/*
* Key Derivation that doesn't use PKCS11
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "ssl.h" /* prereq to sslimpl.h */
#include "certt.h" /* prereq to sslimpl.h */
#include "keythi.h" /* prereq to sslimpl.h */
#include "sslimpl.h"
#ifndef NO_PKCS11_BYPASS
#include "blapi.h"
#endif
#include "keyhi.h"
#include "pk11func.h"
#include "secasn1.h"
#include "cert.h"
#include "secmodt.h"
#include "sslproto.h"
#include "sslerr.h"
#ifndef NO_PKCS11_BYPASS
/* make this a macro! */
#ifdef NOT_A_MACRO
static void
buildSSLKey(unsigned char * keyBlock, unsigned int keyLen, SECItem * result,
const char * label)
{
result->type = siBuffer;
result->data = keyBlock;
result->len = keyLen;
PRINT_BUF(100, (NULL, label, keyBlock, keyLen));
}
#else
#define buildSSLKey(keyBlock, keyLen, result, label) \
{ \
(result)->type = siBuffer; \
(result)->data = keyBlock; \
(result)->len = keyLen; \
PRINT_BUF(100, (NULL, label, keyBlock, keyLen)); \
}
#endif
/*
* SSL Key generation given pre master secret
*/
#ifndef NUM_MIXERS
#define NUM_MIXERS 9
#endif
static const char * const mixers[NUM_MIXERS] = {
"A",
"BB",
"CCC",
"DDDD",
"EEEEE",
"FFFFFF",
"GGGGGGG",
"HHHHHHHH",
"IIIIIIIII"
};
SECStatus
ssl3_KeyAndMacDeriveBypass(
ssl3CipherSpec * pwSpec,
const unsigned char * cr,
const unsigned char * sr,
PRBool isTLS,
PRBool isExport)
{
const ssl3BulkCipherDef *cipher_def = pwSpec->cipher_def;
unsigned char * key_block = pwSpec->key_block;
unsigned char * key_block2 = NULL;
unsigned int block_bytes = 0;
unsigned int block_needed = 0;
unsigned int i;
unsigned int keySize; /* actual size of cipher keys */
unsigned int effKeySize; /* effective size of cipher keys */
unsigned int macSize; /* size of MAC secret */
unsigned int IVSize; /* size of IV */
PRBool explicitIV = PR_FALSE;
SECStatus rv = SECFailure;
SECStatus status = SECSuccess;
PRBool isFIPS = PR_FALSE;
PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
SECItem srcr;
SECItem crsr;
unsigned char srcrdata[SSL3_RANDOM_LENGTH * 2];
unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
PRUint64 md5buf[22];
PRUint64 shabuf[40];
#define md5Ctx ((MD5Context *)md5buf)
#define shaCtx ((SHA1Context *)shabuf)
static const SECItem zed = { siBuffer, NULL, 0 };
if (pwSpec->msItem.data == NULL ||
pwSpec->msItem.len != SSL3_MASTER_SECRET_LENGTH) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return rv;
}
PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
pwSpec->msItem.len));
/* figure out how much is needed */
macSize = pwSpec->mac_size;
keySize = cipher_def->key_size;
effKeySize = cipher_def->secret_key_size;
IVSize = cipher_def->iv_size;
if (keySize == 0) {
effKeySize = IVSize = 0; /* only MACing */
}
if (cipher_def->type == type_block &&
pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_1) {
/* Block ciphers in >= TLS 1.1 use a per-record, explicit IV. */
explicitIV = PR_TRUE;
}
block_needed =
2 * (macSize + effKeySize + ((!isExport && !explicitIV) * IVSize));
/*
* clear out our returned keys so we can recover on failure
*/
pwSpec->client.write_key_item = zed;
