hash =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift;
return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
}
int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) {
DisallowHeapAllocation no_gc;
int index = (Hash(map, name) & kHashMask);
for (int i = 0; i < kEntriesPerBucket; i++) {
Key& key = keys_[index + i];
if ((key.map == *map) && key.name->Equals(*name)) {
return field_offsets_[index + i];
}
}
return kNotFound;
}
void KeyedLookupCache::Update(Handle<Map> map,
Handle<Name> name,
int field_offset) {
DisallowHeapAllocation no_gc;
if (!name->IsUniqueName()) {
if (!StringTable::InternalizeStringIfExists(name->GetIsolate(),
Handle<String>::cast(name)).
ToHandle(&name)) {
return;
}
}
// This cache is cleared only between mark compact passes, so we expect the
// cache to only contain old space names.
ASSERT(!map->GetIsolate()->heap()->InNewSpace(*name));
int index = (Hash(map, name) & kHashMask);
// After a GC there will be free slots, so we use them in order (this may
// help to get the most frequently used one in position 0).
for (int i = 0; i< kEntriesPerBucket; i++) {
Key& key = keys_[index];
Object* free_entry_indicator = NULL;
if (key.map == free_entry_indicator) {
key.map = *map;
key.name = *name;
field_offsets_[index + i] = field_offset;
return;
}
}
// No free entry found in this bucket, so we move them all down one and
// put the new entry at position zero.
for (int i = kEntriesPerBucket - 1; i > 0; i--) {
Key& key = keys_[index + i];
Key& key2 = keys_[index + i - 1];
key = key2;
field_offsets_[index + i] = field_offsets_[index + i - 1];
}
// Write the new first entry.
Key& key = keys_[index];
key.map = *map;
key.name = *name;
field_offsets_[index] = field_offset;
}
void KeyedLookupCache::Clear() {
for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
}
void DescriptorLookupCache::Clear() {
for (int index = 0; index < kLength; index++) keys_[index].source = NULL;
}
void ExternalStringTable::CleanUp() {
int last = 0;
for (int i = 0; i < new_space_strings_.length(); ++i) {
if (new_space_strings_[i] == heap_->the_hole_value()) {
continue;
}
ASSERT(new_space_strings_[i]->IsExternalString());
if (heap_->InNewSpace(new_space_strings_[i])) {
new_space_strings_[last++] = new_space_strings_[i];
} else {
old_space_strings_.Add(new_space_strings_[i]);
}
}
new_space_strings_.Rewind(last);
new_space_strings_.Trim();
last = 0;
for (int i = 0; i < old_space_strings_.length(); ++i) {
if (old_space_strings_[i] == heap_->the_hole_value()) {
continue;
}
ASSERT(old_space_strings_[i]->IsExternalString());
ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
old_space_strings_[last++] = old_space_strings_[i];
}
old_space_strings_.Rewind(last);
old_space_strings_.Trim();
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
void ExternalStringTable::TearDown() {
for (int i = 0; i < new_space_strings_.length(); ++i) {
heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i]));
}
new_space_strings_.Free();
for (int i = 0; i < old_space_strings_.length(); ++i) {
heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i]));
}
old_space_strings_.Free();
}
void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
chunk->set_next_chunk(chunks_queued_for_free_);
chunks_queued_for_free_ = chunk;
}
void Heap::FreeQueuedChunks() {
if (chunks_queued_for_free_ == NULL) return;
MemoryChunk* next;
MemoryChunk* chunk;
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
next = chunk->next_chunk();
chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
if (chunk->owner()->identity() == LO_SPACE) {
// StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
// If FromAnyPointerAddress encounters a slot that belongs to a large
// chunk queued for deletion it will fail to find the chunk because
// it try to perform a search in the list of pages owned by of the large
// object space and queued chunks were detached from that list.
// To work around this we split large chunk into normal kPageSize aligned
// pieces and initialize size, owner and flags field of every piece.
// If FromAnyPointerAddress encounters a slot that belongs to one of
// these smaller pieces it will treat it as a slot on a normal Page.
Address chunk_end = chunk->address() + chunk->size();
MemoryChunk* inner = MemoryChunk::FromAddress(
chunk->address() + Page::kPageSize);
MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1);
while (inner <= inner_last) {
// Size of a large chunk is always a multiple of
// OS::AllocateAlignment() so there is always
// enough space for a fake MemoryChunk header.
