// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/x509_certificate.h"
#include <openssl/asn1.h>
#include <openssl/crypto.h>
#include <openssl/obj_mac.h>
#include <openssl/pem.h>
#include <openssl/pkcs7.h>
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <openssl/x509v3.h>
#include "base/memory/singleton.h"
#include "base/pickle.h"
#include "base/sha1.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
#include "net/base/net_errors.h"
#include "net/base/net_util.h"
#include "net/cert/x509_util_openssl.h"
#if defined(OS_ANDROID)
#include "base/logging.h"
#include "net/android/network_library.h"
#endif
namespace net {
namespace {
void CreateOSCertHandlesFromPKCS7Bytes(
const char* data, int length,
X509Certificate::OSCertHandles* handles) {
crypto::EnsureOpenSSLInit();
const unsigned char* der_data = reinterpret_cast<const unsigned char*>(data);
crypto::ScopedOpenSSL<PKCS7, PKCS7_free> pkcs7_cert(
d2i_PKCS7(NULL, &der_data, length));
if (!pkcs7_cert.get())
return;
STACK_OF(X509)* certs = NULL;
int nid = OBJ_obj2nid(pkcs7_cert.get()->type);
if (nid == NID_pkcs7_signed) {
certs = pkcs7_cert.get()->d.sign->cert;
} else if (nid == NID_pkcs7_signedAndEnveloped) {
certs = pkcs7_cert.get()->d.signed_and_enveloped->cert;
}
if (certs) {
for (int i = 0; i < sk_X509_num(certs); ++i) {
X509* x509_cert =
X509Certificate::DupOSCertHandle(sk_X509_value(certs, i));
handles->push_back(x509_cert);
}
}
}
void ParsePrincipalValues(X509_NAME* name,
int nid,
std::vector<std::string>* fields) {
for (int index = -1;
(index = X509_NAME_get_index_by_NID(name, nid, index)) != -1;) {
std::string field;
if (!x509_util::ParsePrincipalValueByIndex(name, index, &field))
break;
fields->push_back(field);
}
}
void ParsePrincipal(X509Certificate::OSCertHandle cert,
X509_NAME* x509_name,
CertPrincipal* principal) {
if (!x509_name)
return;
ParsePrincipalValues(x509_name, NID_streetAddress,
&principal->street_addresses);
ParsePrincipalValues(x509_name, NID_organizationName,
&principal->organization_names);
ParsePrincipalValues(x509_name, NID_organizationalUnitName,
&principal->organization_unit_names);
ParsePrincipalValues(x509_name, NID_domainComponent,
&principal->domain_components);
x509_util::ParsePrincipalValueByNID(x509_name, NID_commonName,
&principal->common_name);
x509_util::ParsePrincipalValueByNID(x509_name, NID_localityName,
&principal->locality_name);
x509_util::ParsePrincipalValueByNID(x509_name, NID_stateOrProvinceName,
&principal->state_or_province_name);
x509_util::ParsePrincipalValueByNID(x509_name, NID_countryName,
&principal->country_name);
}
void ParseSubjectAltName(X509Certificate::OSCertHandle cert,
std::vector<std::string>* dns_names,
std::vector<std::string>* ip_addresses) {
DCHECK(dns_names || ip_addresses);
int index = X509_get_ext_by_NID(cert, NID_subject_alt_name, -1);
X509_EXTENSION* alt_name_ext = X509_get_ext(cert, index);
if (!alt_name_ext)
return;
crypto::ScopedOpenSSL<GENERAL_NAMES, GENERAL_NAMES_free> alt_names(
reinterpret_cast<GENERAL_NAMES*>(X509V3_EXT_d2i(alt_name_ext)));
if (!alt_names.get())
return;
for (int i = 0; i < sk_GENERAL_NAME_num(alt_names.get()); ++i) {
const GENERAL_NAME* name = sk_GENERAL_NAME_value(alt_names.get(), i);
if (name->type == GEN_DNS && dns_names) {
const unsigned char* dns_name = ASN1_STRING_data(name->d.dNSName);
if (!dns_name)
continue;
int dns_name_len = ASN1_STRING_length(name->d.dNSName);
dns_names->push_back(
std::string(reinterpret_cast<const char*>(dns_name), dns_name_len));
} else if (name->type == GEN_IPADD && ip_addresses) {
const unsigned char* ip_addr = name->d.iPAddress->data;
if (!ip_addr)
continue;
int ip_addr_len = name->d.iPAddress->length;
if (ip_addr_len != static_cast<int>(kIPv4AddressSize) &&
ip_addr_len != static_cast<int>(kIPv6AddressSize)) {
// http://www.ietf.org/rfc/rfc3280.txt requires subjectAltName iPAddress
// to have 4 or 16 bytes, whereas in a name constraint it includes a
// net mask hence 8 or 32 bytes. Logging to help diagnose any mixup.
