// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_stream_sequencer.h"
#include <algorithm>
#include <limits>
#include "base/logging.h"
#include "base/metrics/sparse_histogram.h"
#include "net/quic/reliable_quic_stream.h"
using std::make_pair;
using std::min;
using std::numeric_limits;
namespace net {
QuicStreamSequencer::QuicStreamSequencer(ReliableQuicStream* quic_stream)
: stream_(quic_stream),
num_bytes_consumed_(0),
close_offset_(numeric_limits<QuicStreamOffset>::max()),
blocked_(false),
num_bytes_buffered_(0),
num_frames_received_(0),
num_duplicate_frames_received_(0) {
}
QuicStreamSequencer::~QuicStreamSequencer() {
}
bool QuicStreamSequencer::OnStreamFrame(const QuicStreamFrame& frame) {
++num_frames_received_;
if (IsDuplicate(frame)) {
++num_duplicate_frames_received_;
// Silently ignore duplicates.
return true;
}
if (FrameOverlapsBufferedData(frame)) {
stream_->CloseConnectionWithDetails(
QUIC_INVALID_STREAM_FRAME, "Stream frame overlaps with buffered data.");
return false;
}
QuicStreamOffset byte_offset = frame.offset;
size_t data_len = frame.data.TotalBufferSize();
if (data_len == 0 && !frame.fin) {
// Stream frames must have data or a fin flag.
stream_->CloseConnectionWithDetails(QUIC_INVALID_STREAM_FRAME,
"Empty stream frame without FIN set.");
return false;
}
if (frame.fin) {
CloseStreamAtOffset(frame.offset + data_len);
if (data_len == 0) {
return true;
}
}
IOVector data;
data.AppendIovec(frame.data.iovec(), frame.data.Size());
// If the frame has arrived in-order then we can process it immediately, only
// buffering if the stream is unable to process it.
if (!blocked_ && byte_offset == num_bytes_consumed_) {
DVLOG(1) << "Processing byte offset " << byte_offset;
size_t bytes_consumed = 0;
for (size_t i = 0; i < data.Size(); ++i) {
bytes_consumed += stream_->ProcessRawData(
static_cast<char*>(data.iovec()[i].iov_base),
data.iovec()[i].iov_len);
}
num_bytes_consumed_ += bytes_consumed;
stream_->AddBytesConsumed(bytes_consumed);
if (MaybeCloseStream()) {
return true;
}
if (bytes_consumed > data_len) {
stream_->Reset(QUIC_ERROR_PROCESSING_STREAM);
return false;
} else if (bytes_consumed == data_len) {
FlushBufferedFrames();
return true; // it's safe to ack this frame.
} else {
// Set ourselves up to buffer what's left.
data_len -= bytes_consumed;
data.Consume(bytes_consumed);
byte_offset += bytes_consumed;
}
}
// Buffer any remaining data to be consumed by the stream when ready.
for (size_t i = 0; i < data.Size(); ++i) {
DVLOG(1) << "Buffering stream data at offset " << byte_offset;
const iovec& iov = data.iovec()[i];
buffered_frames_.insert(make_pair(
byte_offset, string(static_cast<char*>(iov.iov_base), iov.iov_len)));
byte_offset += iov.iov_len;
num_bytes_buffered_ += iov.iov_len;
}
return true;
}
void QuicStreamSequencer::CloseStreamAtOffset(QuicStreamOffset offset) {
const QuicStreamOffset kMaxOffset = numeric_limits<QuicStreamOffset>::max();
// If we have a scheduled termination or close, any new offset should match
// it.
if (close_offset_ != kMaxOffset && offset != close_offset_) {
stream_->Reset(QUIC_MULTIPLE_TERMINATION_OFFSETS);
return;
}
close_offset_ = offset;
MaybeCloseStream();
}
bool QuicStreamSequencer::MaybeCloseStream() {
if (!blocked_ && IsClosed()) {
DVLOG(1) << "Passing up termination, as we've processed "
<< num_bytes_consumed_ << " of " << close_offset_
<< " bytes.";
// Technically it's an error if num_bytes_consumed isn't exactly
// equal, but error handling seems silly at this point.
