// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/base/ime/chromeos/character_composer.h"
#include <algorithm>
#include <iterator>
#include "base/strings/utf_string_conversions.h"
#include "base/third_party/icu/icu_utf.h"
// Note for Gtk removal: gdkkeysyms.h only contains a set of
// '#define GDK_KeyName 0xNNNN' macros and does not #include any Gtk headers.
#include "third_party/gtk+/gdk/gdkkeysyms.h"
#include "ui/base/glib/glib_integers.h"
#include "ui/events/event.h"
#include "ui/events/keycodes/keyboard_codes.h"
// Note for Gtk removal: gtkimcontextsimpleseqs.h does not #include any Gtk
// headers and only contains one big guint16 array |gtk_compose_seqs_compact|
// which defines the main compose table. The table has internal linkage.
// The order of header inclusion is out of order because
// gtkimcontextsimpleseqs.h depends on guint16, which is defined in
// "ui/base/glib/glib_integers.h".
#include "third_party/gtk+/gtk/gtkimcontextsimpleseqs.h"
namespace {
// A black list for not composing dead keys. Once the key combination is listed
// below, the dead key won't work even when this is listed in
// gtkimcontextsimpleseqs.h. This only supports two keyevent sequenses.
// TODO(nona): Remove this hack.
const struct BlackListedDeadKey {
uint32 first_key; // target first key event.
uint32 second_key; // target second key event.
uint32 output_char; // the character to be inserted if the filter is matched.
bool consume; // true if the original key event will be consumed.
} kBlackListedDeadKeys[] = {
{ GDK_KEY_dead_acute, GDK_KEY_m, GDK_KEY_apostrophe, false },
{ GDK_KEY_dead_acute, GDK_KEY_s, GDK_KEY_apostrophe, false },
{ GDK_KEY_dead_acute, GDK_KEY_t, GDK_KEY_apostrophe, false },
{ GDK_KEY_dead_acute, GDK_KEY_v, GDK_KEY_apostrophe, false },
{ GDK_KEY_dead_acute, GDK_KEY_dead_acute, GDK_KEY_apostrophe, true },
};
typedef std::vector<unsigned int> ComposeBufferType;
// An iterator class to apply std::lower_bound for composition table.
class SequenceIterator
: public std::iterator<std::random_access_iterator_tag, const uint16*> {
public:
SequenceIterator() : ptr_(NULL), stride_(0) {}
SequenceIterator(const uint16* ptr, int stride)
: ptr_(ptr), stride_(stride) {}
const uint16* ptr() const {return ptr_;}
int stride() const {return stride_;}
SequenceIterator& operator++() {
ptr_ += stride_;
return *this;
}
SequenceIterator& operator+=(int n) {
ptr_ += stride_*n;
return *this;
}
const uint16* operator*() const {return ptr_;}
private:
const uint16* ptr_;
int stride_;
};
inline SequenceIterator operator+(const SequenceIterator& l, int r) {
return SequenceIterator(l) += r;
}
inline int operator-(const SequenceIterator& l, const SequenceIterator& r) {
const int d = l.ptr() - r.ptr();
DCHECK(l.stride() == r.stride() && l.stride() > 0 && d%l.stride() == 0);
return d/l.stride();
}
inline bool operator==(const SequenceIterator& l, const SequenceIterator& r) {
DCHECK(l.stride() == r.stride());
return l.ptr() == r.ptr();
}
inline bool operator!=(const SequenceIterator& l, const SequenceIterator& r) {
return !(l == r);
}
// A function to compare key value.
inline int CompareSequenceValue(unsigned int l, unsigned int r) {
return (l > r) ? 1 : ((l < r) ? -1 : 0);
}
// A template to make |CompareFunc| work like operator<.
// |CompareFunc| is required to implement a member function,
// int operator()(const ComposeBufferType& l, const uint16* r) const.
template<typename CompareFunc>
struct ComparatorAdoptor {
bool operator()(const ComposeBufferType& l, const uint16* r) const {
return CompareFunc()(l, r) == -1;
}
bool operator()(const uint16* l, const ComposeBufferType& r) const {
return CompareFunc()(r, l) == 1;
}
};
class ComposeChecker {
public:
// This class does not take the ownership of |data|, |data| should be alive
// for the lifetime of the object.