pwSpec->client.write_mac_key_item = zed;
pwSpec->server.write_key_item = zed;
pwSpec->server.write_mac_key_item = zed;
/* initialize the server random, client random block */
srcr.type = siBuffer;
srcr.data = srcrdata;
srcr.len = sizeof srcrdata;
PORT_Memcpy(srcrdata, sr, SSL3_RANDOM_LENGTH);
PORT_Memcpy(srcrdata + SSL3_RANDOM_LENGTH, cr, SSL3_RANDOM_LENGTH);
/* initialize the client random, server random block */
crsr.type = siBuffer;
crsr.data = crsrdata;
crsr.len = sizeof crsrdata;
PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
PRINT_BUF(100, (NULL, "Key & MAC CRSR", crsr.data, crsr.len));
/*
* generate the key material:
*/
if (isTLS) {
SECItem keyblk;
keyblk.type = siBuffer;
keyblk.data = key_block;
keyblk.len = block_needed;
if (isTLS12) {
status = TLS_P_hash(HASH_AlgSHA256, &pwSpec->msItem,
"key expansion", &srcr, &keyblk, isFIPS);
} else {
status = TLS_PRF(&pwSpec->msItem, "key expansion", &srcr, &keyblk,
isFIPS);
}
if (status != SECSuccess) {
goto key_and_mac_derive_fail;
}
block_bytes = keyblk.len;
} else {
/* key_block =
* MD5(master_secret + SHA('A' + master_secret +
* ServerHello.random + ClientHello.random)) +
* MD5(master_secret + SHA('BB' + master_secret +
* ServerHello.random + ClientHello.random)) +
* MD5(master_secret + SHA('CCC' + master_secret +
* ServerHello.random + ClientHello.random)) +
* [...];
*/
unsigned int made = 0;
for (i = 0; made < block_needed && i < NUM_MIXERS; ++i) {
unsigned int outLen;
unsigned char sha_out[SHA1_LENGTH];
SHA1_Begin(shaCtx);
SHA1_Update(shaCtx, (unsigned char*)(mixers[i]), i+1);
SHA1_Update(shaCtx, pwSpec->msItem.data, pwSpec->msItem.len);
SHA1_Update(shaCtx, srcr.data, srcr.len);
SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
PORT_Assert(outLen == SHA1_LENGTH);
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, pwSpec->msItem.data, pwSpec->msItem.len);
MD5_Update(md5Ctx, sha_out, outLen);
MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
PORT_Assert(outLen == MD5_LENGTH);
made += MD5_LENGTH;
}
block_bytes = made;
}
PORT_Assert(block_bytes >= block_needed);
PORT_Assert(block_bytes <= sizeof pwSpec->key_block);
PRINT_BUF(100, (NULL, "key block", key_block, block_bytes));
/*
* Put the key material where it goes.
*/
key_block2 = key_block + block_bytes;
i = 0; /* now shows how much consumed */
/*
* The key_block is partitioned as follows:
* client_write_MAC_secret[CipherSpec.hash_size]
*/
buildSSLKey(&key_block[i],macSize, &pwSpec->client.write_mac_key_item, \
"Client Write MAC Secret");
i += macSize;
/*
* server_write_MAC_secret[CipherSpec.hash_size]
*/
buildSSLKey(&key_block[i],macSize, &pwSpec->server.write_mac_key_item, \
"Server Write MAC Secret");
i += macSize;
if (!keySize) {
/* only MACing */
buildSSLKey(NULL, 0, &pwSpec->client.write_key_item, \
"Client Write Key (MAC only)");
buildSSLKey(NULL, 0, &pwSpec->server.write_key_item, \
"Server Write Key (MAC only)");
buildSSLKey(NULL, 0, &pwSpec->client.write_iv_item, \
"Client Write IV (MAC only)");
buildSSLKey(NULL, 0, &pwSpec->server.write_iv_item, \
"Server Write IV (MAC only)");
