// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_data_writer.h"
#include <algorithm>
#include <limits>
#include <string>
#include "base/basictypes.h"
#include "base/logging.h"
using base::StringPiece;
using std::numeric_limits;
namespace net {
QuicDataWriter::QuicDataWriter(size_t size)
: buffer_(new char[size]),
capacity_(size),
length_(0) {
}
QuicDataWriter::~QuicDataWriter() {
delete[] buffer_;
}
char* QuicDataWriter::take() {
char* rv = buffer_;
buffer_ = NULL;
capacity_ = 0;
length_ = 0;
return rv;
}
bool QuicDataWriter::WriteUInt8(uint8 value) {
return WriteBytes(&value, sizeof(value));
}
bool QuicDataWriter::WriteUInt16(uint16 value) {
return WriteBytes(&value, sizeof(value));
}
bool QuicDataWriter::WriteUInt32(uint32 value) {
return WriteBytes(&value, sizeof(value));
}
bool QuicDataWriter::WriteUInt48(uint64 value) {
uint32 hi = value >> 32;
uint32 lo = value & GG_UINT64_C(0x00000000FFFFFFFF);
return WriteUInt32(lo) && WriteUInt16(hi);
}
bool QuicDataWriter::WriteUInt64(uint64 value) {
return WriteBytes(&value, sizeof(value));
}
bool QuicDataWriter::WriteUFloat16(uint64 value) {
uint16 result;
if (value < (GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits)) {
// Fast path: either the value is denormalized, or has exponent zero.
// Both cases are represented by the value itself.
result = value;
} else if (value >= kUFloat16MaxValue) {
// Value is out of range; clamp it to the maximum representable.
result = numeric_limits<uint16>::max();
} else {
// The highest bit is between position 13 and 42 (zero-based), which
// corresponds to exponent 1-30. In the output, mantissa is from 0 to 10,
// hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11
// and count the shifts.
uint16 exponent = 0;
for (uint16 offset = 16; offset > 0; offset /= 2) {
// Right-shift the value until the highest bit is in position 11.
// For offset of 16, 8, 4, 2 and 1 (binary search over 1-30),
// shift if the bit is at or above 11 + offset.
if (value >= (GG_UINT64_C(1) << (kUFloat16MantissaBits + offset))) {
exponent += offset;
value >>= offset;
}
}
DCHECK_GE(exponent, 1);
DCHECK_LE(exponent, kUFloat16MaxExponent);
DCHECK_GE(value, GG_UINT64_C(1) << kUFloat16MantissaBits);
DCHECK_LT(value, GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits);
// Hidden bit (position 11) is set. We should remove it and increment the
// exponent. Equivalently, we just add it to the exponent.
// This hides the bit.
result = value + (exponent << kUFloat16MantissaBits);
}
return WriteBytes(&result, sizeof(result));
}
bool QuicDataWriter::WriteStringPiece16(StringPiece val) {
if (val.length() > numeric_limits<uint16>::max()) {
return false;
}
if (!WriteUInt16(val.size())) {
return false;
}
return WriteBytes(val.data(), val.size());
}
bool QuicDataWriter::WriteIOVector(const IOVector& data) {
char *dest = BeginWrite(data.TotalBufferSize());
if (!dest) {
return false;
}
for (size_t i = 0; i < data.Size(); ++i) {
WriteBytes(data.iovec()[i].iov_base, data.iovec()[i].iov_len);
}
return true;
}
char* QuicDataWriter::BeginWrite(size_t length) {
if (length_ > capacity_) {
return NULL;
}
if (capacity_ - length_ < length) {
return NULL;
}
#ifdef ARCH_CPU_64_BITS
DCHECK_LE(length, numeric_limits<uint32>::max());
#endif
return buffer_ + length_;
}
bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) {
char* dest = BeginWrite(data_len);
if (!dest) {
return false;
}
memcpy(dest, data, data_len);
length_ += data_len;
return true;
}
bool QuicDataWriter::WriteRepeatedByte(uint8 byte, size_t count) {
char* dest = BeginWrite(count);
if (!dest) {
return false;
}
memset(dest, byte, count);
length_ += count;
return true;
}
void QuicDataWriter::WritePadding() {
DCHECK_LE(length_, capacity_);
if (length_ > capacity_) {
return;
}
memset(buffer_ + length_, 0x00, capacity_ - length_);
length_ = capacity_;
}
bool QuicDataWriter::WriteUInt8ToOffset(uint8 value, size_t offset) {
if (offset >= capacity_) {
LOG(DFATAL) << "offset: " << offset << " >= capacity: " << capacity_;
return false;
}
size_t latched_length = length_;
length_ = offset;
bool success = WriteUInt8(value);
DCHECK_LE(length_, latched_length);
length_ = latched_length;
return success;
}
bool QuicDataWriter::WriteUInt32ToOffset(uint32 value, size_t offset) {
DCHECK_LT(offset, capacity_);
size_t latched_length = length_;
length_ = offset;
bool success = WriteUInt32(value);
DCHECK_LE(length_, latched_length);
length_ = latched_length;
return success;
}
bool QuicDataWriter::WriteUInt48ToOffset(uint64 value, size_t offset) {
DCHECK_LT(offset, capacity_);
size_t latched_length = length_;
length_ = offset;
bool success = WriteUInt48(value);
DCHECK_LE(length_, latched_length);
length_ = latched_length;
return success;
}
} // namespace net