// |data| is a pointer to the head of an array of
// length (|max_sequence_length| + 2)*|n_sequences|.
// Every (|max_sequence_length| + 2) elements of |data| represent an entry.
// First |max_sequence_length| elements of an entry is the sequecne which
// composes the character represented by the last two elements of the entry.
ComposeChecker(const uint16* data, int max_sequence_length, int n_sequences);
bool CheckSequence(const ComposeBufferType& sequence,
uint32* composed_character) const;
private:
struct CompareSequence {
int operator()(const ComposeBufferType& l, const uint16* r) const;
};
// This class does not take the ownership of |data_|,
// the dtor does not delete |data_|.
const uint16* data_;
int max_sequence_length_;
int n_sequences_;
int row_stride_;
DISALLOW_COPY_AND_ASSIGN(ComposeChecker);
};
ComposeChecker::ComposeChecker(const uint16* data,
int max_sequence_length,
int n_sequences)
: data_(data),
max_sequence_length_(max_sequence_length),
n_sequences_(n_sequences),
row_stride_(max_sequence_length + 2) {
}
bool ComposeChecker::CheckSequence(const ComposeBufferType& sequence,
uint32* composed_character) const {
const int sequence_length = sequence.size();
if (sequence_length > max_sequence_length_)
return false;
// Find sequence in the table.
const SequenceIterator begin(data_, row_stride_);
const SequenceIterator end = begin + n_sequences_;
const SequenceIterator found = std::lower_bound(
begin, end, sequence, ComparatorAdoptor<CompareSequence>());
if (found == end || CompareSequence()(sequence, *found) != 0)
return false;
if (sequence_length == max_sequence_length_ ||
(*found)[sequence_length] == 0) {
// |found| is not partially matching. It's fully matching.
if (found + 1 == end ||
CompareSequence()(sequence, *(found + 1)) != 0) {
// There is no composition longer than |found| which matches to
// |sequence|.
const uint32 value = ((*found)[max_sequence_length_] << 16) |
(*found)[max_sequence_length_ + 1];
*composed_character = value;
}
}
return true;
}
int ComposeChecker::CompareSequence::operator()(const ComposeBufferType& l,
const uint16* r) const {
for(size_t i = 0; i < l.size(); ++i) {
const int compare_result = CompareSequenceValue(l[i], r[i]);
if(compare_result)
return compare_result;
}
return 0;
}
class ComposeCheckerWithCompactTable {
public:
// This class does not take the ownership of |data|, |data| should be alive
// for the lifetime of the object.
// First |index_size|*|index_stride| elements of |data| are an index table.
// Every |index_stride| elements of an index table are an index entry.
// If you are checking with a sequence of length N beginning with character C,
// you have to find an index entry whose first element is C, then get the N-th
// element of the index entry as the index.
// The index is pointing the element of |data| where the composition table for
// sequences of length N beginning with C is placed.
ComposeCheckerWithCompactTable(const uint16* data,
int max_sequence_length,
int index_size,
int index_stride);
bool CheckSequence(const ComposeBufferType& sequence,
uint32* composed_character) const;
private:
struct CompareSequenceFront {
int operator()(const ComposeBufferType& l, const uint16* r) const;
};
struct CompareSequenceSkipFront {
int operator()(const ComposeBufferType& l, const uint16* r) const;
};
// This class does not take the ownership of |data_|,
// the dtor does not delete |data_|.
const uint16* data_;
int max_sequence_length_;
int index_size_;
int index_stride_;
};
ComposeCheckerWithCompactTable::ComposeCheckerWithCompactTable(
const uint16* data,
int max_sequence_length,
int index_size,
int index_stride)
: data_(data),
max_sequence_length_(max_sequence_length),
index_size_(index_size),
index_stride_(index_stride) {
}
bool ComposeCheckerWithCompactTable::CheckSequence(
const ComposeBufferType& sequence,
uint32* composed_character) const {
const int compose_length = sequence.size();
if (compose_length > max_sequence_length_)
return false;
// Find corresponding index for the first keypress.