} else if (!isExport) {
/*
** Generate Domestic write keys and IVs.
** client_write_key[CipherSpec.key_material]
*/
buildSSLKey(&key_block[i], keySize, &pwSpec->client.write_key_item, \
"Domestic Client Write Key");
i += keySize;
/*
** server_write_key[CipherSpec.key_material]
*/
buildSSLKey(&key_block[i], keySize, &pwSpec->server.write_key_item, \
"Domestic Server Write Key");
i += keySize;
if (IVSize > 0) {
if (explicitIV) {
static unsigned char zero_block[32];
PORT_Assert(IVSize <= sizeof zero_block);
buildSSLKey(&zero_block[0], IVSize, \
&pwSpec->client.write_iv_item, \
"Domestic Client Write IV");
buildSSLKey(&zero_block[0], IVSize, \
&pwSpec->server.write_iv_item, \
"Domestic Server Write IV");
} else {
/*
** client_write_IV[CipherSpec.IV_size]
*/
buildSSLKey(&key_block[i], IVSize, \
&pwSpec->client.write_iv_item, \
"Domestic Client Write IV");
i += IVSize;
/*
** server_write_IV[CipherSpec.IV_size]
*/
buildSSLKey(&key_block[i], IVSize, \
&pwSpec->server.write_iv_item, \
"Domestic Server Write IV");
i += IVSize;
}
}
PORT_Assert(i <= block_bytes);
} else if (!isTLS) {
/*
** Generate SSL3 Export write keys and IVs.
*/
unsigned int outLen;
/*
** client_write_key[CipherSpec.key_material]
** final_client_write_key = MD5(client_write_key +
** ClientHello.random + ServerHello.random);
*/
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, &key_block[i], effKeySize);
MD5_Update(md5Ctx, crsr.data, crsr.len);
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
i += effKeySize;
buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
"SSL3 Export Client Write Key");
key_block2 += keySize;
/*
** server_write_key[CipherSpec.key_material]
** final_server_write_key = MD5(server_write_key +
** ServerHello.random + ClientHello.random);
*/
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, &key_block[i], effKeySize);
MD5_Update(md5Ctx, srcr.data, srcr.len);
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
i += effKeySize;
buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
"SSL3 Export Server Write Key");
key_block2 += keySize;
PORT_Assert(i <= block_bytes);
if (IVSize) {
/*
** client_write_IV =
** MD5(ClientHello.random + ServerHello.random);
*/
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, crsr.data, crsr.len);
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
buildSSLKey(key_block2, IVSize, &pwSpec->client.write_iv_item, \
"SSL3 Export Client Write IV");
key_block2 += IVSize;
/*
** server_write_IV =
** MD5(ServerHello.random + ClientHello.random);
*/
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, srcr.data, srcr.len);
MD5_End(md5Ctx, key_block2, &outLen, MD5_LENGTH);
buildSSLKey(key_block2, IVSize, &pwSpec->server.write_iv_item, \
"SSL3 Export Server Write IV");
key_block2 += IVSize;