LOG(WARNING) << "Bad sized IP Address in cert: " << ip_addr_len;
continue;
}
ip_addresses->push_back(
std::string(reinterpret_cast<const char*>(ip_addr), ip_addr_len));
}
}
}
struct DERCache {
unsigned char* data;
int data_length;
};
void DERCache_free(void* parent, void* ptr, CRYPTO_EX_DATA* ad, int idx,
long argl, void* argp) {
DERCache* der_cache = static_cast<DERCache*>(ptr);
if (!der_cache)
return;
if (der_cache->data)
OPENSSL_free(der_cache->data);
OPENSSL_free(der_cache);
}
class X509InitSingleton {
public:
static X509InitSingleton* GetInstance() {
// We allow the X509 store to leak, because it is used from a non-joinable
// worker that is not stopped on shutdown, hence may still be using
// OpenSSL library after the AtExit runner has completed.
return Singleton<X509InitSingleton,
LeakySingletonTraits<X509InitSingleton> >::get();
}
int der_cache_ex_index() const { return der_cache_ex_index_; }
X509_STORE* store() const { return store_.get(); }
void ResetCertStore() {
store_.reset(X509_STORE_new());
DCHECK(store_.get());
X509_STORE_set_default_paths(store_.get());
// TODO(joth): Enable CRL (see X509_STORE_set_flags(X509_V_FLAG_CRL_CHECK)).
}
private:
friend struct DefaultSingletonTraits<X509InitSingleton>;
X509InitSingleton() {
crypto::EnsureOpenSSLInit();
der_cache_ex_index_ = X509_get_ex_new_index(0, 0, 0, 0, DERCache_free);
DCHECK_NE(der_cache_ex_index_, -1);
ResetCertStore();
}
int der_cache_ex_index_;
crypto::ScopedOpenSSL<X509_STORE, X509_STORE_free> store_;
DISALLOW_COPY_AND_ASSIGN(X509InitSingleton);
};
// Takes ownership of |data| (which must have been allocated by OpenSSL).
DERCache* SetDERCache(X509Certificate::OSCertHandle cert,
int x509_der_cache_index,
unsigned char* data,
int data_length) {
DERCache* internal_cache = static_cast<DERCache*>(
OPENSSL_malloc(sizeof(*internal_cache)));
if (!internal_cache) {
// We took ownership of |data|, so we must free if we can't add it to
// |cert|.
OPENSSL_free(data);
return NULL;
}
internal_cache->data = data;
internal_cache->data_length = data_length;
X509_set_ex_data(cert, x509_der_cache_index, internal_cache);
return internal_cache;
}
// Returns true if |der_cache| points to valid data, false otherwise.
// (note: the DER-encoded data in |der_cache| is owned by |cert|, callers should
// not free it).
bool GetDERAndCacheIfNeeded(X509Certificate::OSCertHandle cert,
DERCache* der_cache) {
int x509_der_cache_index =
X509InitSingleton::GetInstance()->der_cache_ex_index();
// Re-encoding the DER data via i2d_X509 is an expensive operation, but it's
// necessary for comparing two certificates. We re-encode at most once per
// certificate and cache the data within the X509 cert using X509_set_ex_data.
DERCache* internal_cache = static_cast<DERCache*>(
X509_get_ex_data(cert, x509_der_cache_index));
if (!internal_cache) {
unsigned char* data = NULL;
int data_length = i2d_X509(cert, &data);
if (data_length <= 0 || !data)
return false;
internal_cache = SetDERCache(cert, x509_der_cache_index, data, data_length);
if (!internal_cache)
return false;
}
*der_cache = *internal_cache;
return true;
}
// Used to free a list of X509_NAMEs and the objects it points to.
void sk_X509_NAME_free_all(STACK_OF(X509_NAME)* sk) {
sk_X509_NAME_pop_free(sk, X509_NAME_free);
}
} // namespace
// static
X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle(
OSCertHandle cert_handle) {
DCHECK(cert_handle);
// Using X509_dup causes the entire certificate to be reparsed. This
// conversion, besides being non-trivial, drops any associated
// application-specific data set by X509_set_ex_data. Using CRYPTO_add
// just bumps up the ref-count for the cert, without causing any allocations
// or deallocations.