const SequenceIterator index_begin(data_, index_stride_);
const SequenceIterator index_end = index_begin + index_size_;
const SequenceIterator index =
std::lower_bound(index_begin, index_end, sequence,
ComparatorAdoptor<CompareSequenceFront>());
if (index == index_end || CompareSequenceFront()(sequence, *index) != 0)
return false;
if (compose_length == 1)
return true;
// Check for composition sequences.
for (int length = compose_length - 1; length < max_sequence_length_;
++length) {
const uint16* table = data_ + (*index)[length];
const uint16* table_next = data_ + (*index)[length + 1];
if (table_next > table) {
// There are composition sequences for this |length|.
const int row_stride = length + 1;
const int n_sequences = (table_next - table)/row_stride;
const SequenceIterator table_begin(table, row_stride);
const SequenceIterator table_end = table_begin + n_sequences;
const SequenceIterator found =
std::lower_bound(table_begin, table_end, sequence,
ComparatorAdoptor<CompareSequenceSkipFront>());
if (found != table_end &&
CompareSequenceSkipFront()(sequence, *found) == 0) {
if (length == compose_length - 1) // Exact match.
*composed_character = (*found)[length];
return true;
}
}
}
return false;
}
int ComposeCheckerWithCompactTable::CompareSequenceFront::operator()(
const ComposeBufferType& l, const uint16* r) const {
return CompareSequenceValue(l[0], r[0]);
}
int ComposeCheckerWithCompactTable::CompareSequenceSkipFront::operator()(
const ComposeBufferType& l, const uint16* r) const {
for(size_t i = 1; i < l.size(); ++i) {
const int compare_result = CompareSequenceValue(l[i], r[i - 1]);
if(compare_result)
return compare_result;
}
return 0;
}
// Additional table.
// The difference between this and the default input method is the handling
// of C+acute - this method produces C WITH CEDILLA rather than C WITH ACUTE.
// For languages that use CCedilla and not acute, this is the preferred mapping,
// and is particularly important for pt_BR, where the us-intl keyboard is
// used extensively.
const uint16 cedilla_compose_seqs[] = {
// LATIN_CAPITAL_LETTER_C_WITH_CEDILLA
GDK_KEY_dead_acute, GDK_KEY_C, 0, 0, 0, 0x00C7,
// LATIN_SMALL_LETTER_C_WITH_CEDILLA
GDK_KEY_dead_acute, GDK_KEY_c, 0, 0, 0, 0x00E7,
// LATIN_CAPITAL_LETTER_C_WITH_CEDILLA
GDK_KEY_Multi_key, GDK_KEY_apostrophe, GDK_KEY_C, 0, 0, 0x00C7,
// LATIN_SMALL_LETTER_C_WITH_CEDILLA
GDK_KEY_Multi_key, GDK_KEY_apostrophe, GDK_KEY_c, 0, 0, 0x00E7,
// LATIN_CAPITAL_LETTER_C_WITH_CEDILLA
GDK_KEY_Multi_key, GDK_KEY_C, GDK_KEY_apostrophe, 0, 0, 0x00C7,
// LATIN_SMALL_LETTER_C_WITH_CEDILLA
GDK_KEY_Multi_key, GDK_KEY_c, GDK_KEY_apostrophe, 0, 0, 0x00E7,
};
bool KeypressShouldBeIgnored(unsigned int keyval) {
switch(keyval) {
case GDK_KEY_Shift_L:
case GDK_KEY_Shift_R:
case GDK_KEY_Control_L:
case GDK_KEY_Control_R:
case GDK_KEY_Caps_Lock:
case GDK_KEY_Shift_Lock:
case GDK_KEY_Meta_L:
case GDK_KEY_Meta_R:
case GDK_KEY_Alt_L:
case GDK_KEY_Alt_R:
case GDK_KEY_Super_L:
case GDK_KEY_Super_R:
case GDK_KEY_Hyper_L:
case GDK_KEY_Hyper_R:
case GDK_KEY_Mode_switch:
case GDK_KEY_ISO_Level3_Shift:
return true;
default:
return false;
}
}
bool CheckCharacterComposeTable(const ComposeBufferType& sequence,
uint32* composed_character) {
// Check cedilla compose table.