}
PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
} else {
/*
** Generate TLS Export write keys and IVs.
*/
SECItem secret ;
SECItem keyblk ;
secret.type = siBuffer;
keyblk.type = siBuffer;
/*
** client_write_key[CipherSpec.key_material]
** final_client_write_key = PRF(client_write_key,
** "client write key",
** client_random + server_random);
*/
secret.data = &key_block[i];
secret.len = effKeySize;
i += effKeySize;
keyblk.data = key_block2;
keyblk.len = keySize;
status = TLS_PRF(&secret, "client write key", &crsr, &keyblk, isFIPS);
if (status != SECSuccess) {
goto key_and_mac_derive_fail;
}
buildSSLKey(key_block2, keySize, &pwSpec->client.write_key_item, \
"TLS Export Client Write Key");
key_block2 += keySize;
/*
** server_write_key[CipherSpec.key_material]
** final_server_write_key = PRF(server_write_key,
** "server write key",
** client_random + server_random);
*/
secret.data = &key_block[i];
secret.len = effKeySize;
i += effKeySize;
keyblk.data = key_block2;
keyblk.len = keySize;
status = TLS_PRF(&secret, "server write key", &crsr, &keyblk, isFIPS);
if (status != SECSuccess) {
goto key_and_mac_derive_fail;
}
buildSSLKey(key_block2, keySize, &pwSpec->server.write_key_item, \
"TLS Export Server Write Key");
key_block2 += keySize;
/*
** iv_block = PRF("", "IV block", client_random + server_random);
** client_write_IV[SecurityParameters.IV_size]
** server_write_IV[SecurityParameters.IV_size]
*/
if (IVSize) {
secret.data = NULL;
secret.len = 0;
keyblk.data = key_block2;
keyblk.len = 2 * IVSize;
status = TLS_PRF(&secret, "IV block", &crsr, &keyblk, isFIPS);
if (status != SECSuccess) {
goto key_and_mac_derive_fail;
}
buildSSLKey(key_block2, IVSize, \
&pwSpec->client.write_iv_item, \
"TLS Export Client Write IV");
buildSSLKey(key_block2 + IVSize, IVSize, \
&pwSpec->server.write_iv_item, \
"TLS Export Server Write IV");
key_block2 += 2 * IVSize;
}
PORT_Assert(key_block2 - key_block <= sizeof pwSpec->key_block);
}
rv = SECSuccess;
key_and_mac_derive_fail:
MD5_DestroyContext(md5Ctx, PR_FALSE);
SHA1_DestroyContext(shaCtx, PR_FALSE);
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
}
return rv;
}
/* derive the Master Secret from the PMS */
/* Presently, this is only done wtih RSA PMS, and only on the server side,
* so isRSA is always true.
*/
SECStatus
ssl3_MasterKeyDeriveBypass(
ssl3CipherSpec * pwSpec,
const unsigned char * cr,
const unsigned char * sr,
const SECItem * pms,
PRBool isTLS,
PRBool isRSA)
{
unsigned char * key_block = pwSpec->key_block;
SECStatus rv = SECSuccess;
PRBool isFIPS = PR_FALSE;
PRBool isTLS12 = pwSpec->version >= SSL_LIBRARY_VERSION_TLS_1_2;
SECItem crsr;
unsigned char crsrdata[SSL3_RANDOM_LENGTH * 2];
PRUint64 md5buf[22];
PRUint64 shabuf[40];
#define md5Ctx ((MD5Context *)md5buf)
#define shaCtx ((SHA1Context *)shabuf)
/* first do the consistancy checks */
if (isRSA) {
PORT_Assert(pms->len == SSL3_RSA_PMS_LENGTH);
if (pms->len != SSL3_RSA_PMS_LENGTH) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
/* caller must test PMS version for rollback */
}
/* initialize the client random, server random block */
crsr.type = siBuffer;
crsr.data = crsrdata;
crsr.len = sizeof crsrdata;
PORT_Memcpy(crsrdata, cr, SSL3_RANDOM_LENGTH);