stream_->OnFinRead();
buffered_frames_.clear();
num_bytes_buffered_ = 0;
return true;
}
return false;
}
int QuicStreamSequencer::GetReadableRegions(iovec* iov, size_t iov_len) {
DCHECK(!blocked_);
FrameMap::iterator it = buffered_frames_.begin();
size_t index = 0;
QuicStreamOffset offset = num_bytes_consumed_;
while (it != buffered_frames_.end() && index < iov_len) {
if (it->first != offset) return index;
iov[index].iov_base = static_cast<void*>(
const_cast<char*>(it->second.data()));
iov[index].iov_len = it->second.size();
offset += it->second.size();
++index;
++it;
}
return index;
}
int QuicStreamSequencer::Readv(const struct iovec* iov, size_t iov_len) {
DCHECK(!blocked_);
FrameMap::iterator it = buffered_frames_.begin();
size_t iov_index = 0;
size_t iov_offset = 0;
size_t frame_offset = 0;
size_t initial_bytes_consumed = num_bytes_consumed_;
while (iov_index < iov_len &&
it != buffered_frames_.end() &&
it->first == num_bytes_consumed_) {
int bytes_to_read = min(iov[iov_index].iov_len - iov_offset,
it->second.size() - frame_offset);
char* iov_ptr = static_cast<char*>(iov[iov_index].iov_base) + iov_offset;
memcpy(iov_ptr,
it->second.data() + frame_offset, bytes_to_read);
frame_offset += bytes_to_read;
iov_offset += bytes_to_read;
if (iov[iov_index].iov_len == iov_offset) {
// We've filled this buffer.
iov_offset = 0;
++iov_index;
}
if (it->second.size() == frame_offset) {
// We've copied this whole frame
RecordBytesConsumed(it->second.size());
buffered_frames_.erase(it);
it = buffered_frames_.begin();
frame_offset = 0;
}
}
// We've finished copying. If we have a partial frame, update it.
if (frame_offset != 0) {
buffered_frames_.insert(
make_pair(it->first + frame_offset, it->second.substr(frame_offset)));
buffered_frames_.erase(buffered_frames_.begin());
RecordBytesConsumed(frame_offset);
}
return num_bytes_consumed_ - initial_bytes_consumed;
}
bool QuicStreamSequencer::HasBytesToRead() const {
FrameMap::const_iterator it = buffered_frames_.begin();
return it != buffered_frames_.end() && it->first == num_bytes_consumed_;
}
bool QuicStreamSequencer::IsClosed() const {
return num_bytes_consumed_ >= close_offset_;
}
bool QuicStreamSequencer::FrameOverlapsBufferedData(
const QuicStreamFrame& frame) const {
if (buffered_frames_.empty()) {
return false;
}
FrameMap::const_iterator next_frame =
buffered_frames_.lower_bound(frame.offset);
// Duplicate frames should have been dropped in IsDuplicate.
DCHECK(next_frame == buffered_frames_.end() ||
next_frame->first != frame.offset);
// If there is a buffered frame with a higher starting offset, then we check
// to see if the new frame runs into the higher frame.
if (next_frame != buffered_frames_.end() &&
(frame.offset + frame.data.TotalBufferSize()) > next_frame->first) {
DVLOG(1) << "New frame overlaps next frame: " << frame.offset << " + "
<< frame.data.TotalBufferSize() << " > " << next_frame->first;
return true;
}
// If there is a buffered frame with a lower starting offset, then we check
// to see if the buffered frame runs into the new frame.
if (next_frame != buffered_frames_.begin()) {
FrameMap::const_iterator preceeding_frame = --next_frame;
QuicStreamOffset offset = preceeding_frame->first;
uint64 data_length = preceeding_frame->second.length();
if ((offset + data_length) > frame.offset) {
DVLOG(1) << "Preceeding frame overlaps new frame: " << offset << " + "
<< data_length << " > " << frame.offset;
return true;
}
}
return false;
}
bool QuicStreamSequencer::IsDuplicate(const QuicStreamFrame& frame) const {
// A frame is duplicate if the frame offset is smaller than our bytes consumed
// or we have stored the frame in our map.
// TODO(pwestin): Is it possible that a new frame contain more data even if
// the offset is the same?
return frame.offset < num_bytes_consumed_ ||
buffered_frames_.find(frame.offset) != buffered_frames_.end();
}
void QuicStreamSequencer::SetBlockedUntilFlush() {
blocked_ = true;
}
void QuicStreamSequencer::FlushBufferedFrames() {
blocked_ = false;
FrameMap::iterator it = buffered_frames_.find(num_bytes_consumed_);
while (it != buffered_frames_.end()) {
DVLOG(1) << "Flushing buffered packet at offset " << it->first;
string* data = &it->second;
size_t bytes_consumed = stream_->ProcessRawData(data->c_str(),
data->size());
RecordBytesConsumed(bytes_consumed);
if (MaybeCloseStream()) {
return;
}
if (bytes_consumed > data->size()) {
stream_->Reset(QUIC_ERROR_PROCESSING_STREAM); // Programming error
return;
} else if (bytes_consumed == data->size()) {
buffered_frames_.erase(it);
it = buffered_frames_.find(num_bytes_consumed_);
} else {
string new_data = it->second.substr(bytes_consumed);
buffered_frames_.erase(it);
buffered_frames_.insert(make_pair(num_bytes_consumed_, new_data));
return;
}
}
MaybeCloseStream();
}
void QuicStreamSequencer::RecordBytesConsumed(size_t bytes_consumed) {
num_bytes_consumed_ += bytes_consumed;
num_bytes_buffered_ -= bytes_consumed;
stream_->AddBytesConsumed(bytes_consumed);
}
} // namespace net