CRYPTO_add(&cert_handle->references, 1, CRYPTO_LOCK_X509);
return cert_handle;
}
// static
void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) {
// Decrement the ref-count for the cert and, if all references are gone,
// free the memory and any application-specific data associated with the
// certificate.
X509_free(cert_handle);
}
void X509Certificate::Initialize() {
crypto::EnsureOpenSSLInit();
fingerprint_ = CalculateFingerprint(cert_handle_);
ca_fingerprint_ = CalculateCAFingerprint(intermediate_ca_certs_);
ASN1_INTEGER* serial_num = X509_get_serialNumber(cert_handle_);
if (serial_num) {
// ASN1_INTEGERS represent the decoded number, in a format internal to
// OpenSSL. Most notably, this may have leading zeroes stripped off for
// numbers whose first byte is >= 0x80. Thus, it is necessary to
// re-encoded the integer back into DER, which is what the interface
// of X509Certificate exposes, to ensure callers get the proper (DER)
// value.
int bytes_required = i2c_ASN1_INTEGER(serial_num, NULL);
unsigned char* buffer = reinterpret_cast<unsigned char*>(
WriteInto(&serial_number_, bytes_required + 1));
int bytes_written = i2c_ASN1_INTEGER(serial_num, &buffer);
DCHECK_EQ(static_cast<size_t>(bytes_written), serial_number_.size());
}
ParsePrincipal(cert_handle_, X509_get_subject_name(cert_handle_), &subject_);
ParsePrincipal(cert_handle_, X509_get_issuer_name(cert_handle_), &issuer_);
x509_util::ParseDate(X509_get_notBefore(cert_handle_), &valid_start_);
x509_util::ParseDate(X509_get_notAfter(cert_handle_), &valid_expiry_);
}
// static
void X509Certificate::ResetCertStore() {
X509InitSingleton::GetInstance()->ResetCertStore();
}
// static
SHA1HashValue X509Certificate::CalculateFingerprint(OSCertHandle cert) {
SHA1HashValue sha1;
unsigned int sha1_size = static_cast<unsigned int>(sizeof(sha1.data));
int ret = X509_digest(cert, EVP_sha1(), sha1.data, &sha1_size);
CHECK(ret);
CHECK_EQ(sha1_size, sizeof(sha1.data));
return sha1;
}
// static
SHA1HashValue X509Certificate::CalculateCAFingerprint(
const OSCertHandles& intermediates) {
SHA1HashValue sha1;
memset(sha1.data, 0, sizeof(sha1.data));
SHA_CTX sha1_ctx;
SHA1_Init(&sha1_ctx);
DERCache der_cache;
for (size_t i = 0; i < intermediates.size(); ++i) {
if (!GetDERAndCacheIfNeeded(intermediates[i], &der_cache))
return sha1;
SHA1_Update(&sha1_ctx, der_cache.data, der_cache.data_length);
}
SHA1_Final(sha1.data, &sha1_ctx);
return sha1;
}
// static
X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes(
const char* data, int length) {
if (length < 0)
return NULL;
crypto::EnsureOpenSSLInit();
const unsigned char* d2i_data =
reinterpret_cast<const unsigned char*>(data);
// Don't cache this data via SetDERCache as this wire format may be not be
// identical from the i2d_X509 roundtrip.
X509* cert = d2i_X509(NULL, &d2i_data, length);
return cert;
}
// static
X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes(
const char* data, int length, Format format) {
OSCertHandles results;
if (length < 0)
return results;
switch (format) {
case FORMAT_SINGLE_CERTIFICATE: {
OSCertHandle handle = CreateOSCertHandleFromBytes(data, length);
if (handle)
results.push_back(handle);
break;
}
case FORMAT_PKCS7: {
CreateOSCertHandlesFromPKCS7Bytes(data, length, &results);
break;
}
default: {
NOTREACHED() << "Certificate format " << format << " unimplemented";
break;
}
}
return results;
}
void X509Certificate::GetSubjectAltName(
std::vector<std::string>* dns_names,
std::vector<std::string>* ip_addrs) const {
if (dns_names)
dns_names->clear();
if (ip_addrs)
ip_addrs->clear();
ParseSubjectAltName(cert_handle_, dns_names, ip_addrs);
}
// static
X509_STORE* X509Certificate::cert_store() {
return X509InitSingleton::GetInstance()->store();
}
// static
bool X509Certificate::GetDEREncoded(X509Certificate::OSCertHandle cert_handle,
std::string* encoded) {
DERCache der_cache;
if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache))
return false;
encoded->assign(reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
return true;
}
// static
bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a,
X509Certificate::OSCertHandle b) {
DCHECK(a && b);
if (a == b)
return true;
// X509_cmp only checks the fingerprint, but we want to compare the whole
// DER data. Encoding it from OSCertHandle is an expensive operation, so we
// cache the DER (if not already cached via X509_set_ex_data).