PORT_Memcpy(crsrdata + SSL3_RANDOM_LENGTH, sr, SSL3_RANDOM_LENGTH);
PRINT_BUF(100, (NULL, "Master Secret CRSR", crsr.data, crsr.len));
/* finally do the key gen */
if (isTLS) {
SECItem master = { siBuffer, NULL, 0 };
master.data = key_block;
master.len = SSL3_MASTER_SECRET_LENGTH;
if (isTLS12) {
rv = TLS_P_hash(HASH_AlgSHA256, pms, "master secret", &crsr,
&master, isFIPS);
} else {
rv = TLS_PRF(pms, "master secret", &crsr, &master, isFIPS);
}
if (rv != SECSuccess) {
PORT_SetError(SSL_ERROR_SESSION_KEY_GEN_FAILURE);
}
} else {
int i;
unsigned int made = 0;
for (i = 0; i < 3; i++) {
unsigned int outLen;
unsigned char sha_out[SHA1_LENGTH];
SHA1_Begin(shaCtx);
SHA1_Update(shaCtx, (unsigned char*) mixers[i], i+1);
SHA1_Update(shaCtx, pms->data, pms->len);
SHA1_Update(shaCtx, crsr.data, crsr.len);
SHA1_End(shaCtx, sha_out, &outLen, SHA1_LENGTH);
PORT_Assert(outLen == SHA1_LENGTH);
MD5_Begin(md5Ctx);
MD5_Update(md5Ctx, pms->data, pms->len);
MD5_Update(md5Ctx, sha_out, outLen);
MD5_End(md5Ctx, key_block + made, &outLen, MD5_LENGTH);
PORT_Assert(outLen == MD5_LENGTH);
made += outLen;
}
}
/* store the results */
PORT_Memcpy(pwSpec->raw_master_secret, key_block,
SSL3_MASTER_SECRET_LENGTH);
pwSpec->msItem.data = pwSpec->raw_master_secret;
pwSpec->msItem.len = SSL3_MASTER_SECRET_LENGTH;
PRINT_BUF(100, (NULL, "Master Secret", pwSpec->msItem.data,
pwSpec->msItem.len));
return rv;
}
static SECStatus
ssl_canExtractMS(PK11SymKey *pms, PRBool isTLS, PRBool isDH, PRBool *pcbp)
{ SECStatus rv;
PK11SymKey * ms = NULL;
SECItem params = {siBuffer, NULL, 0};
CK_SSL3_MASTER_KEY_DERIVE_PARAMS master_params;
unsigned char rand[SSL3_RANDOM_LENGTH];
CK_VERSION pms_version;
CK_MECHANISM_TYPE master_derive;
CK_MECHANISM_TYPE key_derive;
CK_FLAGS keyFlags;
if (pms == NULL)
return(SECFailure);
PORT_Memset(rand, 0, SSL3_RANDOM_LENGTH);
if (isTLS) {
if(isDH) master_derive = CKM_TLS_MASTER_KEY_DERIVE_DH;
else master_derive = CKM_TLS_MASTER_KEY_DERIVE;
key_derive = CKM_TLS_KEY_AND_MAC_DERIVE;
keyFlags = CKF_SIGN | CKF_VERIFY;
} else {
if (isDH) master_derive = CKM_SSL3_MASTER_KEY_DERIVE_DH;
else master_derive = CKM_SSL3_MASTER_KEY_DERIVE;
key_derive = CKM_SSL3_KEY_AND_MAC_DERIVE;
keyFlags = 0;
}
master_params.pVersion = &pms_version;
master_params.RandomInfo.pClientRandom = rand;
master_params.RandomInfo.ulClientRandomLen = SSL3_RANDOM_LENGTH;
master_params.RandomInfo.pServerRandom = rand;
master_params.RandomInfo.ulServerRandomLen = SSL3_RANDOM_LENGTH;
params.data = (unsigned char *) &master_params;
params.len = sizeof master_params;
ms = PK11_DeriveWithFlags(pms, master_derive, ¶ms, key_derive,
CKA_DERIVE, 0, keyFlags);
if (ms == NULL)
return(SECFailure);
rv = PK11_ExtractKeyValue(ms);
*pcbp = (rv == SECSuccess);
PK11_FreeSymKey(ms);
return(rv);
}
#endif /* !NO_PKCS11_BYPASS */
/* Check the key exchange algorithm for each cipher in the list to see if
* a master secret key can be extracted. If the KEA will use keys from the
* specified cert make sure the extract operation is attempted from the slot
* where the private key resides.
* If MS can be extracted for all ciphers, (*pcanbypass) is set to TRUE and
* SECSuccess is returned. In all other cases but one (*pcanbypass) is
* set to FALSE and SECFailure is returned.
