/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
void SkIntersections::append(const SkIntersections& i) {
for (int index = 0; index < i.fUsed; ++index) {
insert(i[0][index], i[1][index], i.pt(index));
}
}
int (SkIntersections::*CurveVertical[])(const SkPoint[], SkScalar, SkScalar, SkScalar, bool) = {
NULL,
&SkIntersections::verticalLine,
&SkIntersections::verticalQuad,
&SkIntersections::verticalCubic
};
int (SkIntersections::*CurveRay[])(const SkPoint[], const SkDLine&) = {
NULL,
&SkIntersections::lineRay,
&SkIntersections::quadRay,
&SkIntersections::cubicRay
};
int SkIntersections::coincidentUsed() const {
if (!fIsCoincident[0]) {
SkASSERT(!fIsCoincident[1]);
return 0;
}
int count = 0;
SkDEBUGCODE(int count2 = 0;)
for (int index = 0; index < fUsed; ++index) {
if (fIsCoincident[0] & (1 << index)) {
++count;
}
#ifdef SK_DEBUG
if (fIsCoincident[1] & (1 << index)) {
++count2;
}
#endif
}
SkASSERT(count == count2);
return count;
}
int SkIntersections::cubicRay(const SkPoint pts[4], const SkDLine& line) {
SkDCubic cubic;
cubic.set(pts);
fMax = 3;
return intersectRay(cubic, line);
}
void SkIntersections::flip() {
for (int index = 0; index < fUsed; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
int SkIntersections::insert(double one, double two, const SkDPoint& pt) {
if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) {
// For now, don't allow a mix of coincident and non-coincident intersections
return -1;
}
SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]);
int index;
for (index = 0; index < fUsed; ++index) {
double oldOne = fT[0][index];
double oldTwo = fT[1][index];
if (one == oldOne && two == oldTwo) {
return -1;
}
if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) {
if ((precisely_zero(one) && !precisely_zero(oldOne))
|| (precisely_equal(one, 1) && !precisely_equal(oldOne, 1))
|| (precisely_zero(two) && !precisely_zero(oldTwo))
|| (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) {
fT[0][index] = one;
fT[1][index] = two;
fPt[index] = pt;
}
return -1;
}
#if ONE_OFF_DEBUG
if (pt.roughlyEqual(fPt[index])) {
SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one);
}
#endif
if (fT[0][index] > one) {
break;
}
}
if (fUsed >= fMax) {
SkASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must
// be propagated all the way back down to the caller, and return failure.
fUsed = 0;
return 0;
}
int remaining = fUsed - index;
if (remaining > 0) {
memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining);
memmove(&fPt2[index + 1], &fPt2[index], sizeof(fPt2[0]) * remaining);
memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining);
int clearMask = ~((1 << index) - 1);
fIsCoincident[0] += fIsCoincident[0] & clearMask;
fIsCoincident[1] += fIsCoincident[1] & clearMask;
}
fPt[index] = pt;
fT[0][index] = one;
fT[1][index] = two;
++fUsed;
return index;
}
void SkIntersections::insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2) {
SkASSERT(one == 0 || one == 1);
SkASSERT(two == 0 || two == 1);
SkASSERT(pt1 != pt2);
SkASSERT(fNearlySame[(int) one]);
(void) insert(one, two, pt1);
fPt2[one ? fUsed - 1 : 0] = pt2;
}
void SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) {
int index = insertSwap(one, two, pt);
int bit = 1 << index;
fIsCoincident[0] |= bit;
fIsCoincident[1] |= bit;
}
int SkIntersections::lineRay(const SkPoint pts[2], const SkDLine& line) {
SkDLine l;
l.set(pts);
fMax = 2;
return intersectRay(l, line);
}
void SkIntersections::offset(int base, double start, double end) {
for (int index = base; index < fUsed; ++index) {
double val = fT[fSwap][index];
val *= end - start;
val += start;
fT[fSwap][index] = val;
}
}
int SkIntersections::quadRay(const SkPoint pts[3], const SkDLine& line) {
SkDQuad quad;
quad.set(pts);
fMax = 2;
return intersectRay(quad, line);
}
void SkIntersections::quickRemoveOne(int index, int replace) {
if (index < replace) {
fT[0][index] = fT[0][replace];
}
}
void SkIntersections::removeOne(int index) {
int remaining = --fUsed - index;
if (remaining <= 0) {
return;
}
memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining);
memmove(&fPt2[index], &fPt2[index + 1], sizeof(fPt2[0]) * remaining);
memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining);
SkASSERT(fIsCoincident[0] == 0);
int coBit = fIsCoincident[0] & (1 << index);
fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit;
SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index))));
fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit;
}
void SkIntersections::swapPts() {
int index;
for (index = 0; index < fUsed; ++index) {
SkTSwap(fT[0][index], fT[1][index]);
}
}
int SkIntersections::verticalLine(const SkPoint a[2], SkScalar top, SkScalar bottom,
SkScalar x, bool flipped) {
SkDLine line;
line.set(a);
return vertical(line, top, bottom, x, flipped);
}
int SkIntersections::verticalQuad(const SkPoint a[3], SkScalar top, SkScalar bottom,
SkScalar x, bool flipped) {
SkDQuad quad;
quad.set(a);
return vertical(quad, top, bottom, x, flipped);
}
int SkIntersections::verticalCubic(const SkPoint a[4], SkScalar top, SkScalar bottom,
SkScalar x, bool flipped) {
SkDCubic cubic;
cubic.set(a);
return vertical(cubic, top, bottom, x, flipped);
}