DERCache der_cache_a, der_cache_b;
return GetDERAndCacheIfNeeded(a, &der_cache_a) &&
GetDERAndCacheIfNeeded(b, &der_cache_b) &&
der_cache_a.data_length == der_cache_b.data_length &&
memcmp(der_cache_a.data, der_cache_b.data, der_cache_a.data_length) == 0;
}
// static
X509Certificate::OSCertHandle
X509Certificate::ReadOSCertHandleFromPickle(PickleIterator* pickle_iter) {
const char* data;
int length;
if (!pickle_iter->ReadData(&data, &length))
return NULL;
return CreateOSCertHandleFromBytes(data, length);
}
// static
bool X509Certificate::WriteOSCertHandleToPickle(OSCertHandle cert_handle,
Pickle* pickle) {
DERCache der_cache;
if (!GetDERAndCacheIfNeeded(cert_handle, &der_cache))
return false;
return pickle->WriteData(
reinterpret_cast<const char*>(der_cache.data),
der_cache.data_length);
}
// static
void X509Certificate::GetPublicKeyInfo(OSCertHandle cert_handle,
size_t* size_bits,
PublicKeyType* type) {
*type = kPublicKeyTypeUnknown;
*size_bits = 0;
crypto::ScopedOpenSSL<EVP_PKEY, EVP_PKEY_free> scoped_key(
X509_get_pubkey(cert_handle));
if (!scoped_key.get())
return;
CHECK(scoped_key.get());
EVP_PKEY* key = scoped_key.get();
switch (key->type) {
case EVP_PKEY_RSA:
*type = kPublicKeyTypeRSA;
*size_bits = EVP_PKEY_size(key) * 8;
break;
case EVP_PKEY_DSA:
*type = kPublicKeyTypeDSA;
*size_bits = EVP_PKEY_size(key) * 8;
break;
case EVP_PKEY_EC:
*type = kPublicKeyTypeECDSA;
*size_bits = EVP_PKEY_bits(key);
break;
case EVP_PKEY_DH:
*type = kPublicKeyTypeDH;
*size_bits = EVP_PKEY_size(key) * 8;
break;
}
}
bool X509Certificate::IsIssuedByEncoded(
const std::vector<std::string>& valid_issuers) {
if (valid_issuers.empty())
return false;
// Convert to a temporary list of X509_NAME objects.
// It will own the objects it points to.
crypto::ScopedOpenSSL<STACK_OF(X509_NAME), sk_X509_NAME_free_all>
issuer_names(sk_X509_NAME_new_null());
if (!issuer_names.get())
return false;
for (std::vector<std::string>::const_iterator it = valid_issuers.begin();
it != valid_issuers.end(); ++it) {
const unsigned char* p =
reinterpret_cast<const unsigned char*>(it->data());
long len = static_cast<long>(it->length());
X509_NAME* ca_name = d2i_X509_NAME(NULL, &p, len);
if (ca_name == NULL)
return false;
sk_X509_NAME_push(issuer_names.get(), ca_name);
}
// Create a temporary list of X509_NAME objects corresponding
// to the certificate chain. It doesn't own the object it points to.
std::vector<X509_NAME*> cert_names;
X509_NAME* issuer = X509_get_issuer_name(cert_handle_);
if (issuer == NULL)
return false;
cert_names.push_back(issuer);
for (OSCertHandles::iterator it = intermediate_ca_certs_.begin();
it != intermediate_ca_certs_.end(); ++it) {
issuer = X509_get_issuer_name(*it);
if (issuer == NULL)
return false;
cert_names.push_back(issuer);
}
// and 'cert_names'.
for (size_t n = 0; n < cert_names.size(); ++n) {
for (int m = 0; m < sk_X509_NAME_num(issuer_names.get()); ++m) {
X509_NAME* issuer = sk_X509_NAME_value(issuer_names.get(), m);
if (X509_NAME_cmp(issuer, cert_names[n]) == 0) {
return true;
}
}
}
return false;
}
} // namespace net