* In that last case Derive() has been called successfully but the MS is null,
* CanBypass sets (*pcanbypass) to FALSE and returns SECSuccess indicating the
* arguments were all valid but the slot cannot be bypassed.
*/
/* XXX Add SSL_CBP_TLS1_1 and test it in protocolmask when setting isTLS. */
SECStatus
SSL_CanBypass(CERTCertificate *cert, SECKEYPrivateKey *srvPrivkey,
PRUint32 protocolmask, PRUint16 *ciphersuites, int nsuites,
PRBool *pcanbypass, void *pwArg)
{
#ifdef NO_PKCS11_BYPASS
if (!pcanbypass) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
*pcanbypass = PR_FALSE;
return SECSuccess;
#else
SECStatus rv;
int i;
PRUint16 suite;
PK11SymKey * pms = NULL;
SECKEYPublicKey * srvPubkey = NULL;
KeyType privKeytype;
PK11SlotInfo * slot = NULL;
SECItem param;
CK_VERSION version;
CK_MECHANISM_TYPE mechanism_array[2];
SECItem enc_pms = {siBuffer, NULL, 0};
PRBool isTLS = PR_FALSE;
SSLCipherSuiteInfo csdef;
PRBool testrsa = PR_FALSE;
PRBool testrsa_export = PR_FALSE;
PRBool testecdh = PR_FALSE;
PRBool testecdhe = PR_FALSE;
#ifdef NSS_ENABLE_ECC
SECKEYECParams ecParams = { siBuffer, NULL, 0 };
#endif
if (!cert || !srvPrivkey || !ciphersuites || !pcanbypass) {
PORT_SetError(SEC_ERROR_INVALID_ARGS);
return SECFailure;
}
srvPubkey = CERT_ExtractPublicKey(cert);
if (!srvPubkey)
return SECFailure;
*pcanbypass = PR_TRUE;
rv = SECFailure;
/* determine which KEAs to test */
/* 0 (SSL_NULL_WITH_NULL_NULL) is used as a list terminator because
* SSL3 and TLS specs forbid negotiating that cipher suite number.
*/
for (i=0; i < nsuites && (suite = *ciphersuites++) != 0; i++) {
/* skip SSL2 cipher suites and ones NSS doesn't support */
if (SSL_GetCipherSuiteInfo(suite, &csdef, sizeof(csdef)) != SECSuccess
|| SSL_IS_SSL2_CIPHER(suite) )
continue;
switch (csdef.keaType) {
case ssl_kea_rsa:
switch (csdef.cipherSuite) {
case TLS_RSA_EXPORT1024_WITH_RC4_56_SHA:
case TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA:
case SSL_RSA_EXPORT_WITH_RC4_40_MD5:
case SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5:
testrsa_export = PR_TRUE;
}
if (!testrsa_export)
testrsa = PR_TRUE;
break;
case ssl_kea_ecdh:
if (strcmp(csdef.keaTypeName, "ECDHE") == 0) /* ephemeral? */
testecdhe = PR_TRUE;
else
testecdh = PR_TRUE;
break;
case ssl_kea_dh:
/* this is actually DHE */
default:
continue;
}
}
/* For each protocol try to derive and extract an MS.
* Failure of function any function except MS extract means
* continue with the next cipher test. Stop testing when the list is
* exhausted or when the first MS extract--not derive--fails.