const ComposeChecker kCedillaComposeChecker(
cedilla_compose_seqs, 4, arraysize(cedilla_compose_seqs)/(4 + 2));
if (kCedillaComposeChecker.CheckSequence(sequence, composed_character))
return true;
// Check main compose table.
const ComposeCheckerWithCompactTable kMainComposeChecker(
gtk_compose_seqs_compact, 5, 24, 6);
if (kMainComposeChecker.CheckSequence(sequence, composed_character))
return true;
return false;
}
// Converts |character| to UTF16 string.
// Returns false when |character| is not a valid character.
bool UTF32CharacterToUTF16(uint32 character, base::string16* output) {
output->clear();
// Reject invalid character. (e.g. codepoint greater than 0x10ffff)
if (!CBU_IS_UNICODE_CHAR(character))
return false;
if (character) {
output->resize(CBU16_LENGTH(character));
size_t i = 0;
CBU16_APPEND_UNSAFE(&(*output)[0], i, character);
}
return true;
}
// Returns an hexadecimal digit integer (0 to 15) corresponding to |keyval|.
// -1 is returned when |keyval| cannot be a hexadecimal digit.
int KeyvalToHexDigit(unsigned int keyval) {
if (GDK_KEY_0 <= keyval && keyval <= GDK_KEY_9)
return keyval - GDK_KEY_0;
if (GDK_KEY_a <= keyval && keyval <= GDK_KEY_f)
return keyval - GDK_KEY_a + 10;
if (GDK_KEY_A <= keyval && keyval <= GDK_KEY_F)
return keyval - GDK_KEY_A + 10;
return -1; // |keyval| cannot be a hexadecimal digit.
}
// Returns an hexadecimal digit integer (0 to 15) corresponding to |keycode|.
// -1 is returned when |keycode| cannot be a hexadecimal digit.
int KeycodeToHexDigit(unsigned int keycode) {
if (ui::VKEY_0 <= keycode && keycode <= ui::VKEY_9)
return keycode - ui::VKEY_0;
if (ui::VKEY_A <= keycode && keycode <= ui::VKEY_F)
return keycode - ui::VKEY_A + 10;
return -1; // |keycode| cannot be a hexadecimal digit.
}
} // namespace
namespace ui {
CharacterComposer::CharacterComposer() : composition_mode_(KEY_SEQUENCE_MODE) {}
CharacterComposer::~CharacterComposer() {}
void CharacterComposer::Reset() {
compose_buffer_.clear();
composed_character_.clear();
preedit_string_.clear();
composition_mode_ = KEY_SEQUENCE_MODE;
}
bool CharacterComposer::FilterKeyPress(const ui::KeyEvent& event) {
uint32 keyval = event.platform_keycode();
if (!keyval ||
(event.type() != ET_KEY_PRESSED && event.type() != ET_KEY_RELEASED))
return false;
return FilterKeyPressInternal(keyval, event.key_code(), event.flags());
}
bool CharacterComposer::FilterKeyPressInternal(unsigned int keyval,
unsigned int keycode,
int flags) {
composed_character_.clear();
preedit_string_.clear();
// We don't care about modifier key presses.
if(KeypressShouldBeIgnored(keyval))
return false;
// When the user presses Ctrl+Shift+U, maybe switch to HEX_MODE.
// We don't care about other modifiers like Alt. When CapsLock is down, we
// do nothing because what we receive is Ctrl+Shift+u (not U).
if (keyval == GDK_KEY_U && (flags & EF_SHIFT_DOWN) &&
(flags & EF_CONTROL_DOWN)) {
if (composition_mode_ == KEY_SEQUENCE_MODE && compose_buffer_.empty()) {
// There is no ongoing composition. Let's switch to HEX_MODE.
composition_mode_ = HEX_MODE;
UpdatePreeditStringHexMode();
return true;
}
}
// Filter key press in an appropriate manner.
