// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/dns_session.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/lazy_instance.h"
#include "base/metrics/histogram.h"
#include "base/metrics/sample_vector.h"
#include "base/rand_util.h"
#include "base/stl_util.h"
#include "base/time/time.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/dns/dns_config_service.h"
#include "net/dns/dns_socket_pool.h"
#include "net/socket/stream_socket.h"
#include "net/udp/datagram_client_socket.h"
namespace net {
namespace {
// Never exceed max timeout.
const unsigned kMaxTimeoutMs = 5000;
// Set min timeout, in case we are talking to a local DNS proxy.
const unsigned kMinTimeoutMs = 10;
// Number of buckets in the histogram of observed RTTs.
const size_t kRTTBucketCount = 100;
// Target percentile in the RTT histogram used for retransmission timeout.
const unsigned kRTOPercentile = 99;
} // namespace
// Runtime statistics of DNS server.
struct DnsSession::ServerStats {
ServerStats(base::TimeDelta rtt_estimate_param, RttBuckets* buckets)
: last_failure_count(0), rtt_estimate(rtt_estimate_param) {
rtt_histogram.reset(new base::SampleVector(buckets));
// Seed histogram with 2 samples at |rtt_estimate| timeout.
rtt_histogram->Accumulate(rtt_estimate.InMilliseconds(), 2);
}
// Count of consecutive failures after last success.
int last_failure_count;
// Last time when server returned failure or timeout.
base::Time last_failure;
// Last time when server returned success.
base::Time last_success;
// Estimated RTT using moving average.
base::TimeDelta rtt_estimate;
// Estimated error in the above.
base::TimeDelta rtt_deviation;
// A histogram of observed RTT .
scoped_ptr<base::SampleVector> rtt_histogram;
DISALLOW_COPY_AND_ASSIGN(ServerStats);
};
// static
base::LazyInstance<DnsSession::RttBuckets>::Leaky DnsSession::rtt_buckets_ =
LAZY_INSTANCE_INITIALIZER;
DnsSession::RttBuckets::RttBuckets() : base::BucketRanges(kRTTBucketCount + 1) {
base::Histogram::InitializeBucketRanges(1, 5000, this);
}
DnsSession::SocketLease::SocketLease(scoped_refptr<DnsSession> session,
unsigned server_index,
scoped_ptr<DatagramClientSocket> socket)
: session_(session), server_index_(server_index), socket_(socket.Pass()) {}
DnsSession::SocketLease::~SocketLease() {
session_->FreeSocket(server_index_, socket_.Pass());
}
DnsSession::DnsSession(const DnsConfig& config,
scoped_ptr<DnsSocketPool> socket_pool,
const RandIntCallback& rand_int_callback,
NetLog* net_log)
: config_(config),
socket_pool_(socket_pool.Pass()),
rand_callback_(base::Bind(rand_int_callback, 0, kuint16max)),
net_log_(net_log),
server_index_(0) {
socket_pool_->Initialize(&config_.nameservers, net_log);
UMA_HISTOGRAM_CUSTOM_COUNTS(
"AsyncDNS.ServerCount", config_.nameservers.size(), 0, 10, 10);
for (size_t i = 0; i < config_.nameservers.size(); ++i) {
server_stats_.push_back(new ServerStats(config_.timeout,
rtt_buckets_.Pointer()));
}
}
DnsSession::~DnsSession() {
RecordServerStats();
}
int DnsSession::NextQueryId() const { return rand_callback_.Run(); }
unsigned DnsSession::NextFirstServerIndex() {
unsigned index = NextGoodServerIndex(server_index_);
if (config_.rotate)
server_index_ = (server_index_ + 1) % config_.nameservers.size();
return index;
}
unsigned DnsSession::NextGoodServerIndex(unsigned server_index) {
unsigned index = server_index;
base::Time oldest_server_failure(base::Time::Now());
unsigned oldest_server_failure_index = 0;
UMA_HISTOGRAM_BOOLEAN("AsyncDNS.ServerIsGood",
server_stats_[server_index]->last_failure.is_null());
do {
base::Time cur_server_failure = server_stats_[index]->last_failure;
// If number of failures on this server doesn't exceed number of allowed
// attempts, return its index.
if (server_stats_[server_index]->last_failure_count < config_.attempts) {
return index;
}
// Track oldest failed server.
if (cur_server_failure < oldest_server_failure) {
oldest_server_failure = cur_server_failure;
oldest_server_failure_index = index;
}
index = (index + 1) % config_.nameservers.size();
} while (index != server_index);
// If we are here it means that there are no successful servers, so we have
// to use one that has failed oldest.
return oldest_server_failure_index;
}
void DnsSession::RecordServerFailure(unsigned server_index) {
UMA_HISTOGRAM_CUSTOM_COUNTS(
"AsyncDNS.ServerFailureIndex", server_index, 0, 10, 10);
++(server_stats_[server_index]->last_failure_count);
server_stats_[server_index]->last_failure = base::Time::Now();
}
void DnsSession::RecordServerSuccess(unsigned server_index) {
if (server_stats_[server_index]->last_success.is_null()) {
UMA_HISTOGRAM_COUNTS_100("AsyncDNS.ServerFailuresAfterNetworkChange",
server_stats_[server_index]->last_failure_count);
} else {
UMA_HISTOGRAM_COUNTS_100("AsyncDNS.ServerFailuresBeforeSuccess",
server_stats_[server_index]->last_failure_count);
}
server_stats_[server_index]->last_failure_count = 0;
server_stats_[server_index]->last_failure = base::Time();
server_stats_[server_index]->last_success = base::Time::Now();
}
void DnsSession::RecordRTT(unsigned server_index, base::TimeDelta rtt) {
DCHECK_LT(server_index, server_stats_.size());
// For measurement, assume it is the first attempt (no backoff).
base::TimeDelta timeout_jacobson = NextTimeoutFromJacobson(server_index, 0);
base::TimeDelta timeout_histogram = NextTimeoutFromHistogram(server_index, 0);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorJacobson", rtt - timeout_jacobson);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorHistogram",
rtt - timeout_histogram);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorJacobsonUnder",
timeout_jacobson - rtt);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutErrorHistogramUnder",
timeout_histogram - rtt);
// Jacobson/Karels algorithm for TCP.