*/
privKeytype = SECKEY_GetPrivateKeyType(srvPrivkey);
protocolmask &= SSL_CBP_SSL3|SSL_CBP_TLS1_0;
while (protocolmask) {
if (protocolmask & SSL_CBP_SSL3) {
isTLS = PR_FALSE;
protocolmask ^= SSL_CBP_SSL3;
} else {
isTLS = PR_TRUE;
protocolmask ^= SSL_CBP_TLS1_0;
}
if (privKeytype == rsaKey && testrsa_export) {
if (PK11_GetPrivateModulusLen(srvPrivkey) > EXPORT_RSA_KEY_LENGTH) {
*pcanbypass = PR_FALSE;
rv = SECSuccess;
break;
} else
testrsa = PR_TRUE;
}
for (; privKeytype == rsaKey && testrsa; ) {
/* TLS_RSA */
unsigned char rsaPmsBuf[SSL3_RSA_PMS_LENGTH];
unsigned int outLen = 0;
CK_MECHANISM_TYPE target;
SECStatus irv;
mechanism_array[0] = CKM_SSL3_PRE_MASTER_KEY_GEN;
mechanism_array[1] = CKM_RSA_PKCS;
slot = PK11_GetBestSlotMultiple(mechanism_array, 2, pwArg);
if (slot == NULL) {
PORT_SetError(SSL_ERROR_TOKEN_SLOT_NOT_FOUND);
break;
}
/* Generate the pre-master secret ... (client side) */
version.major = 3 /*MSB(clientHelloVersion)*/;
version.minor = 0 /*LSB(clientHelloVersion)*/;
param.data = (unsigned char *)&version;
param.len = sizeof version;
pms = PK11_KeyGen(slot, CKM_SSL3_PRE_MASTER_KEY_GEN, ¶m, 0, pwArg);
PK11_FreeSlot(slot);
if (!pms)
break;
/* now wrap it */
enc_pms.len = SECKEY_PublicKeyStrength(srvPubkey);
enc_pms.data = (unsigned char*)PORT_Alloc(enc_pms.len);
if (enc_pms.data == NULL) {
PORT_SetError(PR_OUT_OF_MEMORY_ERROR);
break;
}
irv = PK11_PubWrapSymKey(CKM_RSA_PKCS, srvPubkey, pms, &enc_pms);
if (irv != SECSuccess)
break;
PK11_FreeSymKey(pms);
pms = NULL;
/* now do the server side--check the triple bypass first */
rv = PK11_PrivDecryptPKCS1(srvPrivkey, rsaPmsBuf, &outLen,
sizeof rsaPmsBuf,
(unsigned char *)enc_pms.data,
enc_pms.len);
/* if decrypt worked we're done with the RSA test */
if (rv == SECSuccess) {
*pcanbypass = PR_TRUE;
break;
}
/* check for fallback to double bypass */
target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE
: CKM_SSL3_MASTER_KEY_DERIVE;
pms = PK11_PubUnwrapSymKey(srvPrivkey, &enc_pms,
target, CKA_DERIVE, 0);
rv = ssl_canExtractMS(pms, isTLS, PR_FALSE, pcanbypass);
if (rv == SECSuccess && *pcanbypass == PR_FALSE)
goto done;
break;
}
/* Check for NULL to avoid double free.
* SECItem_FreeItem sets data NULL in secitem.c#265
*/
if (enc_pms.data != NULL) {
SECITEM_FreeItem(&enc_pms, PR_FALSE);
}
#ifdef NSS_ENABLE_ECC
for (; (privKeytype == ecKey && ( testecdh || testecdhe)) ||
(privKeytype == rsaKey && testecdhe); ) {
CK_MECHANISM_TYPE target;
SECKEYPublicKey *keapub = NULL;
SECKEYPrivateKey *keapriv;
SECKEYPublicKey *cpub = NULL; /* client's ephemeral ECDH keys */
SECKEYPrivateKey *cpriv = NULL;
SECKEYECParams *pecParams = NULL;
if (privKeytype == ecKey && testecdhe) {
/* TLS_ECDHE_ECDSA */
pecParams = &srvPubkey->u.ec.DEREncodedParams;
} else if (privKeytype == rsaKey && testecdhe) {
/* TLS_ECDHE_RSA */
ECName ec_curve;