switch (composition_mode_) {
case KEY_SEQUENCE_MODE:
return FilterKeyPressSequenceMode(keyval, flags);
case HEX_MODE:
return FilterKeyPressHexMode(keyval, keycode, flags);
default:
NOTREACHED();
return false;
}
}
bool CharacterComposer::FilterKeyPressSequenceMode(unsigned int keyval,
int flags) {
DCHECK(composition_mode_ == KEY_SEQUENCE_MODE);
compose_buffer_.push_back(keyval);
if (compose_buffer_.size() == 2U) {
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kBlackListedDeadKeys); ++i) {
if (compose_buffer_[0] == kBlackListedDeadKeys[i].first_key &&
compose_buffer_[1] == kBlackListedDeadKeys[i].second_key ) {
Reset();
composed_character_.push_back(kBlackListedDeadKeys[i].output_char);
return kBlackListedDeadKeys[i].consume;
}
}
}
// Check compose table.
uint32 composed_character_utf32 = 0;
if (CheckCharacterComposeTable(compose_buffer_, &composed_character_utf32)) {
// Key press is recognized as a part of composition.
if (composed_character_utf32 != 0) {
// We get a composed character.
compose_buffer_.clear();
UTF32CharacterToUTF16(composed_character_utf32, &composed_character_);
}
return true;
}
// Key press is not a part of composition.
compose_buffer_.pop_back(); // Remove the keypress added this time.
if (!compose_buffer_.empty()) {
compose_buffer_.clear();
return true;
}
return false;
}
bool CharacterComposer::FilterKeyPressHexMode(unsigned int keyval,
unsigned int keycode,
int flags) {
DCHECK(composition_mode_ == HEX_MODE);
const size_t kMaxHexSequenceLength = 8;
int hex_digit = KeyvalToHexDigit(keyval);
if (hex_digit < 0) {
// With 101 keyboard, control + shift + 3 produces '#', but a user may
// have intended to type '3'. So, if a hexadecimal character was not found,
// suppose a user is holding shift key (and possibly control key, too) and
// try a character with modifier keys removed.
hex_digit = KeycodeToHexDigit(keycode);
}
if (keyval == GDK_KEY_Escape) {
// Cancel composition when ESC is pressed.
Reset();
} else if (keyval == GDK_KEY_Return || keyval == GDK_KEY_KP_Enter ||
keyval == GDK_KEY_ISO_Enter ||
keyval == GDK_KEY_space || keyval == GDK_KEY_KP_Space) {
// Commit the composed character when Enter or space is pressed.
CommitHex();
} else if (keyval == GDK_KEY_BackSpace) {
// Pop back the buffer when Backspace is pressed.
if (!compose_buffer_.empty()) {
compose_buffer_.pop_back();
} else {
// If there is no character in |compose_buffer_|, cancel composition.
Reset();
}
} else if (hex_digit >= 0 &&
compose_buffer_.size() < kMaxHexSequenceLength) {
// Add the key to the buffer if it is a hex digit.
compose_buffer_.push_back(hex_digit);
}
UpdatePreeditStringHexMode();
return true;
}
void CharacterComposer::CommitHex() {
DCHECK(composition_mode_ == HEX_MODE);
uint32 composed_character_utf32 = 0;
for (size_t i = 0; i != compose_buffer_.size(); ++i) {
const uint32 digit = compose_buffer_[i];
DCHECK(0 <= digit && digit < 16);
composed_character_utf32 <<= 4;
composed_character_utf32 |= digit;
}
Reset();
UTF32CharacterToUTF16(composed_character_utf32, &composed_character_);
}
void CharacterComposer::UpdatePreeditStringHexMode() {
if (composition_mode_ != HEX_MODE) {
preedit_string_.clear();
return;
}
std::string preedit_string_ascii("u");
for (size_t i = 0; i != compose_buffer_.size(); ++i) {
const int digit = compose_buffer_[i];
DCHECK(0 <= digit && digit < 16);
preedit_string_ascii += digit <= 9 ? ('0' + digit) : ('a' + (digit - 10));
}
preedit_string_ = base::ASCIIToUTF16(preedit_string_ascii);
}
} // namespace ui