Address area_end = Min(inner->address() + Page::kPageSize, chunk_end);
// Guard against overflow.
if (area_end < inner->address()) area_end = chunk_end;
inner->SetArea(inner->address(), area_end);
inner->set_size(Page::kPageSize);
inner->set_owner(lo_space());
inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
inner = MemoryChunk::FromAddress(
inner->address() + Page::kPageSize);
}
}
}
isolate_->heap()->store_buffer()->Compact();
isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
next = chunk->next_chunk();
isolate_->memory_allocator()->Free(chunk);
}
chunks_queued_for_free_ = NULL;
}
void Heap::RememberUnmappedPage(Address page, bool compacted) {
uintptr_t p = reinterpret_cast<uintptr_t>(page);
// Tag the page pointer to make it findable in the dump file.
if (compacted) {
p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared.
} else {
p ^= 0x1d1ed & (Page::kPageSize - 1); // I died.
}
remembered_unmapped_pages_[remembered_unmapped_pages_index_] =
reinterpret_cast<Address>(p);
remembered_unmapped_pages_index_++;
remembered_unmapped_pages_index_ %= kRememberedUnmappedPages;
}
void Heap::ClearObjectStats(bool clear_last_time_stats) {
memset(object_counts_, 0, sizeof(object_counts_));
memset(object_sizes_, 0, sizeof(object_sizes_));
if (clear_last_time_stats) {
memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_));
memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_));
}
}
static LazyMutex checkpoint_object_stats_mutex = LAZY_MUTEX_INITIALIZER;
void Heap::CheckpointObjectStats() {
LockGuard<Mutex> lock_guard(checkpoint_object_stats_mutex.Pointer());
Counters* counters = isolate()->counters();
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
counters->count_of_##name()->Increment( \
static_cast<int>(object_counts_[name])); \
counters->count_of_##name()->Decrement( \
static_cast<int>(object_counts_last_time_[name])); \
counters->size_of_##name()->Increment( \
static_cast<int>(object_sizes_[name])); \
counters->size_of_##name()->Decrement( \
static_cast<int>(object_sizes_last_time_[name]));
INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
#undef ADJUST_LAST_TIME_OBJECT_COUNT
int index;
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \
counters->count_of_CODE_TYPE_##name()->Increment( \
static_cast<int>(object_counts_[index])); \
counters->count_of_CODE_TYPE_##name()->Decrement( \
static_cast<int>(object_counts_last_time_[index])); \
counters->size_of_CODE_TYPE_##name()->Increment( \
static_cast<int>(object_sizes_[index])); \
counters->size_of_CODE_TYPE_##name()->Decrement( \
static_cast<int>(object_sizes_last_time_[index]));
CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
#undef ADJUST_LAST_TIME_OBJECT_COUNT
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \
counters->count_of_FIXED_ARRAY_##name()->Increment( \
static_cast<int>(object_counts_[index])); \
counters->count_of_FIXED_ARRAY_##name()->Decrement( \
static_cast<int>(object_counts_last_time_[index])); \
counters->size_of_FIXED_ARRAY_##name()->Increment( \
static_cast<int>(object_sizes_[index])); \
counters->size_of_FIXED_ARRAY_##name()->Decrement( \
static_cast<int>(object_sizes_last_time_[index]));
FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT)
#undef ADJUST_LAST_TIME_OBJECT_COUNT
#define ADJUST_LAST_TIME_OBJECT_COUNT(name) \
index = \
FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \
counters->count_of_CODE_AGE_##name()->Increment( \
static_cast<int>(object_counts_[index])); \
counters->count_of_CODE_AGE_##name()->Decrement( \
static_cast<int>(object_counts_last_time_[index])); \
counters->size_of_CODE_AGE_##name()->Increment( \
static_cast<int>(object_sizes_[index])); \
counters->size_of_CODE_AGE_##name()->Decrement( \
static_cast<int>(object_sizes_last_time_[index]));
CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT)
#undef ADJUST_LAST_TIME_OBJECT_COUNT
MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_));
MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_));
ClearObjectStats();
}
} } // namespace v8::internal