int serverKeyStrengthInBits;
int signatureKeyStrength;
int requiredECCbits;
/* find a curve of equivalent strength to the RSA key's */
requiredECCbits = PK11_GetPrivateModulusLen(srvPrivkey);
if (requiredECCbits < 0)
break;
requiredECCbits *= BPB;
serverKeyStrengthInBits = srvPubkey->u.rsa.modulus.len;
if (srvPubkey->u.rsa.modulus.data[0] == 0) {
serverKeyStrengthInBits--;
}
/* convert to strength in bits */
serverKeyStrengthInBits *= BPB;
signatureKeyStrength =
SSL_RSASTRENGTH_TO_ECSTRENGTH(serverKeyStrengthInBits);
if ( requiredECCbits > signatureKeyStrength )
requiredECCbits = signatureKeyStrength;
ec_curve =
ssl3_GetCurveWithECKeyStrength(
ssl3_GetSupportedECCurveMask(NULL),
requiredECCbits);
rv = ssl3_ECName2Params(NULL, ec_curve, &ecParams);
if (rv == SECFailure) {
break;
}
pecParams = &ecParams;
}
if (testecdhe) {
/* generate server's ephemeral keys */
keapriv = SECKEY_CreateECPrivateKey(pecParams, &keapub, NULL);
if (!keapriv || !keapub) {
if (keapriv)
SECKEY_DestroyPrivateKey(keapriv);
if (keapub)
SECKEY_DestroyPublicKey(keapub);
PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
rv = SECFailure;
break;
}
} else {
/* TLS_ECDH_ECDSA */
keapub = srvPubkey;
keapriv = srvPrivkey;
pecParams = &srvPubkey->u.ec.DEREncodedParams;
}
/* perform client side ops */
/* generate a pair of ephemeral keys using server's parms */
cpriv = SECKEY_CreateECPrivateKey(pecParams, &cpub, NULL);
if (!cpriv || !cpub) {
if (testecdhe) {
SECKEY_DestroyPrivateKey(keapriv);
SECKEY_DestroyPublicKey(keapub);
}
PORT_SetError(SEC_ERROR_KEYGEN_FAIL);
rv = SECFailure;
break;
}
/* now do the server side */
/* determine the PMS using client's public value */
target = isTLS ? CKM_TLS_MASTER_KEY_DERIVE_DH
: CKM_SSL3_MASTER_KEY_DERIVE_DH;
pms = PK11_PubDeriveWithKDF(keapriv, cpub, PR_FALSE, NULL, NULL,
CKM_ECDH1_DERIVE,
target,
CKA_DERIVE, 0, CKD_NULL, NULL, NULL);
rv = ssl_canExtractMS(pms, isTLS, PR_TRUE, pcanbypass);
SECKEY_DestroyPrivateKey(cpriv);
SECKEY_DestroyPublicKey(cpub);
if (testecdhe) {
SECKEY_DestroyPrivateKey(keapriv);
SECKEY_DestroyPublicKey(keapub);
}
if (rv == SECSuccess && *pcanbypass == PR_FALSE)
goto done;
break;
}
/* Check for NULL to avoid double free. */
if (ecParams.data != NULL) {
PORT_Free(ecParams.data);
ecParams.data = NULL;
}
#endif /* NSS_ENABLE_ECC */
if (pms)
PK11_FreeSymKey(pms);
}
/* *pcanbypass has been set */
rv = SECSuccess;
done:
if (pms)
PK11_FreeSymKey(pms);
/* Check for NULL to avoid double free.
* SECItem_FreeItem sets data NULL in secitem.c#265
*/
if (enc_pms.data != NULL) {
SECITEM_FreeItem(&enc_pms, PR_FALSE);
}
#ifdef NSS_ENABLE_ECC
if (ecParams.data != NULL) {
PORT_Free(ecParams.data);
ecParams.data = NULL;
}
#endif /* NSS_ENABLE_ECC */
if (srvPubkey) {
SECKEY_DestroyPublicKey(srvPubkey);
srvPubkey = NULL;
}
return rv;
#endif /* NO_PKCS11_BYPASS */
}