// Using parameters: alpha = 1/8, delta = 1/4, beta = 4
base::TimeDelta& estimate = server_stats_[server_index]->rtt_estimate;
base::TimeDelta& deviation = server_stats_[server_index]->rtt_deviation;
base::TimeDelta current_error = rtt - estimate;
estimate += current_error / 8; // * alpha
base::TimeDelta abs_error = base::TimeDelta::FromInternalValue(
std::abs(current_error.ToInternalValue()));
deviation += (abs_error - deviation) / 4; // * delta
// Histogram-based method.
server_stats_[server_index]->rtt_histogram
->Accumulate(rtt.InMilliseconds(), 1);
}
void DnsSession::RecordLostPacket(unsigned server_index, int attempt) {
base::TimeDelta timeout_jacobson =
NextTimeoutFromJacobson(server_index, attempt);
base::TimeDelta timeout_histogram =
NextTimeoutFromHistogram(server_index, attempt);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutSpentJacobson", timeout_jacobson);
UMA_HISTOGRAM_TIMES("AsyncDNS.TimeoutSpentHistogram", timeout_histogram);
}
void DnsSession::RecordServerStats() {
for (size_t index = 0; index < server_stats_.size(); ++index) {
if (server_stats_[index]->last_failure_count) {
if (server_stats_[index]->last_success.is_null()) {
UMA_HISTOGRAM_COUNTS("AsyncDNS.ServerFailuresWithoutSuccess",
server_stats_[index]->last_failure_count);
} else {
UMA_HISTOGRAM_COUNTS("AsyncDNS.ServerFailuresAfterSuccess",
server_stats_[index]->last_failure_count);
}
}
}
}
base::TimeDelta DnsSession::NextTimeout(unsigned server_index, int attempt) {
// Respect config timeout if it exceeds |kMaxTimeoutMs|.
if (config_.timeout.InMilliseconds() >= kMaxTimeoutMs)
return config_.timeout;
return NextTimeoutFromHistogram(server_index, attempt);
}
// Allocate a socket, already connected to the server address.
scoped_ptr<DnsSession::SocketLease> DnsSession::AllocateSocket(
unsigned server_index, const NetLog::Source& source) {
scoped_ptr<DatagramClientSocket> socket;
socket = socket_pool_->AllocateSocket(server_index);
if (!socket.get())
return scoped_ptr<SocketLease>();
socket->NetLog().BeginEvent(NetLog::TYPE_SOCKET_IN_USE,
source.ToEventParametersCallback());
SocketLease* lease = new SocketLease(this, server_index, socket.Pass());
return scoped_ptr<SocketLease>(lease);
}
scoped_ptr<StreamSocket> DnsSession::CreateTCPSocket(
unsigned server_index, const NetLog::Source& source) {
return socket_pool_->CreateTCPSocket(server_index, source);
}
// Release a socket.
void DnsSession::FreeSocket(unsigned server_index,
scoped_ptr<DatagramClientSocket> socket) {
DCHECK(socket.get());
socket->NetLog().EndEvent(NetLog::TYPE_SOCKET_IN_USE);
socket_pool_->FreeSocket(server_index, socket.Pass());
}
base::TimeDelta DnsSession::NextTimeoutFromJacobson(unsigned server_index,
int attempt) {
DCHECK_LT(server_index, server_stats_.size());
base::TimeDelta timeout = server_stats_[server_index]->rtt_estimate +
4 * server_stats_[server_index]->rtt_deviation;
timeout = std::max(timeout, base::TimeDelta::FromMilliseconds(kMinTimeoutMs));
// The timeout doubles every full round.
unsigned num_backoffs = attempt / config_.nameservers.size();
return std::min(timeout * (1 << num_backoffs),
base::TimeDelta::FromMilliseconds(kMaxTimeoutMs));
}
base::TimeDelta DnsSession::NextTimeoutFromHistogram(unsigned server_index,
int attempt) {
DCHECK_LT(server_index, server_stats_.size());
COMPILE_ASSERT(std::numeric_limits<base::HistogramBase::Count>::is_signed,
histogram_base_count_assumed_to_be_signed);
// Use fixed percentile of observed samples.
const base::SampleVector& samples =
*server_stats_[server_index]->rtt_histogram;
base::HistogramBase::Count total = samples.TotalCount();
base::HistogramBase::Count remaining_count = kRTOPercentile * total / 100;
size_t index = 0;
while (remaining_count > 0 && index < rtt_buckets_.Get().size()) {
remaining_count -= samples.GetCountAtIndex(index);
++index;
}
base::TimeDelta timeout =
base::TimeDelta::FromMilliseconds(rtt_buckets_.Get().range(index));
timeout = std::max(timeout, base::TimeDelta::FromMilliseconds(kMinTimeoutMs));
// The timeout still doubles every full round.
unsigned num_backoffs = attempt / config_.nameservers.size();
return std::min(timeout * (1 << num_backoffs),
base::TimeDelta::FromMilliseconds(kMaxTimeoutMs));
}
} // namespace net